Copyright
©The Author(s) 2020.
World J Gastroenterol. Sep 21, 2020; 26(35): 5256-5271
Published online Sep 21, 2020. doi: 10.3748/wjg.v26.i35.5256
Published online Sep 21, 2020. doi: 10.3748/wjg.v26.i35.5256
Ref. | Year | Study design | Lesions | Diagnostic method | AI technology | Dataset capacity | Validation | Outcomes | Compared to expert | Processing speed |
Münzenmayer et al[53] | 2009 | Retrospective | BE | WLI | Color-texture analysis in a CBIR framework | 390 images with 482 ROIs | LOO (N-fold cross-validation) | Accuracy: BE/CC/EP 70%/74%/95% | NA | NA |
van der Sommen et al[55] | 2016 | Retrospective | HGD, early EAC | WLI | SVM | 100 images | LOO | Per-image SEN/SPE: 83%/83%; Per-patient SEN/SPE: 86%/87% | Inferior | NA |
Horie et al[56] | 2019 | Retrospective | EAC | WLI; NBI | CNN-SSD | 8 patients | Caffe DL framework | Accuracy: 90%; Per-image SEN: WLI/NBI: 69%/71%; Per-case SEN: WLI/NBI: 88%/88% | NA | 0.02 s/image |
Ghatwary et al[57] | 2019 | Retrospective | EAC | WLI | VGG’16-based; R-CNN; Fast R-CNN; Faster R-CNN; SSD | 100 images (train 50, test 50) | 5-fold cross-validation and LOO | F-measure: 0.94 (SSD); SEN/SPE: 96%/92% (SSD) | NA | 0.1-0.2 s/image |
Hashimoto et al[58] | 2020 | Retrospective | HGD, early EAC | WLI and NBI with both standard and near focus | CNN | 1835 images | NA | Per-image accuracy: 95.4%; Per-image SEN/SPE: 96.4%/94.2%; 98.6%/88.8% (WLI); 92.4%/99.2% (NBI) | NA | GPU gtx 1070: 0.014 s/frame; YOLO v2: 0.022 s/frame |
Ebigbo et al[59] | 2019 | Retrospective | Early EAC | WLI; NBI | CNN-ResNet | 248 images | LOO | SEN/SPE of Augsburg database: 97%/88% (WLI); 94%/80% (NBI); SEN/SPE of MICCAI database: 92%/100% | Superior | NA |
de Groof et al[60] | 2019 | Retrospective | Early dysplastic BE | WLI | ResNet-UNet hybrid | 1704 images (train 1544, validation 160) | 4-fold cross-validation (external validation) | Accuracy/SEN/SPE: 89%/90%/88% (dataset 4); 88%/93%/83% (dataset 5) | NA (superior to non-expert) | Classification: 0.111 s/image; Segmentation: 0.124 s/image |
Swager et al[62] | 2017 | Retrospective | HGD, early EAC | VLE | SVM, DA, Adaboost, RF, kNN, NB, LR, LogReg | 60 images | LOO | AUC: 0.95; SEN/SPE: 90%/93% | Superior | NA |
van der Sommen et al[63] | 2018 | Retrospective | HGD, early EAC | VLE | SVM, RF; AdaBoost; CNN, kNN; DA, LogReg | 60 frames | LOO | AUC: 0.90-0.93 | Superior | 24 ms/full dataset for clinically-inspired features |
Struyvenberg et al[65] | 2020 | Prospective | HGD, early EAC | VLE | PCA-CAD | 3060 frames | NA | AUC of Multi-frame: 0.91; AUC of Single-frame: 0.83 | NA | 0.001 s/frame; 1.5s/full VLE scan |
van der Putten et al[66] | 2020 | Prospective | HGD, early EAC | VLE | Multi-step PDE-CNN on an A-line basis | In-vivo: 140 images (train 111, test 29) | 4-fold cross-validation | AUC: 0.93; F1 score: 87.4% | NA | 50000 A-lines/s |
