Letter to the Editor Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jul 28, 2024; 30(28): 3447-3451
Published online Jul 28, 2024. doi: 10.3748/wjg.v30.i28.3447
Exploring non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease
Biao Qu, Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
Zheng Li, Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
ORCID number: Zheng Li (0000-0002-2882-6600).
Author contributions: Li Z designed the article; Qu B and Li Z drafted and revised the article.
Supported by The National Natural Science Foundation of China, No. 82104525.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Zheng Li, PhD, Lecturer, Pharmacist, Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, No. 101 Shanghai Road, Xuzhou 221000, Jiangsu Province, China. lizhengcpu@163.com
Received: April 24, 2024
Revised: July 1, 2024
Accepted: July 8, 2024
Published online: July 28, 2024
Processing time: 90 Days and 9 Hours

Abstract

The population with metabolic dysfunction-associated fatty liver disease (MAFLD) is increasingly common worldwide. Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care. Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD, but it has associated risks and limitations. This has spurred the exploration of non-invasive diagnostics for MAFLD, especially for steatohepatitis and fibrosis. These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements, serum tests, imaging or stool metagenome profiling. However, they still need rigorous and widespread clinical validation for the diagnostic performance.

Key Words: Metabolic dysfunction-associated fatty liver disease; Non-invasive diag-nostics; Circulating biomarkers; Imaging biomarkers; Stool microbial biomarkers

Core Tip: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a bur-densome public health problem. The diagnostic assessment of MAFLD is an important step for timely management. Extensive effort and encouraging progress have been made to establish non-invasive tests to diagnose steatohepatitis and fibrosis.



TO THE EDITOR

We read with great interest the article by Trinks et al[1] on the omics-based biomarkers as diagnostic tools for metabolic dysfunction-associated fatty liver disease (MAFLD). Due to its global epidemic, MAFLD becomes a burdensome public health problem[2]. The development of steatohepatitis, especially liver fibrosis, is most strongly associated with poorer long-term outcomes and increased incidence of liver-related mortality[3-5]. It is in this context that identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care. Currently, liver biopsy is still the reference standard for diagnosis and staging of MAFLD. However, it is an invasive approach with poor compliance and a small but appreciable risk of complications[6]. Besides, it is also expensive, prone to sampling bias, and has high intra- and interobserver variability[6-8]. These inherent limitations have driven the need for non-invasive approaches to replace liver biopsy in severity assessment and risk stratification of patients with MASLD. In this regard, extensive effort and encouraging progress have been made in this filed. There is now increased availability of non-invasive tests, and some become increasingly incorporated into routine clinical practice[9-12]. These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements[9], serum tests[10], imaging[11], or stool metagenome profiling[12].

Anthropometric measurements

Anthropometric indicators have been used for prediction of MASLD, such as body mass index, abdomen, waist, and chest circumferences, and trunk fat. These indicators are easy to be determined with simple and affordable equipment, thus making them ideal for use in remote areas or in primary clinical practice[9]. Recently, artificial intelligence, such as machine learning and deep learning, has been applied to assist anthropometric diagnostics of MAFLD[13]. However, these indicators are still limited by suboptimal accuracy, especially in detecting fibrosis[13].

