Copyright
©The Author(s) 2022.
World J Gastroenterol. Oct 14, 2022; 28(38): 5530-5546
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5530
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5530
Table 1 Application of ultrasound-based artificial intelligence in diffuse liver diseases
| Ref. | Diseases: number of cases | Type of ultrasound | Algorithm of AI | Performance |
| Byra et al[21] | Severely obese patients: 55 | B-mode | CNN | Sensitivity: 100% |
| Specificity: 88% | ||||
| Accuracy: 96% | ||||
| AUC: 0.98 | ||||
| Fatty liver disease: 38 | ||||
| Biswas et al[22] | Normal patients: 27 | B-mode | Deep learning | Accuracy: 100% |
| Fatty liver disease: 36 | AUC: 1.0 | |||
| Han et al[24] | NAFLD: 140 | B-mode | CNN | Sensitivity: 97% |
| Specificity: 94% | ||||
| Accuracy: 96% | ||||
| Control: 64 | ||||
| AUC: 0.98 | ||||
| Yeh et al[28] | Postsurgical human liver samples: 20 | B-mode | SVM | F2 accuracy: 91% |
| F3 accuracy: 85% | ||||
| F4 accuracy: 81% | ||||
| F6 accuracy: 72% | ||||
| Zhang et al[29] | Liver fibrosis or cirrhosis: 239 | Duplex | ANN | Sensitivity: 95% |
| Specificity: 85% | ||||
| Training group: 179 | ||||
| Validation group: 60 | Accuracy: 88% | |||
| Gao et al[30] | S0: 4 | B-mode | ANN | S0 accuracy: 100% |
| S1: 16 | S1 accuracy: 90% | |||
| S2 accuracy: 70% | ||||
| S3 accuracy: 90% | ||||
| S2: 8 | S4 accuracy: 100% | |||
| S3: 5 | ||||
| S4: 4 | ||||
| Lee et al[31] | Patients: 3446 | B-mode | CNN | AUC: 0.86 |
| Internal validation set: 263 | ||||
| Internal test set: 266 | ||||
| External test set: 572 | ||||
| Gatos et al[34,35] | Chronic liver disease: 70 | Shear-wave elastography | SVM | Sensitivity: 94% |
| Healthy: 56 | Specificity: 81% | |||
| Accuracy: 87% | ||||
| Wang et al[36] | Liver fibrosis: 398 | Shear-wave elastography | Deep learning radiomic | F4 AUC: 0.97 |
| Training group: 266 | ||||
| Validation group: 132 | F3 AUC: 0.98 | |||
| F2 AUC: 0.85 | ||||
| Xue et al[38] | Liver fibrosis: 401 | Elastography | CNN by TL radiomics | S2 AUC: 0.95 |
| S3 AUC: 0.93 | ||||
| Patient without fibrosis: 65 | ||||
| S4 AUC: 0.93 |
Table 2 Application of ultrasound-based artificial intelligence in focal liver lesions
| Ref. | Diseases: number of cases | Type of ultrasound | Algorithm of AI | Performance |
| Xi et al[42] | Benign lesions: 300 | B-mode | CNN | All lesions |
| Accuracy: 84% | ||||
| Uncertain set of lesions | ||||
| Malignant lesions: 296 | Accuracy: 79% | |||
| Yang et al[43] | Benign tumor: 427 | B-mode | CNN | AUC for EV: 0.924 |
| Sensitivity: 86.5% | ||||
| Malignant tumor: 1786 | ||||
| Specificity: 85.5% | ||||
| Virmani et al[44] | HCC: 27 | B-mode | SVM | Accuracy of HCC: 91.6% |
| Sensitivity | ||||
| Metastatic liver tumor: 24 | HCC: 90% | |||
| Metastatic liver tumor: 93.3% | ||||
| Hwang et al[49] | Cyst: 29 | B-mode | ANN | Accuracy: 96% |
| Cyst vs hemangioma | ||||
| Cyst vs malignant | ||||
| Hemangioma: 37 | ||||
| Hemangioma vs malignant | ||||
| Malignant: 33 | ||||
| Schmauch et al[50] | Non-tumorous liver: 258 | B-mode | CNN | AUC |
| Hemangioma: 17 | FLL detection: 0.935 | |||
| Metastasis: 48 | ||||
| HCC: 6 | ||||
| FLL discrimination: 0.916 | ||||
| Cyst: 30 | ||||
| FNH: 8 | ||||
| Tiyarattanachai et al[51] | HCC: 2414 | B-mode | CNN | Detection rate: 87.0% |
| Cyst: 6600 | Sensitivity: 83.9% | |||
| Hemangioma: 5374 | ||||
| Specificity: 97.1% | ||||
| Focal fatty sparing: 5110 | ||||
| Focal fatty infiltration: 934 | ||||
| Gatos et al[47] | Benign FLL: 30 | CEUS | SVM | Accuracy: 90.3% |
| Sensitivity: 93.1% | ||||
| Malignant FLL: 22 | Specificity: 86.9% | |||
| Kondo et al[46] | Benign FLL: 31 | CEUS | SVM | Benign vs malignant |
| Accuracy: 91.8% | ||||
| Sensitivity: 94% | ||||
| Specificity: 87.1% | ||||
| Accuracy | ||||
| Malignant FLL: 67 | ||||
| Benign: 84.4% | ||||
