Meta-Analysis
Copyright ©The Author(s) 2017.
World J Gastroenterol. Mar 28, 2017; 23(12): 2234-2245
Published online Mar 28, 2017. doi: 10.3748/wjg.v23.i12.2234
Table 1 Quality evaluation scale of the included literature
CriterionScore
Representativeness of cases
Selected from population or cancer registry3
Selected from hospital2
Selected from pathology archives, but without description1
Not described0
Source of controls
Population-based3
Blood donors or volunteers2
Hospital-based (cancer-free patients)1
Not described0
Case-control match
Matched by age and gender3
Not matched by age and gender0
Specimens used for determining genotypes
White blood cells or normal tissues3
Tumor tissues or exfoliated cells of tissue0
Hardy-Weinberg equilibrium (HWE)
Hardy-Weinberg equilibrium in control subjects3
Hardy-Weinberg disequilibrium in control subjects0
Total sample size
> 10003
> 500 and < 10002
> 200 and < 5001
< 2000
Table 2 Baseline information of the included studies
Ref.YearCountryType of cancerSource of controlsMatching criteriaGenotypingmethodCases
Controls
HWEQuality score
AAAGGGAAAGGG
Liu et al[27]2006ChinaGastric cancerPBNADHPLC88116443757713770.62614
Siezen et al[28]2006NetherlandColorectal cancerPBAge, sex, centerPCR-RFLP1275910243128200.55817
Siezen et al[28]2006NetherlandColorectal cancerPBAge, sex, centerPCR-RFLP28313219422226410.14918
Jiang et al[29]2007ChinaGastric cancerPBAge, sexPCR-RFLP741324879163620.18716
Tan et al[30]2007ChinaColorectal cancerPBAge, sexPCR-RFLP3205021783086923000.02014
Andersen et al[31]2009DenmarkColorectal cancerPBSexTaqman23011613482258250.17715
Hoff et al[32]2009NetherlandColorectal cancerHBAge, sexPCR-RFLP21310112232124130.47114
Thompson et al[33]2009United StatesColorectal cancerPBNATaqman2751389297168150.13114
Pereira et al[34]2010PortugalColorectal cancerHBNAPCR-RFLP704341777360.63410
Zhang et al[35]2011ChinaGastric cancerPBAge, sexPCR-RFLP107184322565131750.00414
Zhang et al[36]2011ChinaGastric cancerPBAge, sexPCR-RFLP113175692415272170.02714
Jing et al[37]2012ChinaGastric cancerPBAge, sexPCR-RFLP49871951133530.05915
Li et al[38]2012ChinaGastric cancerPBNAPCR-RFLP981455373166800.46114
Shin et al[39]2012KoreaGastric cancerPBNAPCR-RFLP3254143741220.10712
Zhang et al[40]2012ChinaColorectal cancerPBNAPCR-RFLP772165062184940.0912
Andersen et al[41]2013DenmarkColorectal cancerPBNAKASP™ genotyping587313471126560610.39715
Li et al[42]2013ChinaColorectal cancerHBNAPCR-RFLP116248871793361140.0459
Makar et al[43]2013United StatesColorectal cancerPBAge, location, sexTaqman910455571198509670.16217
Makar et al[43]2013United StatesColorectal cancerPBAge, location, sexTaqman61928733958496630.90517
Makar et al[43]2013United StatesColorectal cancerPBAge, location, sexTaqman37618520509237290.82917
Makar et al[43]2013United StatesColorectal cancerPBAge, location, sexTaqman33813821558249200.20617
