Copyright
©The Author(s) 2021.
World J Gastroenterol. Oct 7, 2021; 27(37): 6191-6223
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Published online Oct 7, 2021. doi: 10.3748/wjg.v27.i37.6191
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Leung et al[27] | Laboratory results, clinicopathological parameters | Several | 64238/25330 patients | Risk of gastric cancer development following H.pylori eradication | 0.53-0.972,6, 59.3-98.13,6, 51.5-93.64,6 |
Nakahira et al[28] | Laboratory results, clinicopathological parameters, endoscopic images | CNN | 7826/454 patients | Stratify risk of gastric cancer development | --- |
Taninaga et al[29] | Laboratory results, clinicopathological parameters, endoscopic images | CART | 1144/287 | Prediction of future gastric cancer | 63.4-94.81,6, 0.736-0.8742,6 |
Goshen et al[31] | Laboratory results, clinicopathological parameters | DT, RF, GB | 688 flagged patients | High risk of CRC development | ---- |
Ref. | Diagnostic Modality | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Takiyama et al[33] | Esophago-gastro-duodenoscopy imaging | CNN | 1750/4357 | Anatomical classification among larynx, esophagus, stomach, and duodenum | 0.99-1.002,7 |
Pace et al[34] | Laboratory results, clinicopathological parameters | ANN | 159 patients | Diagnosis of gastroesophageal reflux disease | 67.86-1001,6 |
de Groof et al[35] | Esophageal endoscopic images | DNN | 1247/2976/807/807 patients | Classification of malignant from nondysplastic Barret’s esophagus | 88.21,6, 87.5-88.81,7, 87.63,6, 90.0-92.53,7, 88.64,6, 82.5-87.54,7 |
van der Sommen et al[36] | White-light endoscopic imaging | SVM | 44 patients with Barret’s esophagus | Diagnosis of early neoplastic lesions | Per image: 62-903,6, 65-904,6, Per patient: 52-1003,6, 74-964,6 |
Struyvenberg et al[37] | Volumetric laser endomicroscopy imaging | Several | 29 patients with Barret’s esophagus | Diagnosis of neoplastic lesions | 0.83-0.942,6 |
Swager et al[38] | Volumetric laser endomicroscopy imaging | Several | 60 images | Diagnosis of neoplastic lesions | 0.89-0.952,6 |
Kumagai et al[39] | Endocytoscopic imaging | CNN | 4715/15207 | Diagnosis of esophageal squamous cell carcinoma | 90.91,7, 0.72-0.902,7, 39.4-46.43,7, 98.2-98.44,7 |
Zheng et al[40] | Endoscopic images | CNN | 1507/452 patients | Diagnosis of H.pylori infection | 84.5-93.81,6, 0.93-0.972,6, 81.4-91.63,6, 90.1-98.64,6 |
Nakashima et al[41] | Endoscopic images | CNN | 162/60 patients | Diagnosis of H.pylori infection | 0.66-0.962,6 |
Itoh et al[42] | Endoscopic images | CNN | 149/30 images | Diagnosis of H.pylori infection | 0.9562,6, 86.73,6, 86.74,6 |
Shichijo et al[43] | Endoscopic images | CNN | 32308/114817 | Diagnosis of H.pylori infection | 83.1-87.71,7, 81.9-88.93,7, 83.4-87.44,7 |
Kanesaka et al[45] | NBI | SVM | 126/81 NBI images | Diagnosis of gastric cancer | 96.31,6, 96.73,6, 95.04,6 |
Hirasawa et al[46] | Endoscopic images | CNN | 13584/22967 | Diagnosis of gastric cancer | 92.23,7 |
Zhu et al[47] | Laboratory results, clinicopathological parameters, cancer biomarkers | GB/DT | 496/213 patients | Diagnosis of gastric cancer | 85.91,5, 831,6, 0.912,6, 883,5, 873,6, 83.44,5, 84.14,6 |
Tenório et al[48] | Laboratory results, clinicopathological parameters | Several | 178/38 | Diagnosis of celiac disease | 71.5-801,6, 0.71-0.842,6, 69-823,6, 67-804,6 |
