Review
Copyright ©The Author(s) 2021.
World J Gastroenterol. Oct 7, 2021; 27(37): 6191-6223
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Table 1 Artificial intelligence applications in gastroenterology: Prevention
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance          
Leung et al[27]Laboratory results, clinicopathological parametersSeveral64238/25330 patientsRisk of gastric cancer development following H.pylori eradication0.53-0.972,6, 59.3-98.13,6, 51.5-93.64,6
Nakahira et al[28]Laboratory results, clinicopathological parameters, endoscopic imagesCNN7826/454 patientsStratify risk of gastric cancer development---
Taninaga et al[29]Laboratory results, clinicopathological parameters, endoscopic imagesCART1144/287Prediction of future gastric cancer63.4-94.81,6, 0.736-0.8742,6
Goshen et al[31]Laboratory results, clinicopathological parametersDT, RF, GB688 flagged patientsHigh risk of CRC development----
Table 2 Artificial intelligence applications in gastroenterology: Diagnosis
Ref.
Diagnostic Modality
AI classifier
Sizes of the training/validation sets
Outcomes
Performance        
Takiyama et al[33]Esophago-gastro-duodenoscopy imagingCNN1750/4357Anatomical classification among larynx, esophagus, stomach, and duodenum0.99-1.002,7
Pace et al[34]Laboratory results, clinicopathological parametersANN159 patientsDiagnosis of gastroesophageal reflux disease67.86-1001,6
de Groof et al[35]Esophageal endoscopic imagesDNN1247/2976/807/807 patientsClassification of malignant from nondysplastic Barret’s esophagus88.21,6, 87.5-88.81,7, 87.63,6, 90.0-92.53,7, 88.64,6, 82.5-87.54,7
van der Sommen et al[36]White-light endoscopic imagingSVM44 patients with Barret’s esophagusDiagnosis of early neoplastic lesionsPer image: 62-903,6, 65-904,6, Per patient: 52-1003,6, 74-964,6
Struyvenberg et al[37]Volumetric laser endomicroscopy imagingSeveral29 patients with Barret’s esophagusDiagnosis of neoplastic lesions0.83-0.942,6
Swager et al[38]Volumetric laser endomicroscopy imagingSeveral60 imagesDiagnosis of neoplastic lesions0.89-0.952,6
Kumagai et al[39]Endocytoscopic imagingCNN4715/15207Diagnosis of esophageal squamous cell carcinoma90.91,7, 0.72-0.902,7, 39.4-46.43,7, 98.2-98.44,7
Zheng et al[40]Endoscopic imagesCNN1507/452 patientsDiagnosis of H.pylori infection84.5-93.81,6, 0.93-0.972,6, 81.4-91.63,6, 90.1-98.64,6
Nakashima et al[41]Endoscopic imagesCNN162/60 patientsDiagnosis of H.pylori infection0.66-0.962,6
Itoh et al[42]Endoscopic imagesCNN149/30 imagesDiagnosis of H.pylori infection0.9562,6, 86.73,6, 86.74,6
Shichijo et al[43]Endoscopic imagesCNN32308/114817Diagnosis of H.pylori infection83.1-87.71,7, 81.9-88.93,7, 83.4-87.44,7
Kanesaka et al[45]NBI SVM126/81 NBI imagesDiagnosis of gastric cancer96.31,6, 96.73,6, 95.04,6
Hirasawa et al[46]Endoscopic imagesCNN13584/22967Diagnosis of gastric cancer92.23,7
Zhu et al[47]Laboratory results, clinicopathological parameters, cancer biomarkersGB/DT496/213 patientsDiagnosis of gastric cancer85.91,5, 831,6, 0.912,6, 883,5, 873,6, 83.44,5, 84.14,6
Tenório et al[48]Laboratory results, clinicopathological parametersSeveral178/38Diagnosis of celiac disease71.5-801,6, 0.71-0.842,6, 69-823,6, 67-804,6
Caetano Dos Santos et al[49]Endomysial autoantibody test for IgA-class antibodies imagesSVM2597 images (training:validation = 7:3)Diagnosis of celiac disease96.8-98.851,6, 82.84-98.913,6, 98.81-99.404,6
Hujoel et al[50]Laboratory results, clinicopathological parametersSeveral408 undiagnosed patientsDiagnosis of celiac disease0.49-0.532,6
Manandhar et al[51]Gut microbiome dataRF1429 fecal 16S metagenomic data subjectsDiagnosis of IBD0.80-0.822,6
