Copyright
©The Author(s) 2023.
World J Gastroenterol. Jul 21, 2023; 29(27): 4236-4251
Published online Jul 21, 2023. doi: 10.3748/wjg.v29.i27.4236
Published online Jul 21, 2023. doi: 10.3748/wjg.v29.i27.4236
Table 1 The effect of rifaximin on the composition of the gut microbiota in various diseases
| Disease | Taxa that increase in the abundance after rifaximin | Taxa that decrease in the abundance after rifaximin |
| Alzheimer's disease[97] | Anaerostipes, Blautia, Erysipelotrichaceae, Erysipelatoclostridium, Faecalitalea, Lactobacillus, and Ruminiclostridum | |
| Irritable bowel syndrome[79,98-100] | Acidimicrobiales, Acidobacteria, Alteromonas, Arthrobacter, Bacillus, Bacteroidaceae, Butyricimonas, Chloroflexi, Cytophagia, Coprobacillus, Bifidobacterium, Deinococcales, Devosia, Dyella, Faecalibacterium prausnitzii, Frankiales, Gordonibacter, Holdemania, Kocuria, Methylophilales, Micrococcales, Micromonosporales, Nitriliruptorales, Parabacteroides, Prevotellaceae, Propionibacteriales, Rhizobiales, Rhodobacterales, Sphingomonadales, and Streptomycetales | Alphaproteobacteria, Anaerotruncus, Blautia luti, Butyricimonas, Cronobacter, Escherichia, Eubacterium ventriosum, Rhodospirillales, Romboutsia, Roseburia inulinivorans, Streptococcaceae, and Tyzzerella |
| Symptomatic uncomplicated diverticular disease[101-102] | Akkermansia, Bacteroidaceae, Citrobacter, Coprococcus, Dialister Ruminococcaceae, and Veillonellaceae | Anaerotruncus, Anaerostipes, Blautia, Christensenellaceae, Dehalobacteriaceae, Eggerthella lenta, Haemophilus parainfluenzae, Mogibacteriaceae, and Pasteurellaceae |
| Chronic Kidney Disease[103] | - | Anaerotruncus, Clostridium, and Turicibacter |
| Gut diseases[104] | Faecalibacterium | Ruminococcus and Roseburia |
| Ulcerative colitis[105] | Bacteroides and Bifidobacterium | Enterococcus and Lactobacillus |
| Crohn's disease[106] | Bifidobacterium, Atopobium, and Faecalibacterium prausnitzii |
Table 2 The effect of rifaximin on the composition of the gut microbiota in patients with cirrhosis
| Ref. | Taxa that increase in the abundance after rifaximin | Taxa that decrease in the abundance after rifaximin |
| Bajaj et al[120] | Eubacteriaceae | Veillonellaceae |
| Kaji et al[117] | Streptococcus, Veillonella | |
| Kaji et al[118] | Streptococcus, Veillonella | |
| Kakiyama et al[42] | Veillonellaceae | |
| Kawaguchi et al[131] | Lactobacillus, Streptococcus, Veillonella | |
| Lv et al[130] | Bacteroidetes vulgatus | Bacteroides uniformis, Eggerthella lenta, Haemophilus, Prevotella, Roseburia |
| Patel et al[122] | Akkermansia, Hungatella, Streptococcus, Veillonella | |
| Zeng et al[119] | Bacteroidaceae | Veillonellaceae |
Table 3 The effect of lactitol and lactulose on the composition of the gut microbiota
| Ref. | Disease | Taxa that increase in the abundance after disaccharide | Taxa that decrease in the abundance after disaccharide |
| Lactitol | |||
| Riggio et al[153] | Cirrhosis | Lactobacilli | Enterobacteria and Enterocicci |
| Ballongue et al[154] | Healthy persons | Bifidobacterium, Lactobacillus and Streptococcus | Bacteroides, Clostridium, coliforms, and Eubacterium |
| Li et al[155] | Chronic constipation | Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, Anaerostipes, and Bifidobacterium | - |
| Tarao et al[156] | Cirrhosis | Bifidobacterium and Lactobacillus | Bacteroides and Clostridium |
| Lu et al[157] | Cirrhosis | Bifidobacterium, Veillonella, Enterobacter, Sutterella, Haemophilus, Aggregatibacter, Lactobacillus salivarius, L. fermentium, and L. oris | Klebsiella Pseudoflavonifractor, and others |
| Chen et al[158] | Chronic viral hepatitis | Bifidobacterium and Lactobacillus | Clostridium perfringens |
| Lactulose | |||
| Riggio et al[153] | Cirrhosis | Lactobacilli | - |
| Ballongue et al[154] | Healthy persons | Bifidobacterium, Lactobacillus and Streptococcus | Bacteroides, Clostridium, coliforms and Eubacterium |
| Ziada et al[159] | Minimal hepatic encephalopathy | Bifidobacterium, Lactobacillus, and Bacteroidaceae | Enterobacteriaceae and Enterococcus |
Table 4 The effect of probiotics on the composition of the gut microbiota in cirrhosis
| Probiotic | Taxa that increase in the abundance after the probiotic | Taxa that decrease in the abundance after the probiotic |
| Lactobacillus acidophilus[159] | Bifidobacterium, Lactobacillus, and Bacteroidaceae | Enterobacteriaceae and Enterococcus |
| Escherichia coli Nissle 1917[160] | Bifidobacterium and Lactobacillus | Pathogenic enterobacteria |
| Escherichia coli Nissle 1917[175] | Bifidobacterium and Lactobacillus | Proteus hauseri, Citrobacter, and Morganella |
| Yakult 400[176] | Clostridium coccoides and Eubacterium cylindroides | Enterobacteriaceae |
| Lactobacillus GG[177] | Clostridiales Incertae Sedis XIV and Lachnospiracea | Enterobacteriaceae |
| Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Bifidobacterium lactis W52, Lactobacillus acidophilus W37, Lactobacillus brevis W63, Lactobacillus casei W56, Lactobacillus salivarius W24, Lactococcus lactis W19 and Lactococcus lactis W58[178] | Faecalibacterium prausnitzii, Syntrophococcus sucromutans, Bacteroides vulgatus, Alistipes shahii, and Prevotella |
Table 5 Effects of interventions targeting the gut microbiota on pathogenic factors in the gut-muscle axis in cirrhosis
| Intervention | SIBO | Gut dysbiosis | Hyperammonemia | Bacterial translocation | Systemic inflammation |
| Rifaximin | + | + | + | + | CR |
| Prebiotic disaccharides | ND | + | + | + | + |
| Probiotics | + | + | + | + | CR |
| Fecal transplantation | ND | + | ND | ND | ND |
- Citation: Maslennikov R, Alieva A, Poluektova E, Zharikov Y, Suslov A, Letyagina Y, Vasileva E, Levshina A, Kozlov E, Ivashkin V. Sarcopenia in cirrhosis: Prospects for therapy targeted to gut microbiota. World J Gastroenterol 2023; 29(27): 4236-4251
- URL: https://www.wjgnet.com/1007-9327/full/v29/i27/4236.htm
- DOI: https://dx.doi.org/10.3748/wjg.v29.i27.4236