Caetano Dos Santos et al[49] | Endomysial autoantibody test for IgA-class antibodies images | SVM | 2597 images (training:validation = 7:3) | Diagnosis of celiac disease | 96.8-98.851,6, 82.84-98.913,6, 98.81-99.404,6 |
Hujoel et al[50] | Laboratory results, clinicopathological parameters | Several | 408 undiagnosed patients | Diagnosis of celiac disease | 0.49-0.532,6 |
Manandhar et al[51] | Gut microbiome data | RF | 1429 fecal 16S metagenomic data subjects | Diagnosis of IBD | 0.80-0.822,6 |
Wei et al[52] | Single nucleotide polymorphisms data | Several | 60828 samples | Classifification of CD and UC | 0.782-0.8662,6 |
Mossotto et al[53] | Capsule endoscopy, histologic imaging | SVM | 239/487 pediatric patients | Classifification of CD, UC, and unclassified IBD | 71-82.71,5, 0.78-0.872,5, 83.31,7, 83-853,7 |
Xia et al[58] | Capsule endoscopy imaging | CNN | 697/1007 patients, 822590/2013657, images | Classification among different types of gastric lesions | 77.1-861,7, 0.80-0.902,7, |
Seguí et al[59] | Capsule endoscopy imaging | CNN | 50 videos | Classification of small bowel mobility events | 961,6 |
Park et al[60] | Capsule endoscopy imaging | CNN | 139 videos, 200000 images (training:validation:test = 6:2:2) | Small bowel lesion identification | 80.29-98.341,6, 0.9992,5, 0.9982,6,7 |
Hwang et al[61] | Capsule endoscopy imaging | CNN | 7556/57607 images | Classification of hemorrhagic and ulcerative lesions | 96.62-96.831,7, 95.07-97.613,7, 96.04-98.184,7 |
Otani et al[62] | Capsule endoscopy imaging | DNN | 167/407 patients | Classification among different types of small bowel lesions | 0.950-0.9962,6, 0.884-0.9282,7 |
Yuan et al[63] | Capsule endoscopy imaging | SVM | 20 patients, 340 images (training:validation = 8:2) | Diagnosis of peptic ulcers | 92.651,6, 94.123,6, 91.184,6 |
Karargyris et al[64] | Capsule endoscopy imaging | SVM | 80 frames | Diagnosis of peptic ulcers | 753,6, 73.34,6 |
He et al[65] | Capsule endoscopy imaging | CNN | 11 patients, 440000 images | Diagnosis of intestinal hookworms | 88.51,6, 0.8952,6, 84.63,6, 88.64,6 |
Leenhardt et al[66] | Capsule endoscopy imaging | CNN | 600/600 images | Diagnosis of gastrointestinal angiectasia | 1003,6, 964,6 |
Zhou et al[67] | Capsule endoscopy imaging | CNN | 21 videos | Diagnosis of celiac disease | 1003,6, 1004,6 |
Yamada et al[68] | Colon capsule endoscopy imaging | CNN | 15933/47847 | Diagnosis of colorectal neoplasias | 83.97, 0.9022,7, 793,7, 874,7 |
Wang et al[69] | Colonoscopy imaging | CNN | 5545 images/271137 images/6127 images/1387 videos/547 videos | Identification of colorectal polyps | 0.9842,7, 88.24-1003,7, 95.40-95.922,7 |
Misawa et al[70] | Colonoscopy imaging | CNN | 411/35 short videos | Identification of colorectal polyps | 76.51,6, 0.872,6, 903,6, 63.34,6 |
Urban G et al[71] | Colonoscopy imaging | CNN | 8641 images/207 videos | Identification of colorectal polyps | 96.41,7, 0.9912,7 |
Ozawa et al[72] | Colonoscopy imaging | CNN | 20431/70777 images | Identification of colorectal polyps, Classification of colorectal polyps | 90-973,7, 47-981,7 |
Mori et al[73] | NBI and methylene blue staining images | SVM | 466 diminutive polyps | Classification of diminutive rectosigmoid adenomas | NPV(%): 93.7-96.5 |