Shin et al[67] | 2016 | Retrospective | HGD, EAC | HRM | Two-class LDA-based automated sequential classification algorithm | 230 sites (train 77, validation 153) | NA | Accuracy: 84.9%; SEN/SPE: 88%/85% | NA | 52 s/image |
Qi et al[68] | 2006 | Retrospective | Dysplastic BE | OCT | PCA | 106 images | LOO | Accuracy: 83%; SEN/SPE: 82%/74% | NA | NA |
Ref. | Year | Study design | Lesions | Diagnostic method | AI technology | Dataset capacity | Validation | Outcomes | Compared to expert | Processing speed |
Liu et al[71] | 2016 | Retrospective | Early ESCC | WLI | JDPCA + CCV | 400 images | 10-fold cross-validation | Accuracy: 90.75%; AUC: 0.9471; SEN/SPE: 93.33%/89.2% | NA | NA |
Horie et al[56] | 2019 | Retrospective | ESCC | WLI; NBI | CNN-SSD | 41 pts (train 8428 images; test 1118 images without histology distinction) | Caffe DL framework | Accuracy: 99%; Per-image SEN: 72%/86% ( WLI/NBI, respectively); Per-case SEN: 79%/89% ( WLI/NBI, respectively) | NA | 0.02 s/image |
Cai et al[72] | 2019 | Retrospective | Early ESCC | WLI | DNN | 2615 images (train 2428, test 187) | NA | Accuracy: 91.4%; SEN/SPE: 97.8%/85.4% | Superior | NA |
Zhao et al[74] | 2019 | Retrospective | Early ESCC | ME + NBI | Double labeling FNN | 1350 images with 1383 lesions | 3-fold cross-validation | Accuracy/SEN/SPE at lesion level: 89.2%/87%/84.1%; Accuracy at pixel level: 93% | Comparable | NA |
Ohmori et al[73] | 2020 | Retrospective | Superficial ESCC | ME + NBI/BLI; Non-ME + WLI/NBI/BLI | CNN | 23289 images (train 22562, test 727) | Accuracy/SEN/SPE: 77%/100%/63% (Non-ME + NBI/BLI); 81%/90%76% ( Non-ME + WLI); 77%/98%/56% ( ME) | Comparable | 0.028 s/image | |
Nakagawa et al[76] | 2019 | Retrospective | ESCC (EP-SM1/SM2+SM3) | ME; Non-ME | CNN-SSD | 15252 images (train 14338, test 914) | Caffe DL framework | Accuracy/SEN/SPE: 91%/90.1%/95.8% | Comparable | 0.033 s/image |
Everson et al[77] | 2019 | Retrospective | ESCC IPCLs (type A/type B) | ME + NBI | CNN | 7046 images | 5-fold cross-validation+eCAM | Accuracy/SEN/SPE: 93.3%/89.3%/98% | NA | 0.026-0.037 s/image |
Guo et al[79] | 2020 | Retrospective | Early ESCC | NBI (ME + non-ME) | CNN-SegNet | 13144 images (train 6473, validation 6671), 80 videos (47 lesions, 33 normal esophagus) | NA | Per-image SEN/SPE: 98.04%/95.03%; Per-frame SEN/SPE: 91.5%/99.9% | NA | < 0.04 s/frame; Latency <0.1 s |
Shin et al[82] | 2015 | Retrospective | HGD, ESCC | HRM | Two-class LDA | 375 sites of images (train 104, test 104, validation 167) | NA | AUC: 0.95; SEN/SPE: 84%/95% | NA | 3.5 s/image |
Quang et al[83] | 2016 | Retrospective | ESCC | HRM | A fully automated algorithm | 375 biopsied sites from Shin et al[82] (train 104, test 104, validation 167) | NA | AUC: 0.937; SEN/SPE: 95%/91% | NA | Average 5 s for computing |
- Citation: Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: Now and future. World J Gastroenterol 2020; 26(35): 5256-5271
- URL: https://www.wjgnet.com/1007-9327/full/v26/i35/5256.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i35.5256