Frontela C, Scarino ML, Ferruzza S, Ros G, Martínez C. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World J Gastroenterol 2009; 15(16): 1977-1984 [PMID: 19399930 DOI: 10.3748/wjg.15.1977]
Corresponding Author of This Article
Carmen Frontela, Department of Food Science and Nutrition, Faculty of Veterinary Science and Food Science and Technology, Murcia University, Murcia 30071, Spain. carmenfr@um.es
Article-Type of This Article
Brief Articles
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Apr 28, 2009; 15(16): 1977-1984 Published online Apr 28, 2009. doi: 10.3748/wjg.15.1977
Table 1 Mineral content (per 100 g), phytate (IP5 + IP6) content (per 100 g) and molar ratios of phytate to iron, calcium and zinc, and phytate × calcium/zinc of commercial infant cereals
Infant cereal
Fe (mg)
Ca (mg)
Zn (mg)
Phytate (mg)
Phytate/Fe
Phytate/Ca
Phytate/Zn
Phytate × Ca/Zn
Eight cereals-honey
8.3 ± 0.4
137.3 ± 5.6
0.6 ± 0.3
319.6 ± 3.1
3.8
0.16
53.1
182.3
Rice cream
8.8 ± 0.1
283.1 ± 27.7
1.2 ± 0.2
167.1 ± 27.5
1.6
0.11
14.4
101.9
Multicereals
8.7 ± 0.2
174.4 ± 21.0
1.5 ± 0.4
143.5 ± 10.6
1.4
0.07
9.8
42.7
Gluten-free cereals
7.5 ± 1.0
154.4 ± 38.9
1.0 ± 0.3
299.8 ± 16.9
3.5
0.18
31.8
122.7
Table 2 Iron retention, transport and uptake from infant cereals by Caco-2 cells
Table 3 Calcium retention, transport and uptake from infant cereals by Caco-2 cells
Infant cereal
Calcium added (&mgr;g)
Solubility (%)
Retention (&mgr;g)
Retention (%)
Transport (&mgr;g)
Transport efficiency (%)
Uptake (&mgr;g)
Uptake efficiency (%)
- phytase
A
206
38.9 ± 11.1a,1
5.72 ± 0.3
2.78 ± 1a,1
25.99 ± 8
4.9 ± 1.2a
31.71 ± 4.9
5.99 ± 2a
B
261.6
15.2 ± 1.8b1
7.33 ± 0.2
2.8 ± 0.6ª
16.1 ± 3.9
0.94 ± 0.1b,1
23.43 ± 3.6
0.66 ± 0.2b
C
424.7
2.8 ± 1c
2.18 ± 0.3
0.51 ± 0.2b
33.1 ± 6.1
0.22 ± 0.02d
35.28 ± 7.2
0.23 ± 0.2c
D
231.6
4.53 ± 1.3c
4.45 ± 0.2
1.92 ± 0.3ª
15.64 ± 4.4
0.31 ± 0.08c
20.09 ± 1.8
0.39 ± 0.1c
+ phytase
A
206
22.5 ± 2.3
0.7 ± 0.2
0.34 ± 0.09
29.59 ± 7.2
3.24 ± 1
30.29 ± 6.8
3.31 ± 0.9
B
261.6
8.03 ± 2.7
7.33 ± 1.4
2.8 ± 0.6
23.08 ± 2.1
0.71 ± 0.04
30.41 ± 2.2
0.93 ± 0.2
C
424.7
3.72 ± 1.9
5.5 ± 0.1
1.3 ± 0.7
28.1 ± 4.4
0.25 ± 0.07
33.6 ± 7.1
0.43 ± 0.09
D
231.6
8.31 ± 1.21
2.98 ± 0.7
1.29 ± 0.9
66.16 ± 10.8
2.38 ± 0.11
69.14 ± 8.2
2.48 ± 0.31
Table 4 Zinc retention, transport and uptake from infant cereals by Caco-2 cells
Infant cereal
Zinc added (&mgr;g)
Solubility (%)
Retention (&mgr;g)
Retention (%)
Transport (&mgr;g)
Transport efficiency (%)
Uptake (&mgr;g)
Uptake efficiency (%)
- phytase
A
2.12
36.4 ± 7.1a
0.18 ± 0.08
8.5 ± 2b
1.88 ± 0.6
32.3 ± 3a,1
2.06 ± 0.8
35.4 ± 4.1a
B
2.22
18.9 ± 3.8b
0.09 ± 0.01
4.05 ± 2c
0.5 ± 0.08
4.25 ± 1.1c
0.59 ± 0.6
5 ± 0.9d
C
2.63
17 ± 1.9b
0.54 ± 0.1
20.53 ± 3.8a
0.62 ± 0.1
4 ± 0.8c
1.16 ± 0.4
7.5 ± 0.2c
D
1.63
37.8 ± 6.2a,1
0.09 ± 0.01
5.5 ± 1.6c
0.71 ± 0.2
16.5 ± 0.3b
0.8 ± 0.4
18.6 ± 1.2b
+ phytase
A
2.12
46.9 ± 6.6
0.84 ± 0.2
22.2 ± 2.71
1.04 ± 0.5
23 ± 3.6
1.88 ± 0.9
41.6 ± 6.5
B
2.22
18.92 ± 2.7
0.42 ± 0.1
18.92 ± 2.81
0.44 ± 0.2
3.74 ± 0.3
0.86 ± 0.2
7.3 ± 0.21
C
2.63
27.3 ± 61
0.38 ± 0.1
14.45 ± 3.4
1.59 ± 0.6
16.5 ± 2.61
1.97 ± 0.8
20.4 ± 2.11
D
1.63
21 ± 4.3
0.18 ± 0.03
61.3 ± 9.91
1.43 ± 0.4
18.4 ± 4.1
1.61 ± 0.2
20.7 ± 0.61
Citation: Frontela C, Scarino ML, Ferruzza S, Ros G, Martínez C. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World J Gastroenterol 2009; 15(16): 1977-1984