Tischendorf et al[74] | NBI | SVM | 209 colorectal polyps | Classification of colorectal polyps | 903,6, 70.24,6 |
Gross et al[75] | NBI | SVM | 434 colorectal polyps | Classification of small colorectal polyps | 93.11,6, 95.03,6, 90.34,6 |
Kominami et al[76] | NBI | SVM | 118 colorectal polyps | Classification of colorectal polyps | 93.21,6, 93.03,6, 93.34,6 |
Misawa et al[77] | NBI endocytoscopy | SVM | 979/100 endocytoscopy, images | Classification of colorectal polyps | 901,6, 84.53,6, 97.64,6 |
Takeda et al[78] | NBI endocytoscopy | SVM | 5543/200 endocytoscopy, images | Diagnosis of invasive CRC | 94.11,6, 89.43,6, 98.94,6 |
Chen et al[79] | NBI | CNN | 2157/2847 | Classification neoplastic from hyperplastic polyps | 96.33,7, 78.14,7, NPV(%): 91.57 |
Komeda et al[80] | NBI | CNN | 1200/600 images | Classification of adenomatous from non-adenomatous polyps | 75.11,6 |
Byrne et al[81] | NBI | CNN | 223/407 videos | Classification of adenomas from hyperplastic polyps | 941,7, 0.952,7, 983,7, 834,7, NPV(%): 977 |
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Rogers et al[86] | Data from baseline impedance, nocturnal baseline impedance, and acid exposure time | DT | 335 patients | Prediction of treatment response with proton pump inhibitors for patients with gastroesophageal reflux disease | 0.31-0.9382,6 |
Zhu et al[87] | Endoscopic images | CNN | 790/2037 images | Invasion of gastric cancer at the mucosa and submucosa layers of the stomach | 89.161,7, 0.942,7, 76.473,7, 95.564,7 |
Kubota et al[88] | Endoscopic images | DNN | 800/90 images | Invasion depth of gastric cancer | 64.71,6 |
Yamashita et al[89] | Hematoxylin and eosin-stained WSI | DNN | 100/156/4847 | Identificication of CRC microsatellite instability | 0.9312,6, 0.7792,7, 763,7, 66.64,7 |
Ichimasa et al[90] | Laboratory results, clinicopathological parameters | SVM | 590/1007 | Prediction of lymph node metastasis status | 691,7, 0.8212,7, 1003,7, 664,7 |
Levi et al[91] | Laboratory results, clinicopathological parameters | RFE | 14620 patients | Prediction of the need for transfusion following GIB | 50.21-74.881,6, 0.7858-0.81412,6, 69.17-92.773,6, 35.02-79.824,6 |
Chu et al[92] | Laboratory results, clinicopathological parameters | Several | 122/67 patients | Prediction of the source of GIB | 69.7-94.31,6, 0.658-0.9992,6, 90.1-98.03,6, 89-1004,6 |
Prediction of the need for blood resuscitatio | 64.7-94.11,6, 0.381-0.9932,6, 90.3-93.93,6, 18.4-95.54,6 | ||||
Prediction of the need for emergent endoscopy | 62.7-83.31,6, 0.404-0.9132,6, 80.1-89.13,6, 13.8-85.74,6 | ||||
Prediction of disposition | 58.4-89.71,6, 0.324-0.9722,6, 81.9-92.93,6, 18.4-90.94,6 | ||||
Das et al[93] | Laboratory results, clinicopathological parameters | ANN | 194/1936/2007 patients | Prediction of major stigmata of recent hemorrhage | 891,3,4,6, 771,7, 963,7, 634,7 |
Prediction of the need for emergent endoscopy | 811,3,6, 611,7, 943,6, 824,6, 484,7 | ||||
Augustin et al[94] | Laboratory results, clinicopathological parameters | CART | 164/1037 patients | Stratification of risk of rebleeding and mortality following acute variceal hemorrhage | 0.81-0.832,7 |
Loftus et al[95] | Laboratory results, clinicopathological parameters | ANN | 103/44 patients | Prediction of severe lower GIB | 0.9792 |
