Copyright
©The Author(s) 2023.
World J Gastroenterol. Jan 7, 2023; 29(1): 43-60
Published online Jan 7, 2023. doi: 10.3748/wjg.v29.i1.43
Published online Jan 7, 2023. doi: 10.3748/wjg.v29.i1.43
Table 1 Summary of the studies that evaluated radiomics to preoperatively predict hepatocellular cholangiocarcinoma histology
Ref. | Country | n | Imaging modality | Endpoint | Segmentation | ROI/VOI | No. of readers | Main results | Validation |
Wang et al[92], 2022 | China | 196 | MRI | cHCC-CC vs HCC | Manual, intratumoral | ROI | 1 | AUC (delayed phase MRI): 0.91 | None |
Liu et al[24], 2021 | Canada | 85 | MRI and CT | cHCC-CC vs HCC vs CC | Manual, intratumoral | ROI | 2 | AUC (MRI): 0.77-0.81. AUC (CT): 0.71-0.81 | Cross-validation |
Lewis et al[25], 2019 | United States | 63 | MRI | cHCC-CC vs HCC vs CC | Manual, intratumoral | VOI | 2 | AUC (LI-RADS and male gender): 0.90 | None |
Nie et al[27], 2020 | China | 156 | CT | HCC vs FNH | Manual, intratumoral | ROI | 2 | AUC (radiomics): 0.96 training, 0.87 validation. AUC (radiomics + clinical factors): 0.98 training, 0.92 validation | None |
Wu et al[28], 2019 | China | 369 | MRI | HCC vs hemangioma | Manual, intratumoral | ROI | 2 | AUC: 0.86 training, 0.89 testing | None |
Mokrane et al[29], 2020 | United States | 178 | CT | HCC diagnosis | Manual, intratumoral | VOI | 2 | AUC: 0.70 training, 0.66 validation | External |
Brancato et al[34], 2022 | Italy | 38 | MRI | Tumor grade | Manual, intratumoral | VOI | 1 | AUC: 0.89 | None |
Gao et al[93], 2018 | China | Training: 125. Validation: 45 | MRI | Tumor grade | Manual, intratumoral | N/A | N/A | AUC: 0.83 training, 0.74 validation | None |
Wu et al[30], 2019 | China | Training: 125. Validation: 45 | MRI | Tumor grade | Manual, intratumoral | ROI | 1 | AUC: 0.83 training, 0.74 validation | Internal |
Zhou et al[94], 2017 | China | 46 | MRI | Tumor grade | Manual, intratumoral | ROI | 1 | AUC: 0.83-0.92 | None |
Mao et al[31], 2022 | China | Training: 85. Validation: 37 | MRI | Tumor grade | Manual, intratumoral | ROI | 2 | AUC: 0.97 training, 0.94 validation | Internal |
Chen et al[33], 2021 | China | Training: 112. Validation: 49 | CT | Tumor grade | Manual, intratumoral | VOI | 2 | AUC: 0.90 training, 0.94 validation | Internal |
Yang et al[95], 2019 | China | Training: 146. Validation: 62 | Gadoxetic acid-enhanced MRI | MVI | Manual, intratumoral | ROI | 2 (consensus) | AUC: 0.94 training, 0.86 validation | Internal |
Xu et al[39], 2019 | China | 495 | CT | MVI | Semi-automatic, intratumoral and peritumoral | VOI | 3 | AUC: 0.91 training, 0.89 validation | Internal |
Feng et al[40], 2019 | China | 160 | Gadoxetic acid-enhanced MRI | MVI | Manual, intratumoral and peritumoral | VOI | 3 | AUC: 0.85 training, 0.83 validation | Internal |
Zheng et al[41], 2017 | United States | 120 | CT | MVI | Semi-automatic | ROI | 1 | AUC: 0.80 | None |
Bakr et al[96], 2017 | United States | 28 | CT | MVI | Manual, intratumoral | ROI | 4 | AUC: 0.76 | None |
Ma et al[97], 2019 | China | 157 | CT | MVI | Manual, intratumoral | VOI | 1 | AUC (portal venous phase CT): 0.79 | Cross-validation |
Table 2 Summary of the studies that evaluated radiomics models to predict genetic profile in patients with hepatocellular cholangiocarcinoma
Ref. | Country | n | Imaging modality | Endpoint | Segmentation | ROI/VOI | No. of readers | Main results | Validation |
Xia et al[98], 2018 | China | 38 | CT | Association with gene expression profile | Manual, intratumoral | ROI | 1 | Individual textural features predicted gene modules | No |
