Systematic Reviews
Copyright ©The Author(s) 2020.
World J Gastroenterol. May 21, 2020; 26(19): 2440-2457
Published online May 21, 2020. doi: 10.3748/wjg.v26.i19.2440
Table 1 Rome IV criteria for functional dyspepsia
Functional dyspepsia diagnostic criteria12
One or more of the following:
Bothersome postprandial fullness
Bothersome early satiation
Bothersome epigastric pain
Bothersome epigastric burning
AND
No evidence of structural disease (including at upper endoscopy) that is likely to explain the symptoms
Postprandial distress syndrome diagnostic criteria2
Must include one or both of the following at least 3 d per wk:
Bothersome postprandial fullness (i.e. severe enough to impact on usual activities)
Bothersome early satiation (i.e. severe enough to prevent finishing a regular-size meal)
No evidence of organic, systemic, or metabolic disease that is likely to explain the symptoms on routine investigations (including at upper endoscopy)
Supportive remarks:
Postprandial epigastric pain or burning, epigastric bloating, excessive belching, and nausea can also be present
Vomiting warrants consideration of another disorder
Heartburn is not a dyspeptic symptom but may often coexist
Symptoms that are relieved by evacuation of feces or gas should generally not be considered as part of dyspepsia
Other individual digestive symptoms or groups of symptoms, e.g., from gastroesophageal reflux disease and the irritable bowel syndrome may coexist with PDS
Epigastric pain syndrome diagnostic criteria2
Must include at least 1 of the following symptoms at least 1 d a week:
Bothersome epigastric pain (i.e. severe enough to impact on usual activities)
AND/OR
Bothersome epigastric burning (i.e. severe enough to impact on usual activities)
No evidence of organic, systemic, or metabolic disease that is likely to explain the symptoms on routine investigations (including at upper endoscopy)
Supportive remarks:
Pain may be induced by ingestion of a meal, relieved by ingestion of a meal, or may occur while fasting
Postprandial epigastric bloating, belching, and nausea can also be present
Persistent vomiting likely suggests another disorder
Heartburn is not a dyspeptic symptom but may often coexist
The pain does not fulfill biliary pain criteria
Symptoms that are relieved by evacuation of feces or gas generally should not be considered as part of dyspepsia
Other digestive symptoms (such as from gastroesophageal reflux disease and the irritable bowel syndrome) may coexist with EPS
Table 2 Characteristics of included studies of acupuncture vs sham, medication or no treatment in treating functional dyspepsia
Ref.Study designPartial inclusion (details)ParticipantsInterventions (acupoints)Main results (scales)Mechanism research
Liu et al[26], 2008Cross-overYes (chronic stage included)n: 27 (F 18); Age (mean): 40.3 ± 4.5; groups (n): Verum A (27), Sham A (27); Diagnosis: Rome IIEXP: TEA (PC6, ST36); CONT: Sham TEA (2 non-acupoints); duration and frequency: 30 min, twice per day, for 2 wkDecreased dyspepsia symptom scores by 55% in TEA group (dP < 0.01) (symptom scores without identified source)Gastric motility (myoelectrical activity); neuroactivity (autonomic function); GI hormones
Zeng et al[27], 2012ParallelNon: 64 (F 39); Age (mean, 95%CI): Verum A (23.97, 22.90-25.04), sham A (23.83, 22.67-25.00); groups (n): Verum A (34), sham A (30); diagnosis (subtype): Rome III (PDS)EXP: EA (ST34, ST36, ST40, ST42); CONT: Sham EA (4 non-acupoints); duration and frequency: 30 min, once per day, 20 sessions in 4 wkDecreased symptom score in EA greater than sham EA (gP < 0.05) (SID); clinically improved QOL in EA not in sham EA (NDI for QOL)Brain function
Ji et al[28], 2014Cross-overNon: 28; age (mean): 44.1 ± 9.4; Groups (n): Verum A (28), sham A (28); diagnosis (subtype): Rome III (PDS)EXP: TEA (PC6, ST36); CONT: Sham TEA (2 non-acupoints); duration and frequency: 2 h, thrice per day, for 2 wkImproved dyspeptic symptoms in TEA (cP < 0.05) not in sham TEA (GCSI); improved 4 domains of QOL in TEA (cP < 0.05) not in sham TEA (SF-36)Gastric motility (myoelectrical activity and gastric emptying); gastric accommodation; mental status
Jin et al[29], 2015ParallelYes (serum gastrin concentration and gastric slow wave excluded)n: 56 (F 35); age (mean): Verum A (49.29 ± 10.32), sham A (48.25 ± 11.40); groups (n): Verum A (28), sham A (28); diagnosis: Rome IIIEXP: MA (ST36, KI3 ± GB4, PC6, HT7); CONT: Sham MA (non-acupoints); duration and frequency: 20-60 min in EXP/20 min in CONT, once every other d, for 4 wkImproved dyspeptic symptoms in MA and better than sham MA (iP < 0.05) (NDI); improved QOL in MA and greater than sham MA (iP < 0.05) (SF-36)Mental status