Wei et al[52]Single nucleotide polymorphisms dataSeveral60828 samplesClassifification of CD and UC0.782-0.8662,6
Mossotto et al[53]Capsule endoscopy, histologic imagingSVM239/487 pediatric patientsClassifification of CD, UC, and unclassified IBD71-82.71,5, 0.78-0.872,5, 83.31,7, 83-853,7
Xia et al[58]Capsule endoscopy imagingCNN697/1007 patients, 822590/2013657, images Classification among different types of gastric lesions77.1-861,7, 0.80-0.902,7, 96.2-1003,7, 56.5-76.24,7
Seguí et al[59]Capsule endoscopy imagingCNN50 videosClassification of small bowel mobility events961,6
Park et al[60]Capsule endoscopy imagingCNN139 videos, 200000 images (training:validation:test = 6:2:2)Small bowel lesion identification80.29-98.341,6, 0.9992,5, 0.9982,6,7
Hwang et al[61]Capsule endoscopy imagingCNN7556/57607 imagesClassification of hemorrhagic and ulcerative lesions96.62-96.831,7, 95.07-97.613,7, 96.04-98.184,7
Otani et al[62]Capsule endoscopy imagingDNN167/407 patientsClassification among different types of small bowel lesions0.950-0.9962,6, 0.884-0.9282,7
Yuan et al[63]Capsule endoscopy imagingSVM20 patients, 340 images (training:validation = 8:2)Diagnosis of peptic ulcers92.651,6, 94.123,6, 91.184,6
Karargyris et al[64]Capsule endoscopy imagingSVM80 frames Diagnosis of peptic ulcers753,6, 73.34,6
He et al[65]Capsule endoscopy imagingCNN11 patients, 440000 imagesDiagnosis of intestinal hookworms88.51,6, 0.8952,6, 84.63,6, 88.64,6
Leenhardt et al[66]Capsule endoscopy imagingCNN600/600 imagesDiagnosis of gastrointestinal angiectasia1003,6, 964,6
Zhou et al[67]Capsule endoscopy imagingCNN21 videosDiagnosis of celiac disease1003,6, 1004,6
Yamada et al[68]Colon capsule endoscopy imagingCNN15933/47847 Diagnosis of colorectal neoplasias83.97, 0.9022,7, 793,7, 874,7
Wang et al[69]Colonoscopy imagingCNN5545 images/271137 images/6127 images/1387 videos/547 videosIdentification of colorectal polyps0.9842,7, 88.24-1003,7, 95.40-95.922,7
Misawa et al[70]Colonoscopy imagingCNN411/35 short videosIdentification of colorectal polyps76.51,6, 0.872,6, 903,6, 63.34,6
Urban G et al[71]Colonoscopy imagingCNN8641 images/207 videosIdentification of colorectal polyps96.41,7, 0.9912,7
Ozawa et al[72]Colonoscopy imagingCNN20431/70777 imagesIdentification of colorectal polyps, Classification of colorectal polyps90-973,7, 47-981,7
Mori et al[73]NBI and methylene blue staining imagesSVM466 diminutive polypsClassification of diminutive rectosigmoid adenomasNPV(%): 93.7-96.5
Tischendorf et al[74]NBISVM209 colorectal polypsClassification of colorectal polyps903,6, 70.24,6
Gross et al[75]NBISVM434 colorectal polypsClassification of small colorectal polyps93.11,6, 95.03,6, 90.34,6
Kominami et al[76]NBISVM118 colorectal polypsClassification of colorectal polyps93.21,6, 93.03,6, 93.34,6
Misawa et al[77]NBI endocytoscopySVM979/100 endocytoscopy, imagesClassification of colorectal polyps901,6, 84.53,6, 97.64,6
Takeda et al[78]NBI endocytoscopySVM5543/200 endocytoscopy, imagesDiagnosis of invasive CRC94.11,6, 89.43,6, 98.94,6
Chen et al[79]NBICNN2157/2847Classification neoplastic from hyperplastic polyps96.33,7, 78.14,7, NPV(%): 91.57
Komeda et al[80]NBICNN1200/600 imagesClassification of adenomatous from non-adenomatous polyps75.11,6
Byrne et al[81]NBICNN223/407 videosClassification of adenomas from hyperplastic polyps941,7, 0.952,7, 983,7, 834,7, NPV(%): 977
Table 3 Artificial intelligence applications in gastroenterology: Treatment
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance          