| HCC: 87.7% | ||||
| Metastatic liver tumor: 85.7% | ||||
| Guo et al[48] | Benign FLL: 46 | CEUS | Deep canonical correlation analysis and multiple kernel learning | Accuracy: 90.4% |
| Sensitivity: 93.6% | ||||
| Malignant FLL: 47 | Specificity: 86.8% | |||
| Streba et al[52] | HCC: 41 | CEUS | ANN | Training accuracy: 94.5% |
| Hypervascular liver metastasis: 20 | Testing accuracy: 87.1% | |||
| Hypovascular liver metastasis: 12 | Sensitivity: 93.2% | |||
| Specificity: 89.7% | ||||
| Hemangioma: 16 | ||||
| Focal fatty changes: 23 | ||||
| Căleanu et al[53] | HCC: 30 | CEUS | Deep neural network | Accuracy: 88% |
| Hypervascular liver metastasis: 11 | ||||
| Hypovascular liver metastasis: 11 | ||||
| Hemangioma: 23 | ||||
| FNH: 16 | ||||
| Dong et al[56] | HCC: 322 | B-mode | Radiomics | AUC: 0.81 |
| Hu et al[57] | HCC: 482 | CEUS | Radiomics | AUC: 0.731 |
| Training cohort: 341 | ||||
| Validation cohort: 141 | ||||
| Zhang et al[58] | HCC: 313 | CEUS | Radiomics | AUC |
| Primary cohort: 192 | Primary dataset: 0.849 | |||
| Validation cohort: 121 | Validation dataset: 0.788 | |||
| Liu et al[63] | HCC: 130 | CEUS | Deep learning radiomics | AUC: 0.93 |
| Training cohort: 89 | ||||
| Validation cohort: 41 | ||||
| Ma et al[66] | HCC: 318 | CEUS | Radiomics | AUC: 0.89 |
| Training cohort: 255 | ||||
| Validation cohort: 63 | ||||
| Liu et al[69] | HCC: 419 | CEUS | Deep learning radiomics | C-index |
| RFA: 214 | RFA: 0.726 | |||
| SR: 0.741 | ||||
| SR: 205 |
Table 3 Application of ultrasound-based artificial intelligence in gastrointestinal disease
| Ref. | Diseases: number of cases | Type of ultrasound | Algorithm of AI | Performance |
| Kim et al[76] | GISTs: 125 | B-mode EUS | CNN | Sensitivity: 83.0% |
| Leiomyomas: 33 | Specificity: 75.5% | |||
| Accuracy: 79.2% | ||||
| Schwannomas: 21 | ||||
| Norton et al[80] | Chronic pancreatitis: 14 | B-mode EUS | Basic neural network | Sensitivity: 89% |
| Pancreatic cancer: 21 | Accuracy: 80% | |||
| Das et al[81] | Chronic pancreatitis: 12 | B-mode EUS | ANN | Sensitivity: 93% |
| Pancreatic cancer: 22 | ||||
| Specificity: 92% | ||||
| Normal patient: 22 | ||||
| AUC: 0.93 | ||||
| Zhu et al[82] | Chronic pancreatitis: 126 | B-mode EUS | SVM | Sensitivity: 96.25% |
| Specificity: 93.38% | ||||
| Accuracy: 94.2% | ||||
| Pancreatic cancer: 262 | ||||
| Zhang et al[83] | Pancreatic cancer: 153 | B-mode EUS | SVM | Sensitivity: 94.32% |
| Specificity: 99.45% | ||||
| Normal patient: 63 | ||||
| Accuracy: 97.98% | ||||
| Ozkan et al[84] | Pancreatic cancer: 202 | B-mode EUS | ANN | Sensitivity: 83.3% |
| Specificity: 93.3% | ||||
| Normal patient: 130 | Accuracy: 87.5% | |||
| Tonozuka et al[85] | Chronic pancreatitis: 34 | B-mode EUS | CNN | Sensitivity: 90.2% |
| Pancreatic cancer: 76 | ||||
| Normal patient: 29 | ||||
| Specificity: 74.9% | ||||
| Săftoiu et al[88] | Chronic pancreatitis: 47 | EUS elastography | ANN | Sensitivity: 87.59% |
| Specificity: 82.94% | ||||
| Pancreatic cancer: 211 | ||||
| Săftoiu et al[90] | Chronic pancreatitis: 55 | Contrast-enhanced EUS | ANN | Sensitivity: 94.64% |
| Pancreatic cancer: 122 | Specificity: 94.44% | |||
| Kuwahara et al[94] | IPMN: 50 | B-mode EUS | CNN | Sensitivity: 95.7% |
| Specificity: 92.6% | ||||
| Accuracy: 94.0% | ||||
| Zhang et al[95] | Training: 291 | B-mode EUS | CNN | Accuracy: 90.0% |
| Testing: 181 | ||||
| Chen et al[101] | Rectal cancer: 127 | Endorectal ultrasound | ANN | Sensitivity: 72.7% |
| Specificity: 75.9% | ||||
| Shear-wave elastography | ||||
| AUC: 0.743 |
- Citation: Liu JQ, Ren JY, Xu XL, Xiong LY, Peng YX, Pan XF, Dietrich CF, Cui XW. Ultrasound-based artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2022; 28(38): 5530-5546
- URL: https://www.wjgnet.com/1007-9327/full/v28/i38/5530.htm
- DOI: https://dx.doi.org/10.3748/wjg.v28.i38.5530
