Copyright
©The Author(s) 2020.
World J Gastroenterol. Oct 7, 2020; 26(37): 5606-5616
Published online Oct 7, 2020. doi: 10.3748/wjg.v26.i37.5606
Published online Oct 7, 2020. doi: 10.3748/wjg.v26.i37.5606
Ref. | Country | Algorithm | Number of images/videos | Outcomes |
Karkanis et al[19], 2003 | Greece | Hand-crafted | 60 videos | Sensitivity 94%, specificity 99% |
Maroulis et al[34], 2003 | Greece | Hand-crafted | 2809 video frame | Accuracy > 95% |
Jerebko et al[35], 2006 | United States | Hand-crafted | 56 images | Sensitivity 84% |
Hwang et al[21], 2007 | United States | Hand-crafted | 8621 video frame | Per-polyp sensitivity 96% |
Park et al[36], 2012 | United States | Hand-crafted | 35 videos, > 1 million frames | AUROC 0.89 |
Wang et al[37], 2014 | United States | Hand-crafted | 46 video file | Sensitivity 81,4% |
Bernal et al[38], 2015 | Spain | Hand-crafted | 612 video frame | PPV 70% |
Tajbakhsh et al[39], 2015 | United States | Hand-crafted | 19400 video frame (property), 300 video frame in CVC-ColonDB | Sensitivity on property database 48%, sensitivity in CVC-ColonDB 88% |
Wang et al[20], 2015 | United States | Hand-crafted | 53 videos | Per-polyp senstivity 97.7% |
Geetha et al[40], 2016 | India | Hand-crafted | Still images 703 frames | Sensitivity 95%, specificity 97% |
Fernández-Esparrach et al[22], 2016 | Spain | Hand-crafted | 25 videos | Sensitivity 70.4%, specificity 72.4% |
Angermann et al[41], 2017 | France | Hand-crafted | 18 video with 10924 frames | 100% per-polyp sensitivity PPV 50% |
Park et al[42], 2016 | United States | CNN | 562 images | Sensitivity 86%, specificity 85% |
Billah et al[43], 2017 | Bangladesh | CNN | 14000 still images | Sensitivity 99%, Specificity 99% |
Yu et al[44], 2017 | China | CNN | 18 videos | Sensitivity 71%, PPV 88% |
Zhang et al[23], 2017 | China | CNN | 150 random + 30 NBI images | Sensitivity 98%, PPV 99%, AUROC 1, Accuracy 86% |
Urban et al[25], 2018 | United States | CNN | ImageNet 1.2 mil, 53588 imges from videos | 90% sensitivity |
Misawa et al[24], 2018 | Japan | CNN | 135 video clips | Per-polyp sensitivity 94%, per-frame sensitivity 90%, specificity 63.3%, accuracy 76.5% |
Pogorelov et al[45], 2018 | Norway | CNN | 1359 to 11954 frame from still images | Sensitivity 75%, specificity 94% |
Yamada et al[46], 2018 | Japan | CNN | 4840 video images | Sensitivity 97%, specificity 99%, AUROC 0.975 |
Zhu et al[47], 2018 | China | CNN | 616 still images | Sensitivity 89%, 92% classification accuracy |
Hassan et al[26], 2019 | Italy | CNN | 338 videos, 1.5 milion frames | Sensitivity per lesion 99.7% |
Ahmad et al[48], 2019 | England | CNN | 24596 video frames | Sensitivity 85%, specificity 93% |
Eelbode et al[49], 2019 | Belgium | CNN | 758 frames of still imges | Sensitiviy 92%, specificity 85% |
Ka-Luen Lui et al[50], 2019 | China | CNN | 6 unedited videos | Per-polyp sensitivity 100%, per frame sensitivity 98.3%, specificity 99.7%, AUROC 0.99 |
Misawa et al[51], 2019 | Japan | CNN | 64 videos | 86% sensitivity |
Shichijo et al[52], 2019 | Japan | CNN | 1233 still images | Per-polyp sensitivity 100%, per-image semsitivity 99%, 76% PPV |
Ozawa et al[53], 2020 | Japan | CNN | 7077 images | 92% sensitivity, 86% PPV, accuracy 83% |
Artificial intelligence system | Country |
GI-Genius (Medtronic) | European Union, Australia, Israel, South Arabia |
CAD-Eye (Fuji) | European Union |
Discovery (Pentax) | European Union |
Endobrain-EYE (Olympus) | Japan |
Wision-AI | China |
Ref. | Country | CAD system | CAD system aim | Number of patients | ADR (%) | ADR (%) | |
WL | CAD | WL | CAD | ||||
Wang et al[15], 2019 | China | EndoScreener | Detection | 536 | 522 | 20.3 | 28.9 |
Wang et al[54], 2020 | China | EndoScreener | Detection | 478 | 484 | 28 | 34.1 |
Gong et al[30], 2020 | China | ENDOANGEL | Quality | 318 | 324 | 8 | 16 |
Repici et al[31], 2020 | Italy | GI-Genius | Detection | 344 | 341 | 40.4 | 54.8 |
Liu et al[28], 2020 | China | Henan Xuanweitang Medical Information technology Co. Ltd. | Detection | 518 | 508 | 23.9 | 39.2 |
Su et al[29], 2020 | China | - | Detection; quality | 315 | 308 | 16.5 | 28.9 |
- Citation: Attardo S, Chandrasekar VT, Spadaccini M, Maselli R, Patel HK, Desai M, Capogreco A, Badalamenti M, Galtieri PA, Pellegatta G, Fugazza A, Carrara S, Anderloni A, Occhipinti P, Hassan C, Sharma P, Repici A. Artificial intelligence technologies for the detection of colorectal lesions: The future is now. World J Gastroenterol 2020; 26(37): 5606-5616
- URL: https://www.wjgnet.com/1007-9327/full/v26/i37/5606.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i37.5606