Wu et al[44], 2022 | China | Training: 120. Validation: 52 | CT | Ki-67 expression | Manual, intratumoral | VOI | 2 | AUC: 0.85 (training), 0.74 (validation) | Internal |
Li et al[45], 2019 | China | 83 | MRI | Ki-67 expression | Manual, intratumoral | ROI | 2 | Some features were associated, no model | No |
Ye et al[47], 2019 | China | 89 | MRI | Ki-67 expression | Manual, intratumoral | VOI | 2 | C-index: 0.878 | No |
Fan et al[46], 2021 | China | Training: 103. Validation: 48 | MRI | Ki-67 expression | Manual, intratumoral | VOI | 2 | AUC: 0.88 (training), 0.80 (validation) | Internal |
Hu et al[48], 2022 | China | Training: 87. Validation: 21 | MRI | Ki-67 expression | Manual, intratumoral | ROI | 1 | AUC: 0.90 (training), 0.83 (validation) | Internal |
Wang et al[50], 2019 | China | 78 | MRI | CK19 positivity | Manual, intra- and peritumoral | ROI | 1 | AUC: 0.76 | No |
Chen et al[51], 2021 | China | Training: 102. Validation: 19 | MRI | CK19 positivity | Manual, intratumoral | ROI | 2 | AUC: 0.82 (training), 0.78 (external validation) | Internal and external |
Yang et al[52], 2021 | China (multi-center) | Training: 143. Validation: 75 | MRI | CK19 positivity | Manual, intratumoral | ROI | 2 | AUC: 0.85 (training), 0.79 (external validation) | Internal and external |
Wu et al[55], 2019 | China | 63 | CT | P53 mutation status | Manual, intratumoral | ROI | 2 | AUC: 0.62-0.79 | No |
Li et al[99], 2022 | China | 92 | MRI | Gene signatures associated with disease recurrence | Manual, intratumoral | ROI | 2 | MRI radiomics features could help quantify GOLM1, SETD7, and RND1 expression levels | Internal |
Liao et al[56], 2022 | China | Training: 86. Validation: 46 | CT | Somatic mutations of the PI3K signaling pathway | Manual, intratumoral and peritumoral | VOI | 2 | AUC: 0.74 (training), 0.73 (external validation) | Internal and external |
Che et al[60], 2022 | China | Training: 69. Validation: 30 | CT | β-arrestin1 phosphorylation | Manual, intratumoral | ROI | 1 | AUC: 0.89 (training), 0.74 (validation) | Internal |
Table 3 Summary of the studies that assessed radiomics to predict recurrence and treatment response in patient with hepatocellular cholangiocarcinoma who underwent surgery, liver transplantation or locoregional treatment
Ref. | Country | n | Imaging modality | Endpoint | Treatment type | Segmentation | ROI/VOI | No. of readers | Main results | Validation |
Hui et al[100], 2018 | Singapore | 50 | MRI | Recurrence | Hepatic resection | Manual, intratumoral | ROI | 3 | AUC: 0.78-0.84 | None |
Kim et al[65], 2019 | South Korea | Training: 128. Validation: 39 | MRI | Recurrence | Hepatic resection | Semiautomatic, intra- and peritumoral | VOI | 2 | C-index: 0.716 | Internal |
Zhao et al[101], 2021 | China | Training: 78. Validation: 35 | MRI | Recurrence | Hepatic resection | Manual, intratumoral | VOI | 2 | AUC: 0.83 (training), 0.77 (validation) | Internal |
Zhou et al[68], 2017 | China | 215 | CT | Recurrence | Hepatic resection | Manual, intratumoral | ROI | 2 | AUC: 0.84 (combined model) | None |
Ji et al[64], 2020 | China | Internal: 177. External: 118 | CT | Recurrence | Hepatic resection | Manual, intratumoral | VOI | 1 | AUC: 0.77 (internal), 0.78 (external) | External |
Guo et al[69], 2019 | China | Training: 93. Validation: 40 | CT | Recurrence | Liver transplant | Semiautomatic, intratumoral | ROI | 1 | AUC: 0.79 (training), 0.79 (validation) | Internal |
Shan et al[66], 2019 | China | Training: 109. Validation: 47 | CT | Recurrence | Hepatic resection or ablation | Manual, intra- and peritumoral | ROI | 2 | AUC: 0.80 (training), 0.79 (validation) | Internal |