Prediction of the need for surgical intervention | 0.9542,6 | ||||
Ayaru et al[96] | Laboratory results, clinicopathological parameters | GB | 170/1307 | Prediction of severe lower GIB | 781,6, 831,7 |
Prediction of recurrent bleeding | 881,6, 881,7 | ||||
Prediction of the need for intervention | 881,6, 911,7 |
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Yang et al[97] | Laboratory results, immunomarkers, clinicopathological parameters | SVM | 319/164 patients | Distant metastasis of oesophageal squamous cell carcinoma following surgery | 69.5-80.11,6, 44.7-67.23,6, 81.6-97.74,6 |
Sato et al[98] | Laboratory results, clinicopathological parameters, tumor characteristics | ANN | 395 patients (training:validation:test = 53:27:20) | 1-year and 5-year survival of patients with esophageal cancer following surgery | 0.883-0.8842,7, 78.1-80.73,7, 84.7-86.54,7 |
Zhou et al[99] | Laboratory results, clinicopathological parameters, tumor characteristics | Several | 2012 patients (training:validation = 8:2) | Recurrence of gastric cancer following surgery | 0.790-0.9622,5, 0.771-0.7952,6 |
Peng et al[100] | Meteorological data | ANN | 901 patients | Variations of onset and relapse of IBDs | ---- |
Hardalaç et al[101] | Clinicopathological parameters, treatment data | ANN | 129 patients (training:validation:test = 80:10:10) | Prediction of mucosal remission for CD patients treated with azathioprine | 58.1-79.11,6, 0.527-0.8832,6 |
Takayama et al[102] | Clinicopathological parameters, treatment data | ANN | 54/36 patients | Prediction of the need for operation for UC patients treated with cytoapheresis | 963,6, 974,6 |
Lyles et al[103] | Laboratory results, clinicopathological parameters | CART | 884 patients | Prediction of in-hospital mortality of upper GIB in cirrhotic patients | ---- |
Grossi et al[104] | Laboratory results, clinicopathological parameters | ANN | 807 patients | 30-d mortality of patients with non-variceal upper GIB | 81.2-89.01,6, 0.872,6, |
Rotondano et al[105] | Laboratory results, clinicopathological parameters | ANN | 2380 patients | 30-d mortality of patients with non-variceal upper GIB | 96.81,6, 0.952,6, 83.83,6, 97.54,6 |
Shi et al[106] | CT radiomics | Several | 124/35 patients | Prediction of the presence of RAS and BRAF mutations in CRC | ANN: 871,5, 711,6, 0.90-0.952,5, 0.792,6 |
Kang et al[107] | Laboratory results, immunomarkers, clinicopathological parameters, tumor characteristics | LASSO | 221/95 patients | Prediction of lymph node metastasis status in operated patients for T1 CRC | 0.7952,5, 0.7652,6 |
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Goldman et al[108] | National database of routine annual health check-ups | DT-based | 12019 patients | Risk of NAFLD and cirrhosis | 84.50-85.731,6, 0.7740-0.84862,6 |
Yip et al[109] | Laboratory results, clinicopathological parameters | Several | 500/422 | Identify patients with NAFLD | 0.87-0.902,5, 0.78-0.882,6, 55.48-94.523,5, 51.69-92.373,6, 58.47-91.534,5, 50.99-90.464,6 |
Ma et al[110] | Laboratory results, clinicopathological parameters | Several | 10508 patients (training:validation = 9:1) | Identify patients with NAFLD | 49.47-82.921,6, 20.2-68.03,6, 54.4-94.64,6 |