Rogers et al[86]Data from baseline impedance, nocturnal baseline impedance, and acid exposure timeDT335 patientsPrediction of treatment response with proton pump inhibitors for patients with gastroesophageal reflux disease0.31-0.9382,6
Zhu et al[87]Endoscopic imagesCNN790/2037 imagesInvasion of gastric cancer at the mucosa and submucosa layers of the stomach89.161,7, 0.942,7, 76.473,7, 95.564,7
Kubota et al[88]Endoscopic imagesDNN800/90 imagesInvasion depth of gastric cancer64.71,6
Yamashita et al[89]Hematoxylin and eosin-stained WSI DNN100/156/4847 Identificication of CRC microsatellite instability0.9312,6, 0.7792,7, 763,7, 66.64,7
Ichimasa et al[90]Laboratory results, clinicopathological parametersSVM590/1007Prediction of lymph node metastasis status691,7, 0.8212,7, 1003,7, 664,7
Levi et al[91]Laboratory results, clinicopathological parametersRFE14620 patientsPrediction of the need for transfusion following GIB50.21-74.881,6, 0.7858-0.81412,6, 69.17-92.773,6, 35.02-79.824,6
Chu et al[92]Laboratory results, clinicopathological parametersSeveral122/67 patientsPrediction of the source of GIB69.7-94.31,6, 0.658-0.9992,6, 90.1-98.03,6, 89-1004,6
Prediction of the need for blood resuscitatio64.7-94.11,6, 0.381-0.9932,6, 90.3-93.93,6, 18.4-95.54,6
Prediction of the need for emergent endoscopy62.7-83.31,6, 0.404-0.9132,6, 80.1-89.13,6, 13.8-85.74,6
Prediction of disposition58.4-89.71,6, 0.324-0.9722,6, 81.9-92.93,6, 18.4-90.94,6
Das et al[93]Laboratory results, clinicopathological parametersANN194/1936/2007 patientsPrediction of major stigmata of recent hemorrhage891,3,4,6, 771,7, 963,7, 634,7
Prediction of the need for emergent endoscopy811,3,6, 611,7, 943,6, 824,6, 484,7
Augustin et al[94]Laboratory results, clinicopathological parametersCART164/1037 patientsStratification of risk of rebleeding and mortality following acute variceal hemorrhage0.81-0.832,7
Loftus et al[95]Laboratory results, clinicopathological parametersANN103/44 patientsPrediction of severe lower GIB0.9792
Prediction of the need for surgical intervention0.9542,6
Ayaru et al[96]Laboratory results, clinicopathological parametersGB170/1307Prediction of severe lower GIB781,6, 831,7
Prediction of recurrent bleeding881,6, 881,7
Prediction of the need for intervention881,6, 911,7
Table 4 Artificial intelligence applications in gastroenterology: Prognosis
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance        
Yang et al[97]Laboratory results, immunomarkers, clinicopathological parametersSVM319/164 patientsDistant metastasis of oesophageal squamous cell carcinoma following surgery69.5-80.11,6, 44.7-67.23,6, 81.6-97.74,6
Sato et al[98]Laboratory results, clinicopathological parameters, tumor characteristicsANN395 patients (training:validation:test = 53:27:20)1-year and 5-year survival of patients with esophageal cancer following surgery0.883-0.8842,7, 78.1-80.73,7, 84.7-86.54,7
Zhou et al[99]Laboratory results, clinicopathological parameters, tumor characteristicsSeveral2012 patients (training:validation = 8:2)Recurrence of gastric cancer following surgery0.790-0.9622,5, 0.771-0.7952,6
Peng et al[100]Meteorological dataANN901 patientsVariations of onset and relapse of IBDs----
Hardalaç et al[101]Clinicopathological parameters, treatment dataANN129 patients (training:validation:test = 80:10:10)Prediction of mucosal remission for CD patients treated with azathioprine58.1-79.11,6, 0.527-0.8832,6
Takayama et al[102]Clinicopathological parameters, treatment dataANN54/36 patientsPrediction of the need for operation for UC patients treated with cytoapheresis963,6, 974,6
Lyles et al[103]Laboratory results, clinicopathological parametersCART884 patientsPrediction of in-hospital mortality of upper GIB in cirrhotic patients----