Zheng et al[79], 2018 | China | Training: 212. Validation: 107 | CT | Recurrence and survival | Hepatic resection | Manual, intratumoral | ROI | 2 | AUC: 0.64 (training), 0.59 (validation) | Internal |
Song et al[67], 2020 | China | Training: 110. Validation: 74 | MRI | Recurrence | TACE | Semiautomatic, intra- and peritumoral | VOI | 2 | C-index: 0.82 | Internal |
Lv et al[71], 2021 | China | Training: 40. Validation: 18 | MRI | Recurrence | RFA | Semiautomatic, intratumoral | VOI | 2 | AUC: 0.94 (training), 0.82 (validation) | Internal |
Sun et al[70], 2020 | China | Training: 67. Validation: 17 | MRI | Recurrence | TACE | Manual (intratumoral) | VOI | 2 | AUC: 0.71-0.79 | Internal |
Cai et al[75], 2019 | China | Training: 80. Validation: 32 | CT | Liver failure | Hepatic resection | Semiautomatic, intratumoral | ROI | 2 | AUC: 0.82 (training), 0.76 (validation) | Internal |
Zhu et al[76], 2020 | China | 101 | MRI | Liver failure | Hepatic resection | Manual, entire liver | ROI | 2 | AUC: 0.81-0.89 | None |
Ivanics et al[73], 2021 | Canada | 88 | CT | Treatment response | TACE | Manual, intratumoral | VOI | 1 | AUC: 0.70-0.87 | None |
Kong et al[72], 2021 | China | Training: 69. Validation: 30 | MRI | Treatment response | TACE | Manual, intratumoral | VOI | 2 | AUC: 0.81 (training), 0.87 (validation) | Internal |
Chen et al[63], 2021 | China | Training: 355. Internal: 118. External: 122 | CT | Treatment response | TACE | Semiautomatic, intra- and peritumoral | ROI | 2 | AUC: 0.94 (internal), 0.90 (external) | Internal and external |
Horvat et al[74], 2021 | Brazil | 34 | MRI | Treatment response | RFA | Manual, intratumoral | VOI | 1 | AUC: 0.76 | None |
Table 4 Summary of the studies that evaluated radiomics to predict survival in patients with hepatocellular cholangiocarcinoma
Ref. | Country | n | Imaging modality | Endpoint | Treatment type | Segmentation | ROI/VOI | No. of readers | Main results | Validation |
Kiryu et al[77], 2017 | Japan | 122 | CT | Survival | Hepatic resection | Manual, intra- and peritumoral | ROI | 1 | OS and DFS were significantly different between 2 rad score groups | None |
Xu et al[39], 2019 | China | Training: 350. Validation: 145 | CT | Survival | Hepatic resection | Semiautomatic, intratumoral | VOI | 3 | AUC: 0.91 (training), 0.81 (validation) | Internal |
Akai et al[78], 2018 | Japan | 127 | CT | Survival | Hepatic resection | Manual, intratumoral | ROI | 1 | OS and DFS were significantly different between 2 rad score groups | None |
Kim et al[80], 2018 | South Korea | 88 | CT | Survival | TACE | Manual, intratumoral | ROI | 1 | Combined clinical and radiomics score was a better predictor of survival | None |
Blanc-Durand et al[81], 2018 | Switzerland | 47 | 18F-FDG PET-CT | Survival | TARE | Semiautomatic, whole liver | VOI | N/A | PFS-Rad Score and OS-Rad Score were independent negative predictors | None |
Petukhova-Greenstein et al[82], 2022 | United States | 65 | MRI | Survival | RFA | Semiautomatic, intra- and peritumoral | VOI | 2 | OS was significantly different between 2 rad score groups | None |
Zheng et al[79], 2018 | China | Training: 212. Validation: 107 | CT | Survival | Hepatic resection | Manual, intratumoral | ROI | 2 | AUC: 0.71 (training and validation) | Internal |
Table 5 Summary of the studies that assessed reproducibility of hepatocellular cholangiocarcinoma textural features
Ref. | Country | n | Imaging modality | Segmentation | Segmentation software | ROI/VOI | No. of readers | Intra-reader reproducibility | Inter-reader reproducibility | Other reproducibility |