Sowa et al[111] | Laboratory results, clinicopathological parameters | Several | 126 morbidly obese patients (training:validation = 9:1) | Fibrosis in NAFLD patients | 791,6, 30.8-60.03,6, 77.0-92.24,6 |
Canbay et al[112] | Laboratory results, clinicopathological parameters | EFS | 164/122 obese patients | Classification of NAFLD and NASH | 0.73392,5, 0.70282,6 |
Fialoke et al[113] | National database of routine annual health check-ups | Several | 108139 patients (training:validation = 4:1) | Classification among healthy, NAFLD, and NASH | 77.2-79.71,6, 0.842-0.8762,6, 74.5-77.43,6 |
Sowa et al[114] | Data from biochemical and enzyme-linked immunosorbent assays | Several | 133 patients (training:validation = 9:1) | Classification of NAFLD and ALD | DT: 89.02-95.11,6, 74.19-94.123,6, 96.08-98.044,6, RF: 0.8932-0.98462,6, SVM: 0.9058-0.91182,6 |
Wei et al[115] | Laboratory results, clinicopathological parameters | GB | 576 HBV patients, (training:validation = 7:3), 3687 HCV patients | Classification of fibrosis/cirrhosis in HBV patients | 0.904-0.9742,5, 0.871-0.9182,6, 79-883,5, 78-843,6, 86-924,5, 854,6 |
Classification of fibrosis/cirrhosis in HCV patients | 0.797-0.8492,7 | ||||
Wang et al[116] | Laboratory results, clinicopathological parameters | ANN | 226/1136/1167 HBV patients | Classification of significant fibrosis | 0.8832,5, 0.8842,6, 0.9202,7 |
Raoufy et al[117] | Laboratory results, clinicopathological parameters | ANN | 86/58 HBV patients | Classification of liver cirrhosis | 91.381,6, 0.8982,6, 87.53,6, 924,6 |
Piscaglia et al[118] | Laboratory results, clinicopathological parameters | ANN | 414/96 HCV patients | Classification of significant fibrosis | 45.8-86.51,6, 0.872,5, 0.932,6, 30.4-1003,6, 30.1-98.64,6 |
Hashem et al[119] | Laboratory results, clinicopathological parameters | Several | 22690/16877 HCV patients | Classification of significant fibrosis | 66.3-84.41,6, 0.73-0.762,6 |
Ioannou et al[120] | Clinical/laboratory data extracted directly from electronic health records | DNN | 48151 patients with HCV-related cirrhosis (training:validation = 9:1) | HCC development in HCV cirrhosis | 0.759-0.8062,6 |
Emu et al[121] | Laboratory results, clinicopathological parameters | Several | 1385 patients HCV (training:validation = 4:1) | Stage of liver cirrhosis | 97.228-97.8311,6 |
Ref. | Diagnostic Modality | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Choi et al[122] | CT imaging | CNN | 7461/4216/2987/1727 patients | Liver fibrosis staging (F0-F4) | 83.11,5, 80.81,6, 74.4-80.21,7 |
Classification among significant fibrosis, advanced fibrosis, and cirrhosis | 92.1-95.01,6,7, 0.95-0.972,6,7, 84.6-95.53,6,7, 89.9-96.64,6,7 | ||||
Kuppili et al[123] | US imaging | ELM, SVM | 63 patients | Diagnosis of FLD | ELM: 81.7-92.41,6, 0.81-0.922,6, 85.10-91.303,6, 78.52-92.104,6, SVM: 76.14-86.421,6, 0.74-0.862,6, 76.80-88.203,6, 74.52-86.304,6 |
Gatos et al[124] | US shear wave elastography imaging | SVM | 126 patients | Classification of chronic liver disease from healthy patients | 87.31,6, 0.872,6, 93.53,6, 81.24,6 |
Chen et al[125] | Real-time tissue elastography imaging, age, sex | Several | 513 patient (training:validation = 3:1) | Classification of liver fibrosis | 80.44-82.871,6, 79.67-92.973,6, 46.25-82.504,6 |