Serum biomarkers and related panels

Increased serum triglycerides, alanine aminotransferase (ALT), aspartate aminotransferase (AST), or ALT/AST ratio are not accurately predictive of MAFLD severity[14,15]. Related panels derived from these biochemical indicators are also subject to low accuracy and specificity, such as fatty liver index for hepatic steatosis, and Bayesian Argumentation via Delphi score (body mass index, AST/ALT ratio, and presence of diabetes) for hepatic fibrosis[16,17]. Despite these limitations, they are still commonly used for screening owing to general applicability. Recently, some novel serum biomarkers have been proposed as promising alternatives for diagnosis of non-alcoholic steatohepatitis (NASH) and fibrosis. Circulating concentrations of cytokeratin-18 (CK-18) fragments were proposed to be the most reliable predictor of steatohepatitis[18], and its combination with other indicators in a biomarker panel could further increase the diagnostic performance[19]. However, it has relatively low power to determine the severity of NASH fibrosis[20]. Serum Pro-C3 and metalloprotease-1 inhibitor, are emerging biomarkers for fibrosis with excellent diagnostic performance[21,22]. Subsequently, several biomarker panels are proposed, such as MACK-3 (HOMA-IR, AST, and CK-18 M30)[23] and ADAPT (age, platelet count, diabetes, and PRO-C3)[24], and their diagnostic performance is evaluated in comparative diagnostic accuracy studies[10,25]. In addition, the application of innovative omics technologies has screened out some novel serum biomarkers[26,27], but their accuracy, reproducibility, and reliability have not yet gone through analytical/biological and clinical cohort validation.

Imaging biomarkers

Conventional ultrasonography is the first-line imaging test for detecting hepatic steatosis[28], and newer quantitative ultrasound-based techniques demonstrate superior performance[29]. As a contrast, magnetic resonance imaging-proton density fat fraction is considered more accurate at quantifying liver fat than ultrasonography[30], and even liver biopsy[31]. Current imaging-based biomarkers have poor diagnostic performance for steatohepatitis, especially distinguishing steatohepatitis from fibrosis[32]. Ultrasound-based measurements of liver stiffness by vibration-controlled transient elastography (VCTE), commercially marketed as FibroScan, have demonstrated very good diagnostic accuracy for advanced fibrosis[33]. Likewise, magnetic resonance elastography (MRE) shows low failure rate in diagnosis of advanced fibrosis[34]. More importantly, MRE outperforms VCTE in diagnostic accuracy for earlier stages of fibrosis[30].

Gut-microbiome-derived biomarkers

Dysregulation of the gut microbiome is implicated in the progression of MAFLD as evidenced by several studies[35,36]. This association could be translated into diagnostic capacity for MAFLD. A latest study characterized gut microbiome compositions using metagenomic sequencing of stool samples from patients with biopsy-proven MAFLD, and established a gut microbiome-based metagenomic signature to differentiate between mild or moderate and advanced fibrosis[12]. These microbial biomarkers achieved robust diagnostic accuracy in small samples, and further studies are needed to validate their clinical utility.

In summary, progress has been made in the identification of novel non-invasive diagnostics for MAFLD, including biomarkers and algorithms integrating biomarkers. Although none of biomarkers achieved the sufficient performance to replace liver biopsy in diagnosis of steatohepatitis and fibrosis, some diagnostics are promising tools for identifying advanced fibrosis.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Gastroenterology and hepatology