Duan et al[88], 2022 | China | 19 | CT, MRI | Manual, intra- and peritumoral | 3D-Slicer | ROI | 2 (1 radiologist and 1 radiation oncologist) | Features with ICC ≥ 0.75 in both tumoral and peritumoral tissue greatest in MR | Features with ICC ≥ 0.75 in both tumoral and peritumoral tissue greatest in MR | N/A |
Zhang et al[102], 2022 | China | 90 (31 HCC) | MRI | Manual, intratumoral | ITK-SNAP | ROI and VOI | 2 radiologists | N/A | ICC > 0.8 used | N/A |
Carbonell et al[89], 2022 | United States | 55 (16 HCC) | MRI | Manual, intratumoral and liver parenchyma | Olea sphere 3.0, Olea Medical | ROI for normal liver, VOI for HCC | 2 radiologists | N/A | CCC: 0.80-0.99 | For test-retest (same MRI system, 2 different MRI exams): ICC: 0.53-0.99; and in liver parenchyma: ICC: 0.53-0.73. For inter-platform reproducibility (MRI systems from 2 different vendors): CCC: 0.58-0.99 |
Park et al[103], 2022 | South Korea | 249 | CT | Manual followed by automatic segmentation, intratumoral | MEDIP PRO | ROI and VOI | 1 radiologist | For VOI: Manual: ICC 0.594-0.998 for FO, 0.764-0.997 for shape, and 0.190-0.926 for SO; DL-AS: ICC > 0.75 for all. For ROI: Manual: 0.698-0.997 for FO, 0.556-0.997 for shape, and 0.341-0.935 for SO; DL-AS ICC > 0.75 for all | N/A | |
Haniff et al[104], 2021 | Malaysia | 30 | MRI | Manual and semi-automatic, intratumoral | 3D-Slicer | VOI | Manual: 4 readers. Semi-automatic: 2 readers | N/A | Manual segmentation: ICC 0.897. Semi-automatic segmentation: ICC 0.952 | NA |
Ibrahim et al[90], 2021 | Germany | 61 patients, 104 lesions | CT | Manual, intratumoral | MIM software | ROI | 1 nonradiologist revised by radiologist | N/A | N/A | Across different contrast imaging phases: 25% of extracted features had CCC > 0.9 across arterial and portal venous phases |
Hu et al[105], 2021 | China | 30 | CT | Manual, intratumoral | MaZda software | ROI | 2 radiologists | ICC > 0.7 | ICC > 0.7 | N/A |
Mao et al[32], 2020 | China | 30 | CT | Manual, intratumoral | ITK-SNAP | ROI | 2 radiologists | N/A | ICC ≥ 0.8 | N/A |
Hu et al[106], 2020 | China | 50 | CT | Semi-automatic, peritumoral | Not mentioned | ROI | 2 radiologists | N/A | ICC > 0.6 | N/A |
Qiu et al[107], 2019 | China | 26 | CT | Manual and semi-automatic, intratumoral | GrowCut and GraphCut | ROI | Manual: 5 radiation oncologists. Semi-automatic: 2 radiation oncologists | N/A | ICC ≥ 0.75 in 69% of features extracted from manual segmentation, 73% from GraphCut, and 79% from GrowCut | Across different centers: Poor reproducibility of CT-based peritumoral-radiomics model |
Zhang et al[108], 2019 | China | 46 (34 HCC) | MRI | Manual, intratumoral | MIM software | VOI | 1 radiologist | N/A | N/A | Across different b-values: radiomic features extracted from b = 0, 20, 50, 100, 200 s/mm2 and b = 1000 s/mm2 and nearby b-values DWIs showed a high reproducibility (ICC ≥ 0.8) |
Feng et al[40], 2019 | China | 160 (110) | MRI | Manual, intra- and peritumoral | ITK-SNAP | VOI | 3 radiologists | 85% ICC ≥ 0.8 | 82% ICC ≥ 0.8 | N/A |
Perrin et al[91], 2018 | United States | 38 (6 HCC) | CT | Semi-automatic, intratumoral and liver parenchyma | Scout Liver | VOI | 1 research fellow under supervision of radiologist | N/A | N/A | Across different contrast injection rates, pixel resolutions, and scanner models: Number of reproducible radiomic features (CCC > 0.9) decreased with variations in contrast injection rate, pixel resolution, and scanner model |
- Citation: Miranda J, Horvat N, Fonseca GM, Araujo-Filho JAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29(1): 43-60
- URL: https://www.wjgnet.com/1007-9327/full/v29/i1/43.htm
- DOI: https://dx.doi.org/10.3748/wjg.v29.i1.43