Minireviews
Copyright ©The Author(s) 2020.
World J Gastroenterol. Sep 21, 2020; 26(35): 5256-5271
Published online Sep 21, 2020. doi: 10.3748/wjg.v26.i35.5256
Table 1 Computer-aided endoscopic diagnosis for dysplastic Barrett’s esophagus
Ref.YearStudy designLesionsDiagnostic methodAI technologyDataset capacityValidationOutcomesCompared to expertProcessing speed
Münzenmayer et al[53]2009RetrospectiveBEWLIColor-texture analysis in a CBIR framework390 images with 482 ROIsLOO (N-fold cross-validation)Accuracy: BE/CC/EP 70%/74%/95%NANA
van der Sommen et al[55]2016RetrospectiveHGD, early EACWLISVM100 imagesLOOPer-image SEN/SPE: 83%/83%; Per-patient SEN/SPE: 86%/87%InferiorNA
Horie et al[56]2019RetrospectiveEACWLI; NBICNN-SSD8 patientsCaffe DL frameworkAccuracy: 90%; Per-image SEN: WLI/NBI: 69%/71%; Per-case SEN: WLI/NBI: 88%/88%NA0.02 s/image
Ghatwary et al[57]2019RetrospectiveEACWLIVGG’16-based; R-CNN; Fast R-CNN; Faster R-CNN; SSD100 images (train 50, test 50)5-fold cross-validation and LOOF-measure: 0.94 (SSD); SEN/SPE: 96%/92% (SSD)NA0.1-0.2 s/image
Hashimoto et al[58]2020RetrospectiveHGD, early EACWLI and NBI with both standard and near focusCNN1835 imagesNAPer-image accuracy: 95.4%; Per-image SEN/SPE: 96.4%/94.2%; 98.6%/88.8% (WLI); 92.4%/99.2% (NBI)NAGPU gtx 1070: 0.014 s/frame; YOLO v2: 0.022 s/frame
Ebigbo et al[59]2019RetrospectiveEarly EACWLI; NBICNN-ResNet248 imagesLOOSEN/SPE of Augsburg database: 97%/88% (WLI); 94%/80% (NBI); SEN/SPE of MICCAI database: 92%/100%SuperiorNA
de Groof et al[60]2019RetrospectiveEarly dysplastic BEWLIResNet-UNet hybrid1704 images (train 1544, validation 160)4-fold cross-validation (external validation)Accuracy/SEN/SPE: 89%/90%/88% (dataset 4); 88%/93%/83% (dataset 5)NA (superior to non-expert)Classification: 0.111 s/image; Segmentation: 0.124 s/image
Swager et al[62]2017RetrospectiveHGD, early EACVLESVM, DA, Adaboost, RF, kNN, NB, LR, LogReg60 imagesLOOAUC: 0.95; SEN/SPE: 90%/93%SuperiorNA
van der Sommen et al[63]2018RetrospectiveHGD, early EACVLESVM, RF; AdaBoost; CNN, kNN; DA, LogReg60 framesLOOAUC: 0.90-0.93Superior24 ms/full dataset for clinically-inspired features
Struyvenberg et al[65]2020ProspectiveHGD, early EACVLEPCA-CAD3060 framesNAAUC of Multi-frame: 0.91; AUC of Single-frame: 0.83NA0.001 s/frame; 1.5s/full VLE scan
van der Putten et al[66]2020ProspectiveHGD, early EACVLEMulti-step PDE-CNN on an A-line basisIn-vivo: 140 images (train 111, test 29)4-fold cross-validationAUC: 0.93; F1 score: 87.4%NA50000 A-lines/s
Shin et al[67]2016RetrospectiveHGD, EACHRMTwo-class LDA-based automated sequential classification algorithm230 sites (train 77, validation 153)NAAccuracy: 84.9%; SEN/SPE: 88%/85%NA52 s/image
Qi et al[68]2006RetrospectiveDysplastic BEOCTPCA106 imagesLOOAccuracy: 83%; SEN/SPE: 82%/74%NANA
Table 2 Computer-aided endoscopic diagnosis for early esophageal squamous cell cancer
Ref.YearStudy designLesionsDiagnostic methodAI technologyDataset capacityValidationOutcomesCompared to expertProcessing speed
Liu et al[71]2016RetrospectiveEarly ESCCWLIJDPCA + CCV400 images10-fold cross-validationAccuracy: 90.75%; AUC: 0.9471; SEN/SPE: 93.33%/89.2%NANA
Horie et al[56]2019RetrospectiveESCCWLI; NBICNN-SSD41 pts (train 8428 images; test 1118 images without histology distinction)Caffe DL frameworkAccuracy: 99%; Per-image SEN: 72%/86% ( WLI/NBI, respectively); Per-case SEN: 79%/89% ( WLI/NBI, respectively)NA0.02 s/image
Cai et al[72]2019RetrospectiveEarly ESCCWLIDNN2615 images (train 2428, test 187)NAAccuracy: 91.4%; SEN/SPE: 97.8%/85.4%SuperiorNA
Zhao et al[74]2019RetrospectiveEarly ESCCME + NBIDouble labeling FNN1350 images with 1383 lesions3-fold cross-validationAccuracy/SEN/SPE at lesion level: 89.2%/87%/84.1%; Accuracy at pixel level: 93%ComparableNA
Ohmori et al[73]2020RetrospectiveSuperficial ESCCME + NBI/BLI; Non-ME + WLI/NBI/BLICNN23289 images (train 22562, test 727)Accuracy/SEN/SPE: 77%/100%/63% (Non-ME + NBI/BLI); 81%/90%76% ( Non-ME + WLI); 77%/98%/56% ( ME)Comparable0.028 s/image
Nakagawa et al[76]2019RetrospectiveESCC (EP-SM1/SM2+SM3)ME; Non-MECNN-SSD15252 images (train 14338, test 914)Caffe DL frameworkAccuracy/SEN/SPE: 91%/90.1%/95.8%Comparable0.033 s/image
Everson et al[77]2019RetrospectiveESCC IPCLs (type A/type B)ME + NBICNN7046 images5-fold cross-validation+eCAMAccuracy/SEN/SPE: 93.3%/89.3%/98%NA0.026-0.037 s/image
Guo et al[79]2020RetrospectiveEarly ESCCNBI (ME + non-ME)CNN-SegNet13144 images (train 6473, validation 6671), 80 videos (47 lesions, 33 normal esophagus)NAPer-image SEN/SPE: 98.04%/95.03%; Per-frame SEN/SPE: 91.5%/99.9%NA< 0.04 s/frame; Latency <0.1 s
Shin et al[82]2015RetrospectiveHGD, ESCCHRMTwo-class LDA375 sites of images (train 104, test 104, validation 167)NAAUC: 0.95; SEN/SPE: 84%/95%NA3.5 s/image
Quang et al[83]2016RetrospectiveESCCHRMA fully automated algorithm375 biopsied sites from Shin et al[82] (train 104, test 104, validation 167)NAAUC: 0.937; SEN/SPE: 95%/91%NAAverage 5 s for computing