Country of origin: China

Peer-review report’s classification

Scientific Quality: Grade B

Novelty: Grade B

Creativity or Innovation: Grade B

Scientific Significance: Grade B

P-Reviewer: Kotlyarov S S-Editor: Luo ML L-Editor: Wang TQ P-Editor: Zhang L

References
1.  Trinks J, Mascardi MF, Gadano A, Marciano S. Omics-based biomarkers as useful tools in metabolic dysfunction-associated steatotic liver disease clinical practice: How far are we? World J Gastroenterol. 2024;30:1982-1989.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (3)]
2.  Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123-133.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1028]  [Cited by in F6Publishing: 1449]  [Article Influence: 241.5]  [Reference Citation Analysis (0)]
3.  Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, Haflidadottir S, Bendtsen F. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149:389-397.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2137]  [Cited by in F6Publishing: 2027]  [Article Influence: 225.2]  [Reference Citation Analysis (0)]
4.  Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, Stal P, Wong VW, Kechagias S, Hultcrantz R, Loomba R. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 2017;65:1557-1565.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 984]  [Cited by in F6Publishing: 1261]  [Article Influence: 180.1]  [Reference Citation Analysis (0)]
5.  Hagström H, Nasr P, Ekstedt M, Hammar U, Stål P, Hultcrantz R, Kechagias S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol. 2017;67:1265-1273.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 540]  [Cited by in F6Publishing: 693]  [Article Influence: 99.0]  [Reference Citation Analysis (0)]
6.  Davison BA, Harrison SA, Cotter G, Alkhouri N, Sanyal A, Edwards C, Colca JR, Iwashita J, Koch GG, Dittrich HC. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J Hepatol. 2020;73:1322-1332.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 140]  [Cited by in F6Publishing: 246]  [Article Influence: 61.5]  [Reference Citation Analysis (0)]
7.  Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, Grimaldi A, Capron F, Poynard T; LIDO Study Group. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128:1898-1906.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1376]  [Cited by in F6Publishing: 1463]  [Article Influence: 77.0]  [Reference Citation Analysis (0)]
8.  Merriman RB, Ferrell LD, Patti MG, Weston SR, Pabst MS, Aouizerat BE, Bass NM. Correlation of paired liver biopsies in morbidly obese patients with suspected nonalcoholic fatty liver disease. Hepatology. 2006;44:874-880.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 238]  [Cited by in F6Publishing: 231]  [Article Influence: 12.8]  [Reference Citation Analysis (0)]
9.  Almeida NS, Rocha R, Cotrim HP, Daltro C. Anthropometric indicators of visceral adiposity as predictors of non-alcoholic fatty liver disease: A review. World J Hepatol. 2018;10:695-701.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 14]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
10.  Sanyal AJ, Shankar SS, Yates KP, Bolognese J, Daly E, Dehn CA, Neuschwander-Tetri B, Kowdley K, Vuppalanchi R, Behling C, Tonascia J, Samir A, Sirlin C, Sherlock SP, Fowler K, Heymann H, Kamphaus TN, Loomba R, Calle RA. Diagnostic performance of circulating biomarkers for non-alcoholic steatohepatitis. Nat Med. 2023;29:2656-2664.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 31]  [Cited by in F6Publishing: 19]  [Article Influence: 19.0]  [Reference Citation Analysis (0)]
11.  Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol Metab. 2021;50:101167.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 88]  [Article Influence: 29.3]  [Reference Citation Analysis (0)]
12.  Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, Highlander SK, Jones MB, Sirlin CB, Schnabl B, Brinkac L, Schork N, Chen CH, Brenner DA, Biggs W, Yooseph S, Venter JC, Nelson KE. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2019;30:607.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 86]  [Article Influence: 17.2]  [Reference Citation Analysis (0)]
13.  Razmpour F, Daryabeygi-Khotbehsara R, Soleimani D, Asgharnezhad H, Shamsi A, Bajestani GS, Nematy M, Pour MR, Maddison R, Islam SMS. Application of machine learning in predicting non-alcoholic fatty liver disease using anthropometric and body composition indices. Sci Rep. 2023;13:4942.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
