Copyright
©The Author(s) 2018.
World J Gastroenterol. Dec 7, 2018; 24(45): 5057-5062
Published online Dec 7, 2018. doi: 10.3748/wjg.v24.i45.5057
Published online Dec 7, 2018. doi: 10.3748/wjg.v24.i45.5057
Dataset | Findings | Frames | Usage |
CVC-356[39] | Polyps | 1706 | ©, by request |
CVC-612[40] | Polyps | 1962 | ©, by request |
CVC-12k[41] | Polyps | 11954 | ©, by request |
Kvasir[38] | Polyps, esophagitis, ulcerative colitis, Z-line, pylorus, cecum, dyed polyp, dyed resection margins, stool | 8000 | Open academic |
Nerthus[41] | Stool - categorization of bowel cleanliness | 1350 | Open academic |
GIANA’17[42] | Angiectasia | 600 | ©, by request |
ASU-Mayo polyp database[43] | Polyps | 18781 | ©, by request |
CVC-ClinicDB | Polyps | 612 | ©, by request |
ETIS-Larib Polyp DB | Polyps | 1500 | ©, by request |
KID[44] | Angiectasia, bleeding, inflammations, polyps | 2500 + 47 videos | Open academic |
- Citation: de Lange T, Halvorsen P, Riegler M. Methodology to develop machine learning algorithms to improve performance in gastrointestinal endoscopy. World J Gastroenterol 2018; 24(45): 5057-5062
- URL: https://www.wjgnet.com/1007-9327/full/v24/i45/5057.htm
- DOI: https://dx.doi.org/10.3748/wjg.v24.i45.5057