Review
Copyright ©The Author(s) 2024.
World J Gastroenterol. Oct 14, 2024; 30(38): 4175-4193
Published online Oct 14, 2024. doi: 10.3748/wjg.v30.i38.4175
Table 1 Functions of N6-methyladenosine regulators
Types
Regulators
Functions
Ref.
METTL3Catalyses m6A modification[30,31]
METTL14Provides structural support and recognizes target RNAs[30,31]
WTAPContributes to the orientation of MTC[32,33]
VIRMA/KIAA1429Recruits m6A complexes to specialized RNA sites[32,33]
m6A writersZC3H13Bridges WTAP to Nito[32,33]
RBM15Binds to the m6A complex and recruits to specialized RNA sites[32,33]
CBLL1/HAKAIContributes to the stabilization of MTC[32,34]
METTL16Catalyses m6A modification[35]
FTOAffects RNA splicing stabilization and deletes m6A modifications[36]
m6A erasersALKBH5Regulates RNA export and splicing, and deletes m6A modifications[36]
IGF2BPsEnhances mRNA stability and translation[37]
YTHDC1Mediates RNA splicing and export[38]
YTHDC2Enhances target RNA translation and reduces RNA abundance[39]
YTHDF1Enhances mRNA translation[40]
YTHDF2Promotes mRNA degradation[40]
m6A readersYTHDF3Synergizes with YTHDF1 and YTHDF2 to enhance translation and degradation[40]
ELF3Enhances mRNA translation[41]
FMR1Promotes mRNA degradation[42]
HNRNPsMediates mRNA splicing and translation[43]
HNRNPA2B1Mediates mRNA splicing and miRNA processing[44]
ELAL1/HuRImprove translation efficiency and stability of mRNA[45]
Table 2 The role of the gut microbiota in colorectal cancer
Gut microbiota
Roles
Functions
Mechanism
Ref.
CoriobacteriaceaePromoteTumorigenesis, progression↑CPT1A-ERK axis[68]
Clostridioides difficilePromoteTumorigenesis↑Secrete toxin TcdB[69]
F. nucleatumPromoteTumorigenesis, metastasis↑modulate TME[70,71]
ETBFPromoteProgression↑Suppress the immune responses[72]
Escherichia coliPromoteProliferation, progression↑Exert toxic effects on DNA[73]
Enterococcus faecalisPromoteTumorigenesis, progression↑Secrete metabolite biliverdin[74]
Salmonella entericaPromoteTumorigenesis, proliferation↑Express secretory protein AvrA[75]
Streptococcus bovis/gallolyticusPromoteTumorigenesis, progression↑Promote inflammatory response[76]
Blautia productaSuppressTumorigenesis, progression↓Facilitate the immune surveillance[77]
Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus caseiSuppressMigration, invasion↓Reduce abnormal crypt foci[78]
Roseburia intestinalisSuppressTumorigenesis, proliferation↓Produce butyrate and induce CD8+ T cells[79]
Akkermansia muciniphilaSuppressProliferation↓Modulate CD8+ T cells[80]
Table 3 Relationships among N6-methyladenosine, colorectal cancer, and related mechanisms
m6A regulator
Upstream mechanism
Roles
Functions
Mechanism
Ref.
METTL3Gut microbiotaOncogeneGlycolysis, chemo-resistance↑METTL3↑/LDHA↑[100]
METTL3Gut microbiotaOncogeneProliferation, migration, invasion↑METTL3↑/m6A↑/YTHDF2↑/CRB3↓/Hippo↓[55]
METTL3Gut microbiotaOncogeneGlycolysis, progression↑METTL3↑/m6A/GLUT1↑/mTORC1 ↑[101]
METTL3Gut microbiotaOncogeneInvasion, migration↑METTL3↑/m6A/circ1662↑/YAP1↑/SMAD3↓[102]
METTL3F. nucleatumSuppressorMetastasis↑METTL3↓/m6A↓/YTHDF2/KIF26B↑[24]
METTL16Gut microbiotaOncogeneGlycolysis, progression↑METTL14↑/IGF2BP1/SOGA1↑/PDK4↑[83]
METTL14ETBFSuppressorProliferation↑METTL14↓/m6A/miR-149-3p↓/PHF5A/KAT2A[88]
METTL14Gut microbiotaSuppressorProliferation, metastasis↑METTL14↓/m6A↓/YTHDF2↓/lncRNA XIST↑[103]
METTL14Gut microbiotaSuppressorMigration, invasion, metastasis↑METTL14↓/m6A↓/YTHDF2/SOX4↑[104]
ALKBH5H3K27OncogeneGlycolysis, progression↓ALKBH5↓/JMJD8↓/PKM2↓[105]
ALKBH5OncogeneProliferation, migration, invasion↑ALKBH5↑/YTHDF2/RAB5A↑[106]
ALKBH5SuppressorRadiosensitivity↑ALKBH5↑/YTHDF2/circAFF2↑/Cullin-NEDD8↓[107]
ALKBH5SuppressorProliferation, migration, invasion↓ALKBH5↑/PHF20↓[91]
FTOOncogeneChemo-resistance↑FTO↑/YTHDF2/SIVA1↓[92]
FTOmiR-96OncogeneTumorigenesis, progression↑AMPKα2↓/FTO↑/m6A↓/MYC↑[93]
IGF2BP2LINC00460OncogeneProliferation, metastasis↑IGF2BP2-DHX9↑/HMGA1↑[108]
YTHDF1OncogeneTumorigenesis, metastasis↑YTHDF1↑/m6A/ARHGEF2↑[109]
YTHDF2miR-6125OncogeneProliferation, growth↓YTHDF2↓/m6A/GSK3β↑[110]
HNRNPA2B1MIR100HGOncogeneChemo-resistance, metastasis↑hnRNPA2B1↑/m6A/TCF7L2↑[111]
Table 4 Summary of the molecules of action, inhibitory concentration values, and mechanisms of action of existing anticancer drugs for N6-methyladenosine-targeted therapy
Drug
Role in cancer
Cancer type
Target
IC50
Mechanism
Ref.
STM2457Tumour inhibitorAMLMETTL316.9 nMm6A↓/HOXA1018↓/MYC19↓[142]
UZH1aTumour inhibitorAMLMETTL34.6 μMInhibits METTL3 catalytic activity and decreases m6A level and mRNA transcription level[143]
CS1Tumour inhibitorAMLFTOm6A↑/LILRB4↓/MYC↓/CEBPA↓/RARA↑/ASB2↑[145]
FB23Tumour inhibitorAMLFTO0.8-1.5 μMm6A↑/MYC↓/CEBPA↓/RARA↑/ASB2↑[148]
MATumour inhibitorAMLFTO17.4 μMBinds to FTO and inhibits demethylation[147]
R-2HGTumour inhibitorAMLFTOm6A↑/FTO↓/MYC↓CEBPA↓[146]
RheinTumour inhibitorLiver cancerFTO/ALKBH530 mMCompetitive binding of FTO to substrate binding sites and increased m6A levels[149]
2-[(1-hydroxy-2-oxo-2-phenylethyl) sulfanyl] acetic acidTumour inhibitorAMLALKBH50.84 μMBinds ALKBH5 and decreases m6A levels[150]
4-{[(furan-2-yl) methyl]amino}-1,2-diazinane-3,6-dioneTumour inhibitorAMLALKBH51.79 μMBinds ALKBH5 and decreases m6A levels[150]