14.  Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Goodman ZD, Chalasani NP, Kowdley KV, George J, Lindor K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology. 2018;68:349-360.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 230]  [Cited by in F6Publishing: 269]  [Article Influence: 44.8]  [Reference Citation Analysis (0)]
15.  Verma S, Jensen D, Hart J, Mohanty SR. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver Int. 2013;33:1398-1405.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 201]  [Cited by in F6Publishing: 216]  [Article Influence: 19.6]  [Reference Citation Analysis (1)]
16.  Fedchuk L, Nascimbeni F, Pais R, Charlotte F, Housset C, Ratziu V; LIDO Study Group. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2014;40:1209-1222.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 241]  [Cited by in F6Publishing: 308]  [Article Influence: 30.8]  [Reference Citation Analysis (0)]
17.  McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut. 2010;59:1265-1269.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 572]  [Cited by in F6Publishing: 622]  [Article Influence: 44.4]  [Reference Citation Analysis (0)]
18.  Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, Chan HL, Wong VW. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther. 2014;39:254-269.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 270]  [Cited by in F6Publishing: 269]  [Article Influence: 26.9]  [Reference Citation Analysis (0)]
19.  Shen J, Chan HL, Wong GL, Choi PC, Chan AW, Chan HY, Chim AM, Yeung DK, Chan FK, Woo J, Yu J, Chu WC, Wong VW. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J Hepatol. 2012;56:1363-1370.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 164]  [Cited by in F6Publishing: 165]  [Article Influence: 13.8]  [Reference Citation Analysis (0)]
20.  Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, Ortiz-Lopez C, Hecht J, Feldstein AE, Webb A, Louden C, Goros M, Tio F. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60:167-174.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 178]  [Cited by in F6Publishing: 170]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
21.  Leeming DJ, Grove JI, Kaye P, Hoad C, Francis S, Nielsen MJ, Karsdal MA, Guha IN, Aithal GP. Estimation of serum “true collagen type III formation” (Pro-C3) levels as a marker of non-alcoholic steatohepatitis in a prospective cohort. J Hepatol. 2017;66:S154.  [PubMed]  [DOI]  [Cited in This Article: ]
22.  Abdelaziz R, Elbasel M, Esmat S, Essam K, Abdelaaty S. Tissue Inhibitors of Metalloproteinase-1 and 2 and Obesity Related Non-Alcoholic Fatty Liver Disease: Is There a Relationship. Digestion. 2015;92:130-137.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 28]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
23.  Boursier J, Anty R, Vonghia L, Moal V, Vanwolleghem T, Canivet CM, Michalak S, Bonnafous S, Michielsen P, Oberti F, Iannelli A, Van Gaal L, Patouraux S, Blanchet O, Verrijken A, Gual P, Rousselet MC, Driessen A, Hunault G, Bertrais S, Tran A, Calès P, Francque S. Screening for therapeutic trials and treatment indication in clinical practice: MACK-3, a new blood test for the diagnosis of fibrotic NASH. Aliment Pharmacol Ther. 2018;47:1387-1396.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39]  [Cited by in F6Publishing: 46]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
24.  Daniels SJ, Leeming DJ, Eslam M, Hashem AM, Nielsen MJ, Krag A, Karsdal MA, Grove JI, Neil Guha I, Kawaguchi T, Torimura T, McLeod D, Akiba J, Kaye P, de Boer B, Aithal GP, Adams LA, George J. ADAPT: An Algorithm Incorporating PRO-C3 Accurately Identifies Patients With NAFLD and Advanced Fibrosis. Hepatology. 2019;69:1075-1086.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 127]  [Cited by in F6Publishing: 165]  [Article Influence: 33.0]  [Reference Citation Analysis (0)]
25.  Vali Y, Lee J, Boursier J, Petta S, Wonders K, Tiniakos D, Bedossa P, Geier A, Francque S, Allison M, Papatheodoridis G, Cortez-Pinto H, Pais R, Dufour JF, Leeming DJ, Harrison SA, Chen Y, Cobbold JF, Pavlides M, Holleboom AG, Yki-Jarvinen H, Crespo J, Karsdal M, Ostroff R, Zafarmand MH, Torstenson R, Duffin K, Yunis C, Brass C, Ekstedt M, Aithal GP, Schattenberg JM, Bugianesi E, Romero-Gomez M, Ratziu V, Anstee QM, Bossuyt PM; Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS) consortium investigators. Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project): a comparative diagnostic accuracy study. Lancet Gastroenterol Hepatol. 2023;8:714-725.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 54]  [Cited by in F6Publishing: 31]  [Article Influence: 31.0]  [Reference Citation Analysis (0)]