Xu et al[30], 2015Cross-overYes (TEA and sham TEA sessions included)n: 8; age (mean): Not mentioned; groups (n): Verum A (8), sham A (8); diagnosis (subtype): Rome III (PDS)EXP: TEA (PC6, ST36); CONT: Sham TEA (2 non-acupoints); Duration and frequency: 30 min, for 1 sessionImproved dyspeptic symptoms in TEA and greater than sham TEA (cP < 0.05) (GCSI)Gastric motility (myoelectrical activity); gastric accommodation; neuroactivity (autonomic function)
Zhang et al[31], 2015ParallelYes (EA and control groups included)n: 319 (F 157); age (mean): EA (42.6 ± 11.9); CONT (41.8 ± 12.2); groups (n): EA (159), CONT (160); diagnosis: Rome IIIEXP: EA (ST36, CV12, PC6, LR3, SP4); CONT: Oral pantoprazole, amitriptylines and mosapride; duration and frequency: 15 min, twice per day, 5-d per wk in EXP; pantoprazole 20 mg with amitriptylines 5 mg, twice per day, and mosapride 5 mg, thrice per day in CONT; for 4 wkDecreased symptom scores in EA and greater than CONT (aP < 0.05) (symptom scores without identified source); increased QOL scores in EA and better than CONT (aP < 0.05) (SF-36)GI hormones; gastric motility (myoelectrical activity and gastric emptying)
Ko et al[32], 2016Cross-overYes (from baseline to the first 4-wk included)n: 76 (F 53); age (mean): MA (49.4 ± 12.1); CONT (49.1 ± 14.5); groups (n): MA (37), CONT (39); diagnosis: Rome IIIEXP: MA (LI4, ST36, LR3, SP4, CV12 ± GB21, SI14, PC6, EX-HN5, ST34); CONT: No treatment; duration and frequency: 15 min, twice weekly, for 4 wkSignificantly higher PR in MA than CONT (eP < 0.001); lower symptom scores in MA than CONT (aP < 0.05) (NDI); improved QOL in MA (eP < 0.001) not in CONT (FD-QOL scale)Mental status
Qiang et al[33], 2018ParallelNon: 64 (F 38); age (mean): EA (42.6 ± 11.9); CONT (41.8 ± 12.2); groups (n): EA (32), CONT (32); diagnosis: Rome IIIEXP: EA (ST36, SP6, SP4, PC6); CONT: Oral mosapride; duration and frequency: 30 min, once per day in EXP; 5 mg, thrice per day in CONT; for 30 dDecreased symptom score in EA and greater than CONT (aP < 0.05) (LDQ); increased QOL scores in EA and better than CONT (aP < 0.05) (FD-QOL scale)GI hormones
Table 3 Characteristics of included studies in mechanism research
Ref.Detecting itemsResearch techniquesMain results
Gastric motility
Liu et al[26], 2008Gastric myoelectrical activityEGGGastric slow wave not altered by TEA
Ji et al[28], 2014Gastric myoelectrical activity; Gastric emptyingEGG; RadiogramIncreased percentage of normal slow wave in both fasting and postprandial stages in TEA (dP < 0.01) not in sham TEA; accelerated gastric emptying in TEA (fP < 0.001) not in sham TEA
Xu et al[30], 2015Gastric myoelectrical activityEGGIncreased dominant power and percentage of normal slow wave in postprandial stage in TEA compared with sham TEA (cP < 0.05)
Zhang et al[31], 2015Gastric myoelectrical activity; gastric emptyingEGG; B-ultrasoundImproved basic frequency and slow wave frequency in EA compared with CONT (aP < 0.05); increased gastric half-emptying time and antrum movement index in EA compared with CONT (aP < 0.05)
Gastric accommodation
Ji et al[28], 2014Gastric accommodationNutrient drinking testImproved threshold of satiety volume (dP < 0.01) and maximum tolerance volume (fP < 0.001) in TEA not in sham TEA
Xu et al[30], 2015Gastric accommodationSatiety drinking testIncreased maximum tolerable volume in TEA compared with sham TEA (cP < 0.05)
GI hormones
Liu et al[26], 2008Plasma NPY and motilin levelsRadioimmunoassayIncreased plasma NPY but not motilin level in TEA (cP < 0.05) not in sham TEA
Zhang et al[31], 2015Plasma motilin levelRadioimmunoassayIncreased plasma motilin level in EA compared with CONT (aP < 0.05)
Qiang et al[33], 2018Serum ghrelin, CGRP and GLP-1 levelsELISAIncreased serum ghrelin and GLP-1 levels and decreased CGRP level in EA compared with CONT (aP < 0.05)
Mental status
Ji et al[28], 2014Anxiety and depressionSAS/SDSDecreased anxiety (dP < 0.01) and depression (cP < 0.05) scores in TEA not in sham TEA
Jin et al[29], 2015Anxiety and depressionSAS/SDSImproved anxiety (kP < 0.0001) and depression (kP < 0.001) status in MA compared with sham MA
Ko et al[32], 2016Anxiety and depressionSTAI/BDIDecreased anxiety and depression scores in MA (bP < 0.01) not in CONT
Central and autonomic functions
Liu et al[26], 2008Autonomic functionHRV derived from ECGIn fasting stage, higher HF activity (cP < 0.05) and lower LF/HF ratio (cP < 0.05) in TEA than that before the treatment but not in sham TEA
Zeng et al[27], 2012Cerebral glycometabolism changesPET-CT scansExtensive deactivation in cerebral activities in EA compared with the sham EA(fP < 0.001)
Xu et al[30], 2015Autonomic functionHRV derived from ECGEnhanced vagal activity in TEA compared with sham TEA (fP < 0.001)