Matake et al[126] | Clinicopathological parameters, CT imaging | ANN | 120 patients | Classification among four types of focal liver lesions | 0.9612,6 |
Oestmann et al[127] | Multiphasic MRI scans | CNN | 150/10 patients | Classification of HCC and non-HCC lesions | 94.11,5, 87.31,6, 0.9122,6 |
For HCC: 92.73,6, 82.04,6 | |||||
For non-HCC: 82.03,6, 92.74,6 | |||||
Kim et al[128] | MRI scans | CNN | 4555,6/547 patients | HCC detection | 0.972,6, 943,6, 994,6, 0.902,7, 873,7, 934,7 |
Cucchetti et al[129] | Laboratory results, clinicopathological parameters, radiological data, histological data | ANN | 175/75 patients | MVI | 0.922,5, 91.01,6 |
Histopathological Grade | 0.942,5, 93.31,6 | ||||
Urman et al[130] | Metabolomic and proteomic analyses of bile | Several | 139 patients | Classification of CCA and pancreatic adenocarcinoma | 0.98-1.002,6, 88-94.13,6, 92.3-1004,6 |
Negrini et al[131] | Plasma bile acids profiles | Several | 112 patients (training:validation = 4:1) | Classification of CCA and benign biliary disease | 68.2-86.41,6, 0.77-0.952,6, 64-793,6, 63-1004,6 |
Logeswaran[132] | MRCP | MLP | 55/5937 images | CCA diagnosis | 92.8-96.31,6, 83.64-90.141,7 |
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Wübbolding et al[133] | Analyze soluble immune markers | Several | 28/497 HBV patients | Prediction of early virological relapse | 0.73-0.892,6, 0.59-0.672,7 |
Haga et al[134] | WGS of HCV | Several | 86/87 HCV patients | Classification of HCV variants resistant to antiviral drugs | 0.5-0.9372,5, 0.597-0.9542,6 |
Bedon et al[135] | DNA methylation profiling | RF-based | 300/74 HCC specimens | 6-mo progression-free survival | 67.1-80.61,5, 64.8-80.21,7 |
Tsilimigras et al[137] | Laboratory results, clinicopathological parameters, tumor characteristics | CART | 976 HCC patients | Determining factors of prognostic weigh preoperatively within the BCLC staging system | --- |
Tsilimigras et al[139] | Laboratory results, clinicopathological parameters, tumor characteristics | CART | 1146 CCA patients | Determining factors of prognostic weigh preoperatively | --- |
Jeong et al[140] | Laboratory results, clinicopathological parameters | DNN | 1421/2347 | Intrahepatic CCA susceptible to adjuvant therapy following resection | 0.842,5, 0.782,7 |
Shao et al[141] | Clinicopathological parameters | ANN | 288 CCA patients (training:validation = 8:2) | Predict early occlusion following bilateral plastic stent placement | 0.96482,5, 0.95442,6 |
Ref. | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance |
Hong et al[142] | Laboratory results, clinicopathological parameters | ANN | 197 HBV patients (training:validation = 4:1) | Development of esophageal varices in HBV cirrhosis | 87.821,6, 93.753,6, 71.704,6 |
Dong et al[143] | Laboratory results, clinicopathological parameters | RF | 238/1097 | Identification of esophageal varices | 0.842,5, 0.822,7 |
Classification of esophageal varices requiring treatment | 0.742,5, 0.752,7 | ||||
Ho et al[144] | Laboratory results, clinicopathological parameters, surgery parameters | ANN, DT | 427, 354, and 297 patients for 1-, 3-, and 5-year survival (training:validation = 8:2) | 1-, 3-, and 5-year disease-free survival | ANN: 0.963-0.9892,5, 93.5-96.33,5, 91.6-97.94,5, 0.774-0.8642,6, 70.0-78.73,6, |
Following surgical resection | |||||