Grossi et al[104]Laboratory results, clinicopathological parametersANN807 patients30-d mortality of patients with non-variceal upper GIB81.2-89.01,6, 0.872,6, 81.5-93.33,6, 80.9-84.74,6
Rotondano et al[105]Laboratory results, clinicopathological parametersANN2380 patients30-d mortality of patients with non-variceal upper GIB96.81,6, 0.952,6, 83.83,6, 97.54,6
Shi et al[106]CT radiomicsSeveral124/35 patientsPrediction of the presence of RAS and BRAF mutations in CRCANN: 871,5, 711,6, 0.90-0.952,5, 0.792,6
Kang et al[107]Laboratory results, immunomarkers, clinicopathological parameters, tumor characteristicsLASSO221/95 patientsPrediction of lymph node metastasis status in operated patients for T1 CRC 0.7952,5, 0.7652,6
Table 5 Artificial intelligence applications in hepatology: Prevention
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance      
Goldman et al[108]National database of routine annual health check-upsDT-based12019 patientsRisk of NAFLD and cirrhosis84.50-85.731,6, 0.7740-0.84862,6
Yip et al[109]Laboratory results, clinicopathological parametersSeveral500/422Identify patients with NAFLD0.87-0.902,5, 0.78-0.882,6, 55.48-94.523,5, 51.69-92.373,6, 58.47-91.534,5, 50.99-90.464,6
Ma et al[110]Laboratory results, clinicopathological parametersSeveral10508 patients (training:validation = 9:1)Identify patients with NAFLD49.47-82.921,6, 20.2-68.03,6, 54.4-94.64,6
Sowa et al[111]Laboratory results, clinicopathological parametersSeveral126 morbidly obese patients (training:validation = 9:1)Fibrosis in NAFLD patients791,6, 30.8-60.03,6, 77.0-92.24,6
Canbay et al[112]Laboratory results, clinicopathological parametersEFS164/122 obese patientsClassification of NAFLD and NASH0.73392,5, 0.70282,6
Fialoke et al[113]National database of routine annual health check-upsSeveral108139 patients (training:validation = 4:1)Classification among healthy, NAFLD, and NASH77.2-79.71,6, 0.842-0.8762,6, 74.5-77.43,6
Sowa et al[114]Data from biochemical and enzyme-linked immunosorbent assaysSeveral133 patients (training:validation = 9:1)Classification of NAFLD and ALDDT: 89.02-95.11,6, 74.19-94.123,6, 96.08-98.044,6, RF: 0.8932-0.98462,6, SVM: 0.9058-0.91182,6
Wei et al[115]Laboratory results, clinicopathological parametersGB576 HBV patients, (training:validation = 7:3), 3687 HCV patientsClassification of fibrosis/cirrhosis in HBV patients0.904-0.9742,5, 0.871-0.9182,6, 79-883,5, 78-843,6, 86-924,5, 854,6
Classification of fibrosis/cirrhosis in HCV patients0.797-0.8492,7
Wang et al[116]Laboratory results, clinicopathological parametersANN226/1136/1167 HBV patientsClassification of significant fibrosis0.8832,5, 0.8842,6, 0.9202,7
Raoufy et al[117]Laboratory results, clinicopathological parametersANN86/58 HBV patientsClassification of liver cirrhosis91.381,6, 0.8982,6, 87.53,6, 924,6
Piscaglia et al[118]Laboratory results, clinicopathological parametersANN414/96 HCV patientsClassification of significant fibrosis45.8-86.51,6, 0.872,5, 0.932,6, 30.4-1003,6, 30.1-98.64,6
Hashem et al[119]Laboratory results, clinicopathological parametersSeveral22690/16877 HCV patientsClassification of significant fibrosis66.3-84.41,6, 0.73-0.762,6
Ioannou et al[120]Clinical/laboratory data extracted directly from electronic health recordsDNN48151 patients with HCV-related cirrhosis (training:validation = 9:1)HCC development in HCV cirrhosis0.759-0.8062,6
Emu et al[121]Laboratory results, clinicopathological parametersSeveral1385 patients HCV (training:validation = 4:1)Stage of liver cirrhosis97.228-97.8311,6
Table 6 Artificial intelligence applications in hepatology: Diagnosis
Ref.