Ruan et al[44]2013ChinaColorectal cancerPBNAPCR-RFLP3467293953280.23212
Pereira et al[45]2014PortugalColorectal cancerHBNATaqman1438515323133160.61411
Vogel et al[46]2014NorselandColorectal cancerPBNAKBioscience110242209114110.33712
Gao et al[47]2015ChinaGastric cancerPBAge, sexTaqman861375574137570.66416
Lu et al[17]2015ChinaGastric cancerHBNAPCR-RFLP6939252735720.0007
Tao et al[48]2015ChinaGastric cancerPBAge, sexPCR-RFLP3971263165250.39715
Zamudio et al[49]2016PeruGastric cancerHBNATaqman8510332106139430.8159
Table 3 Stratified analyses of the COX-2 -1195G>A polymorphism with risk of gastrointestinal cancers
nAllele modelDominant modelRecessive modelHomozygous comparisonHeterozygous comparison
(A vs G)
(AA/AG vs GG)
(AA vs GG/AG)
(AA vs GG)
(AG vs GG)
OR (95%CI)PhFPRPOR (95%CI)PhFPRPOR (95%CI)PhFPRPOR (95%CI)PhFPRPOR (95% CI)PhFPRP
Total281.15 (1.04, 1.26)10.0000.731.24 (1.06, 1.45)100.8761.16 (1.04, 1.30)10.0000.9141.31 (1.08, 1.59)10.0000.8731.18 (1.04, 1.34)10.0070.915
Type of cancer
Gastric cancer111.35 (1.14, 1.59)10.0000.2661.54 (1.20, 1.96)10.0000.5191.43 (1.18, 1.72)10.0020.1741.80 (1.36, 2.39)10.0000.3181.35 (1.11, 1.65)10.0380.799
Colorectal cancer171.04 (0.94, 1.15)0.0000.9981.05 (0.87, 1.28)0.0020.9981.04 (0.93, 1.18)0.0000.9981.05 (0.83, 1.32)0.0000.9991.06 (0.90, 1.25)0.0600.998
Ethnicity
Asian141.30 (1.14, 1.48)10.0000.0691.50 (1.23, 1.84)10.0000.1671.35 (1.14, 1.60)10.0000.3761.71 (1.33, 2.18)10.0000.0931.37 (1.15, 1.62)10.0070.213
Caucasian121.00 (0.89, 1.11)0.0000.9990.91 (0.76, 1.08)0.3600.9961.01 (0.89, 1.15)0.0000.9990.91 (0.74, 1.11)0.1860.9970.92 (0.77, 1.09)0.7490.997
Mixed21.10 (0.93, 1.31)0.6120.9971.13 (0.74, 1.73)0.4660.9981.13 (0.91, 1.40)0.7810.9961.20 (0.76, 1.88)0.4820.9981.09 (0.69, 1.70)0.5340.999
Source of controls
PB221.16 (1.06, 1.25)10.0000.091.26 (1.09, 1.45)10.0030.5591.19 (1.07, 1.33)10.0000.6851.35 (1.13, 1.61)10.0000.4881.19 (1.04, 1.36)10.0310.914
HB61.12 (0.75, 1.67)0.0000.9981.14 (0.60, 2.15)0.0000.9991.08 (0.72, 1.63)0.0000.9991.15 (0.54, 2.45)0.0000.9991.12 (0.73, 1.71)0.0210.998
Study quality
High (> 9)231.15 (1.06, 1.25)10.0000.5041.25 (1.09, 1.44)10.0040.6671.19 (1.07, 1.32)10.0000.5021.34 (1.12, 1.59)10.0000.4691.19 (1.04, 1.35)10.0380.873
Low ( ≤ 9)51.13 (0.68, 1.86)0.0000.9991.17 (0.56, 2.45)0.0000.9991.09 (0.65, 1.81)0.0000.9991.17 (0.48, 2.88)0.0000.9991.16 (0.71, 1.90)0.0110.998
Genotyping method
PCR-RFLP161.23 (1.08, 1.40)10.0000.6331.46 (1.19, 1.78)10.0000.2311.24 (1.06, 1.46)10.0000.9091.58 (1.23, 2.02)10.0000.4361.35 (1.14, 1.60)10.0140.376
Taqman90.99 (0.90, 1.08)0.0490.9990.97 (0.82, 1.15)0.4280.9990.99 (0.89, 1.11)0.0630.9990.97 (0.79, 1.19)0.2680.9990.98 (0.82, 1.17)0.6690.999
Other technologies31.36 (0.86, 2.17)0.0000.9971.16 (0.58, 2.31)0.0080.9991.52 (0.84, 2.75)0.0000.9971.40 (0.55, 3.53)0.0000.9990.99 (0.62, 1.57)0.1180.999