Copyright
©The Author(s) 2021.
World J Gastroenterol. Jul 7, 2021; 27(25): 3734-3747
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Published online Jul 7, 2021. doi: 10.3748/wjg.v27.i25.3734
Table 1 Applications of artificial intelligence in organ segmentation of the small intestine
Ref. | Diagnostic method | AI technology | Training set | Validating set | Outcomes |
Tong et al[11] | CT | ML | 90 images | - | DSC of duodenum: 69.26% |
Kim et al[9] | CT | CNN | 80 images | 40 images | DSC of duodenum: 0.595 |
Peng et al[10] | CT | CNN | 43 images | - | DSC of duodenum: 0.61 |
Fu et al[12] | MRI | CNN | 100 images | 20 images | Dice coefficient of duodenum: 65.50% ± 8.90% |
Dice coefficient of bowel: 86.60% ± 2.69% | |||||
Chen et al[13] | MRI | DL | 66 images | 36 images | DSC of duodenum: 0.80 |
Takiyama et al[15] | EGD | CNN | 27335 images | 17081 images | AUCs: 0.99 |
Igarashi et al[16] | EGD | ML | 49174 images | 36072 images | Accuracy (Ts: 0.993, Vs: 0.965) |
Table 2 Applications of artificial intelligence in celiac disease
Ref. | Diagnostic method | AI technology | Training set | Testing set | Outcomes |
Chetcuti et al[62] | CE | ML | 81 patients | - | Accuracy: 75.3% |
Li et al[63] | CE | Computer-assisted recognition | Ep: 240, Cp: 220 | - | Accuracy: 93.9% |
Vicnesh et al[64] | CE | Computerized algorithm | 21 patients | - | Accuracy: 89.82% |
Zhou et al[65] | CE | CNN | Ep: 6, Cp: 5 | Ep: 5, Cp: 5 | Accuracy: 100% |
Gadermayr et al[59] | EGD | Computer-assisted | 290 patients (2835 images) | - | Accuracy: 94%-100% |
Das et al[67] | Mucosal biopsies | Computer-assisted | Ep: 124, Cp: 137 | Ep: 120, Cp: 105 | Sen: 90.3%, Spe: 93.5%, AUCs: 96.2% |
Wei et al[66] | Mucosal biopsies | DL | 212 images | - | Accuracy: 95.3%, AUCs > 0.95 |
Pastore et al[70] | Clinical data | Computer-assisted | 100 patients | - | Reliability: 0.813 |
Tenório et al[60] | Clinical data | Decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines, artificial neural networks | 178 patients | 38 patients | Accuracy: 80.0%, Sen: 0.78, Spe: 0.80, AUCs: 0.84 |
Virta et al[68] | Micro-CT | Computer-assisted point cloud analysis | 81 patients | - | Accuracy: 100% |
Sangineto et al[69] | Gene expression in PBMCs | ML, random forest algorithm | Ep: 17, Cp: 20 | - | Accuracy: 100% |
Table 3 Applications of artificial intelligence in small intestinal Crohn’s disease
Ref. | Diagnostic method | AI technology | Training set | Testing set | Outcomes |
Yang et al[78] | Microultrasound | CNN | 43 mice | - | AUCs: 0.8831 |
Shen et al[80] | Clinical data | Computerized algorithm | Ep1: 61, Cp1: 78 | Ep2:42, Cp2: 57; Ep3:84, Cp3: 495 | AUCs: 0.92 |
Bottigliengo et al[81] | Clinical data | BMLTs (NB, BN, BART) | 152 patients | - | AUCs without genetic variables (NB: 0.71, BN: 0.50, BART: 0.76), AUCs with genetic variables (NB: 0.75, BN: 0.67, BART: 0.78) |
Taylor et al[79] | Clinical data | ML (elastic net and random forest) | 480 first-degree relatives | - | AUCs (elastic net): 0.80, AUCs (random forest): 0.87 |
Menti et al[82] | Clinical data | BMLTs | 152 patients | - | Accuracy without genetic variables: 82%, accuracy with genetic variables: 89% |
Klang et al[77] | CE | DL | 49 patients (17640 images) | - | AUCs: 0.94-0.99, accuracy: 95.4%-96.7% |
Parfеnov et al[76] | CE | Computerized algorithm | 25 patients | - | 44% patients confirmed only with the help of AI |
Lamash et al[74,75] | MRI | CNN | 15 patients | 8 patients | Dice coefficients: 75%-97% |
Table 4 Applications of artificial intelligence in primary small intestinal tumor
Ref. | Diagnostic method | AI technology | Training set | Testing set | Outcomes |
Inoue et al[88] | EGD | CNN | 531 images | 1080 images | Accuracy: 94.7%-100% |
Liu et al[90] | CE | SVM | 89 patients | - | Sen: 97.8%, Spe: 96.7% |
Vieira et al[89,91] | CE | SVM | 29 patients (936 images) | - | This SVM outperforms others by more than 5% |
Barbosa et al[93] | CE | CNN | Ep: 104, Cp: 100 | Ep: 92, Cp: 100 | Sen: 98.7%, Spe: 96.6% |
Panarelli et al[94] | MicroRNA sequencing | ML | 84 samples | - | Accuracy (Ts: 98.5%, Vs: 94.4%) |
Drozdov et al[95] | Gene expression profiling | ML | 73 samples | - | Differentiated from normal cells (Sen: 100%, Spe: 92%), metastases prediction (Sen: 100%, Spe: 100%) |
Kjellman et al[96] | Plasma protein multibiomarker | Random forestmodel | Ep:135, Cp: 143 | - | AUCs: 0.97 |
Yan et al[97] | CT | Random forestmodel | 213 patients | - | AUCs: 0.943 |
- Citation: Yang Y, Li YX, Yao RQ, Du XH, Ren C. Artificial intelligence in small intestinal diseases: Application and prospects. World J Gastroenterol 2021; 27(25): 3734-3747
- URL: https://www.wjgnet.com/1007-9327/full/v27/i25/3734.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i25.3734