Diagnostic Modality
AI classifier
Sizes of the training/validation sets
Outcomes
Performance  
Choi et al[122]CT imagingCNN7461/4216/2987/1727 patientsLiver fibrosis staging (F0-F4)83.11,5, 80.81,6, 74.4-80.21,7
Classification among significant fibrosis, advanced fibrosis, and cirrhosis92.1-95.01,6,7, 0.95-0.972,6,7, 84.6-95.53,6,7, 89.9-96.64,6,7
Kuppili et al[123]US imagingELM, SVM63 patientsDiagnosis of FLDELM: 81.7-92.41,6, 0.81-0.922,6, 85.10-91.303,6, 78.52-92.104,6, SVM: 76.14-86.421,6, 0.74-0.862,6, 76.80-88.203,6, 74.52-86.304,6
Gatos et al[124]US shear wave elastography imagingSVM126 patientsClassification of chronic liver disease from healthy patients87.31,6, 0.872,6, 93.53,6, 81.24,6
Chen et al[125]Real-time tissue elastography imaging, age, sexSeveral513 patient (training:validation = 3:1)Classification of liver fibrosis80.44-82.871,6, 79.67-92.973,6, 46.25-82.504,6
Matake et al[126]Clinicopathological parameters, CT imagingANN120 patientsClassification among four types of focal liver lesions0.9612,6
Oestmann et al[127]Multiphasic MRI scansCNN150/10 patientsClassification of HCC and non-HCC lesions94.11,5, 87.31,6, 0.9122,6
For HCC: 92.73,6, 82.04,6
For non-HCC: 82.03,6, 92.74,6
Kim et al[128]MRI scansCNN4555,6/547 patientsHCC detection0.972,6, 943,6, 994,6, 0.902,7, 873,7, 934,7
Cucchetti et al[129]Laboratory results, clinicopathological parameters, radiological data, histological dataANN175/75 patientsMVI0.922,5, 91.01,6
Histopathological Grade0.942,5, 93.31,6
Urman et al[130]Metabolomic and proteomic analyses of bileSeveral139 patientsClassification of CCA and pancreatic adenocarcinoma 0.98-1.002,6, 88-94.13,6, 92.3-1004,6
Negrini et al[131]Plasma bile acids profilesSeveral112 patients (training:validation = 4:1)Classification of CCA and benign biliary disease68.2-86.41,6, 0.77-0.952,6, 64-793,6, 63-1004,6
Logeswaran[132]MRCPMLP55/5937 imagesCCA diagnosis92.8-96.31,6, 83.64-90.141,7
Table 7 Artificial intelligence applications in hepatology: Treatment
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance
Wübbolding et al[133]Analyze soluble immune markersSeveral28/497 HBV patientsPrediction of early virological relapse0.73-0.892,6, 0.59-0.672,7
Haga et al[134]WGS of HCV Several86/87 HCV patientsClassification of HCV variants resistant to antiviral drugs0.5-0.9372,5, 0.597-0.9542,6
Bedon et al[135]DNA methylation profilingRF-based300/74 HCC specimens6-mo progression-free survival67.1-80.61,5, 64.8-80.21,7
Tsilimigras et al[137]Laboratory results, clinicopathological parameters, tumor characteristicsCART976 HCC patientsDetermining factors of prognostic weigh preoperatively within the BCLC staging system---
Tsilimigras et al[139]Laboratory results, clinicopathological parameters, tumor characteristicsCART1146 CCA patientsDetermining factors of prognostic weigh preoperatively---
Jeong et al[140]Laboratory results, clinicopathological parametersDNN1421/2347Intrahepatic CCA susceptible to adjuvant therapy following resection0.842,5, 0.782,7
Shao et al[141]Clinicopathological parametersANN288 CCA patients (training:validation = 8:2)Predict early occlusion following bilateral plastic stent placement0.96482,5, 0.95442,6
Table 8 Artificial intelligence applications in hepatology: Prognosis
Ref.