DT: 0.675-0.8252,5, 19.6-94.83,5, 45.8-97.94,5, 0.561-0.7182,6, 0-88.53,6, 37.5-96.44,6 | |||||
Shi et al[145] | Laboratory results, clinicopathological parameters, tumor characteristics | ANN | 22926 patients | 5-year survival following surgical resection | 96.571,6, 0.8852,6, 97.431,7, 0.8712,7, 74.233,7, |
Shi et al[146] | Laboratory results, clinicopathological parameters, surgery parameters | ANN | 22926 hepatectomies | In-hospital mortality following surgical resection | 97.281,6, 0.842,6, 95.931,7, |
Chiu et al[147] | Laboratory results, clinicopathological parameters, tumor characteristics | ANN | 434, 341, and 264 patients for 1-, 3-, and 5-year survival, (training:validation = 8:2) | 1-, 3-, and 5-year overall survival, following surgical resection | 98.5-99.51,5, 0.980-0.9932,5, 99.7-1003,5, 96.2-99.24,5, 72.1-85.11,6, 0.798-0.8752,6, 71.4-88.63,6, 50.0-82.14,6 |
Qiao et al[148] | Laboratory results, clinicopathological parameters, tumor characteristics | ANN | 362/1816/1047 patients | Survival following surgical resection | 0.8552,5, 80.003,5, 73.404,5, 0.8322,6, 78.673,6, 75.704,6, 0.8292,7, 77.423,7, 78.084,7 |
Liu et al[149] | Laboratory results, data from immunochemistry of peripheral blood mononuclear cells, tumor characteristics | GB survival classifier | 136/566/1057 | Risk of HCC-related death | 0.8442,5, 0.8272,6, 0.8062,7 |
Zhong et al[150] | ALBI/CTP stage | ANN | 319 / 617 / 1247 | Survival of patients treated with chemoembolization and sorafenib | ALBI-based: 0.7162,7, 0.8232,7 |
CTP-based: 0.7792,7, 0.6932,7 | |||||
Divya and Radha[152] | Laboratory results, clinicopathological parameters, tumor characteristics | APO, SVM, RF | 152 patients | Recurrence following RFA | 95.51,6, 95.13,6, 95.84,6 |
Yamashita et al[153] | Hematoxylin and eosin-stained WSI | CNN | 299 / 536/1987 WSIs | Recurrence following Surgical Resection | 0.7242,6, 0.6832,7 |
Liang et al[154] | Laboratory results, clinicopathological parameters | SVM | 83 patients | Recurrence following RFA | 73-821,6, 0.60-0.692,6, 77-863,6, 73-824,6 |
Eaton et al[155] | Laboratory results, clinicopathological parameters | GB-based | 509/278 patients with primary sclerosing cholangitis | Classify risk of primary sclerosing cholangitis-related complications | 0.962,6, 0.902,7 |
Andres et al[156] | Laboratory results, clinicopathological parameters, donor characteristics | PSSP system | 2769 patients | Survival following transplantation for primary sclerosing cholangitis | ---- |
Rodriguez-Luna et al[157] | Genotyping data from microsatellite mutations/deletions | ANN | 19 transplated patients | Post-transplant HCC recurrence | 89.51,6 |
Lau et al[158] | Laboratory results, clinicopathological parameters, donor characteristics | ANN, RF | 90/90 transplants | Graft failure/primary nonfunction | ANN: 0.734-0.8352,6 |
RF: 0.787-0.8182,6 | |||||
3-mo graft failure | ANN: 0.5592,6, R6: 0.7152,6 | ||||
Briceño et al[160] | Laboratory results, clinicopathological parameters, surgical parameters, donor characteristics | ANN | 1003 liver transplants | 3-mo graft failure | 0.806-0.8212,6 |
- Citation: Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27(37): 6191-6223
- URL: https://www.wjgnet.com/1007-9327/full/v27/i37/6191.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i37.6191