Copyright
©The Author(s) 2020.
World J Gastroenterol. Dec 14, 2020; 26(46): 7287-7298
Published online Dec 14, 2020. doi: 10.3748/wjg.v26.i46.7287
Published online Dec 14, 2020. doi: 10.3748/wjg.v26.i46.7287
Ref. | Type of study | Aim of study | Images/video | Results |
Aoki et al[58], 2020 | Retrospective | Detection of mucosal breaks/erosion | 20 capsule endoscopy videos | Detection rate, expert 87%; trainee, 55% |
Klang et al[59], 2020 | Retrospective | Detection of small intestinal ulcers in Crohn’s disease | 17640 images from 49 patients | Accuracy, 96.7%; sensitivity, 96.8%; specificity, 96.6% (5-fold) |
Tsuboi et al[60], 2020 | Retrospective | Detection of small intestinal angiodysplasia | 2237 images from 141 patients | Sensitivity, 98.8%; specificity, 98.4% |
Ding et al[61], 2019 | Retrospective | Detection of small intestinal abnormal images | 158235 images from 1970 patients | Sensitivity, 99.9%; reading time, 5.9 min |
Saito et al[62], 2020 | Retrospective | Detection and classification of protruding lesions | 30584 images from 292 patients | Sensitivity, 90.7%; specificity, 79.8%; reading time, 530.462 s |
- Citation: Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J Gastroenterol 2020; 26(46): 7287-7298
- URL: https://www.wjgnet.com/1007-9327/full/v26/i46/7287.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i46.7287