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance   
Hong et al[142]Laboratory results, clinicopathological parametersANN197 HBV patients (training:validation = 4:1)Development of esophageal varices in HBV cirrhosis87.821,6, 93.753,6, 71.704,6
Dong et al[143]Laboratory results, clinicopathological parametersRF238/1097Identification of esophageal varices 0.842,5, 0.822,7
Classification of esophageal varices requiring treatment0.742,5, 0.752,7
Ho et al[144]Laboratory results, clinicopathological parameters, surgery parametersANN, DT427, 354, and 297 patients for 1-, 3-, and 5-year survival (training:validation = 8:2)1-, 3-, and 5-year disease-free survivalANN: 0.963-0.9892,5, 93.5-96.33,5, 91.6-97.94,5, 0.774-0.8642,6, 70.0-78.73,6, 54.2-92.74,6
Following surgical resection
DT: 0.675-0.8252,5, 19.6-94.83,5, 45.8-97.94,5, 0.561-0.7182,6, 0-88.53,6, 37.5-96.44,6
Shi et al[145]Laboratory results, clinicopathological parameters, tumor characteristicsANN22926 patients5-year survival following surgical resection96.571,6, 0.8852,6, 97.431,7, 0.8712,7, 74.233,7,
Shi et al[146]Laboratory results, clinicopathological parameters, surgery parametersANN22926 hepatectomiesIn-hospital mortality following surgical resection97.281,6, 0.842,6, 95.931,7, 0.822,7, 78.403,7, 94.574,7
Chiu et al[147]Laboratory results, clinicopathological parameters, tumor characteristicsANN434, 341, and 264 patients for 1-, 3-, and 5-year survival, (training:validation = 8:2)1-, 3-, and 5-year overall survival, following surgical resection98.5-99.51,5, 0.980-0.9932,5, 99.7-1003,5, 96.2-99.24,5, 72.1-85.11,6, 0.798-0.8752,6, 71.4-88.63,6, 50.0-82.14,6
Qiao et al[148]Laboratory results, clinicopathological parameters, tumor characteristicsANN362/1816/1047 patientsSurvival following surgical resection0.8552,5, 80.003,5, 73.404,5, 0.8322,6, 78.673,6, 75.704,6, 0.8292,7, 77.423,7, 78.084,7
Liu et al[149]Laboratory results, data from immunochemistry of peripheral blood mononuclear cells, tumor characteristicsGB survival classifier136/566/1057Risk of HCC-related death0.8442,5, 0.8272,6, 0.8062,7
Zhong et al[150]ALBI/CTP stageANN319 / 617 / 1247Survival of patients treated with chemoembolization and sorafenibALBI-based: 0.7162,7, 0.8232,7
CTP-based: 0.7792,7, 0.6932,7
Divya and Radha[152]Laboratory results, clinicopathological parameters, tumor characteristicsAPO, SVM, RF152 patientsRecurrence following RFA95.51,6, 95.13,6, 95.84,6
Yamashita et al[153]Hematoxylin and eosin-stained WSICNN299 / 536/1987 WSIsRecurrence following Surgical Resection0.7242,6, 0.6832,7
Liang et al[154]Laboratory results, clinicopathological parametersSVM83 patientsRecurrence following RFA73-821,6, 0.60-0.692,6, 77-863,6, 73-824,6
Eaton et al[155]Laboratory results, clinicopathological parametersGB-based509/278 patients with primary sclerosing cholangitisClassify risk of primary sclerosing cholangitis-related complications0.962,6, 0.902,7
Andres et al[156]Laboratory results, clinicopathological parameters, donor characteristicsPSSP system2769 patientsSurvival following transplantation for primary sclerosing cholangitis----
Rodriguez-Luna et al[157]Genotyping data from microsatellite mutations/deletionsANN19 transplated patientsPost-transplant HCC recurrence89.51,6
Lau et al[158]Laboratory results, clinicopathological parameters, donor characteristicsANN, RF90/90 transplantsGraft failure/primary nonfunctionANN: 0.734-0.8352,6
RF: 0.787-0.8182,6
3-mo graft failureANN: 0.5592,6, R6: 0.7152,6
Briceño et al[160]Laboratory results, clinicopathological parameters, surgical parameters, donor characteristicsANN1003 liver transplants3-mo graft failure0.806-0.8212,6