Yu JK, Chen YD, Zheng S. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World J Gastroenterol 2004; 10(21): 3127-3131 [PMID: 15457557 DOI: 10.3748/wjg.v10.i21.3127]
Corresponding Author of This Article
Shu Zheng, Cancer Institute, Zhejiang University, Hangzhou 310009, Zhejiang Province, China. zhengshu@mail.hz.zj.cn
Article-Type of This Article
Colorectal Cancer
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Nov 1, 2004; 10(21): 3127-3131 Published online Nov 1, 2004. doi: 10.3748/wjg.v10.i21.3127
Table 1 Descriptive data for the 4 potential biomarkers in the pattern discriminating CRC patients from HP (mean ± SD)
M/Z (Da)
AUC
HP
CRC patients
5 911
0.908
0.824 ± 0.504
2.763 ± 1.720
8 922
0.872
1.254 ± 0.724
2.767 ± 1.445
8 944
0.828
0.999 ± 0.626
2.651 ± 1.851
8 817
0.811
0.878 ± 0.607
1.744 ± 0.940
Table 2 Predicted results of classifier for discriminating CRC patients from HP
Test set (49 × 10)
Training set (98 × 10)
HP
CRC
HP
CRC
HP (92 × 10)
287
25
599
9
CRC (55 × 10)
19
159
29
343
Specificity (%)
92 (287/(287 + 25))
99 (599/(599 + 9))
Sensitivity (%)
89 (159/(159 + 19))
92 (343/(343 + 29))
Positive value (%)
86 (159/(159 + 25))
97 (343/(343 + 9))
Table 3 Descriptive statistics for the 7 potential biomarkers in the pattern discriminating CRC patients from CRA patients (mean ± SD)
M/Z (Da)
P value (× 10-5)
CRA patients
CRC patients
17 247
0.71
0.211 ± 0.130
0.113 ± 0.100
18 420
1.27
0.039 ± 0.036
0.076 ± 0.040
5 911
1.71
1.459 ± 0.977
2.763 ± 1.720
9 294
2.76
0.617 ± 0.385
1.105 ± 0.563
4 654
6.74
0.503 ± 0.493
1.164 ± 0.943
21 694
7.48
0.489 ± 0.145
0.698 ± 0.267
21 742
12.10
0.536 ± 0.161
0.744 ± 0.282
Table 4 Predicted results of classifier for discriminating CRC patients from CRA
Test set (30 × 3)
Training set (60 × 3)
CRA
CRC
CRA
CRC
CRA (35 × 3)
29
6
56
14
CRC (55 × 3)
6
49
16
94
Specificity (%)
83 (29/(29 + 6))
80 (56/(56 + 14))
Sensitivity (%)
89 (49/(49 + 6))
85 (94/(94 + 16))
Positive value (%)
89 (49/(49 + 6))
87 (94/(94 + 14))
Citation: Yu JK, Chen YD, Zheng S. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World J Gastroenterol 2004; 10(21): 3127-3131