26.  Mayo R, Crespo J, Martínez-Arranz I, Banales JM, Arias M, Mincholé I, Aller de la Fuente R, Jimenez-Agüero R, Alonso C, de Luis DA, Vitek L, Stritesky J, Caballería J, Romero-Gómez M, Martín-Duce A, Mugüerza Huguet JM, Busteros-Moraza JI, Idowu MO, Castro A, Martínez-Chantar ML, Ortiz P, Bruha R, Lu SC, Bedossa P, Noureddin M, Sanyal AJ, Mato JM. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatol Commun. 2018;2:807-820.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 72]  [Cited by in F6Publishing: 101]  [Article Influence: 16.8]  [Reference Citation Analysis (0)]
27.  Sanyal AJ, Williams SA, Lavine JE, Neuschwander-Tetri BA, Alexander L, Ostroff R, Biegel H, Kowdley KV, Chalasani N, Dasarathy S, Diehl AM, Loomba R, Hameed B, Behling C, Kleiner DE, Karpen SJ, Williams J, Jia Y, Yates KP, Tonascia J. Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2023;78:693-703.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 18]  [Article Influence: 18.0]  [Reference Citation Analysis (0)]
28.  Strauss S, Gavish E, Gottlieb P, Katsnelson L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am J Roentgenol. 2007;189:W320-W323.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 283]  [Cited by in F6Publishing: 301]  [Article Influence: 17.7]  [Reference Citation Analysis (1)]
29.  Han A, Zhang YN, Boehringer AS, Montes V, Andre MP, Erdman JW Jr, Loomba R, Valasek MA, Sirlin CB, O'Brien WD Jr. Assessment of Hepatic Steatosis in Nonalcoholic Fatty Liver Disease by Using Quantitative US. Radiology. 2020;295:106-113.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 59]  [Article Influence: 14.8]  [Reference Citation Analysis (0)]
30.  Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, Hooker J, Sy E, Savides MT, Alquiraish MH, Valasek MA, Rizo E, Richards L, Brenner D, Sirlin CB, Loomba R. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology. 2017;152:598-607.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 479]  [Cited by in F6Publishing: 474]  [Article Influence: 67.7]  [Reference Citation Analysis (0)]
31.  Noureddin M, Lam J, Peterson MR, Middleton M, Hamilton G, Le TA, Bettencourt R, Changchien C, Brenner DA, Sirlin C, Loomba R. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology. 2013;58:1930-1940.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 342]  [Cited by in F6Publishing: 412]  [Article Influence: 37.5]  [Reference Citation Analysis (0)]
32.  Jayaswal ANA, Levick C, Selvaraj EA, Dennis A, Booth JC, Collier J, Cobbold J, Tunnicliffe EM, Kelly M, Barnes E, Neubauer S, Banerjee R, Pavlides M. Prognostic value of multiparametric magnetic resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int. 2020;40:3071-3082.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 38]  [Article Influence: 9.5]  [Reference Citation Analysis (0)]
33.  Siddiqui MS, Vuppalanchi R, Van Natta ML, Hallinan E, Kowdley KV, Abdelmalek M, Neuschwander-Tetri BA, Loomba R, Dasarathy S, Brandman D, Doo E, Tonascia JA, Kleiner DE, Chalasani N, Sanyal AJ; NASH Clinical Research Network. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2019;17:156-163.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 335]  [Cited by in F6Publishing: 339]  [Article Influence: 67.8]  [Reference Citation Analysis (0)]
34.  Wagner M, Corcuera-Solano I, Lo G, Esses S, Liao J, Besa C, Chen N, Abraham G, Fung M, Babb JS, Ehman RL, Taouli B. Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study. Radiology. 2017;284:401-412.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 101]  [Cited by in F6Publishing: 116]  [Article Influence: 16.6]  [Reference Citation Analysis (0)]
35.  Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, Chilloux J, Myridakis A, Martinez-Gili L, Moreno-Navarrete JM, Benhamed F, Azalbert V, Blasco-Baque V, Puig J, Xifra G, Ricart W, Tomlinson C, Woodbridge M, Cardellini M, Davato F, Cardolini I, Porzio O, Gentileschi P, Lopez F, Foufelle F, Butcher SA, Holmes E, Nicholson JK, Postic C, Burcelin R, Dumas ME. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24:1070-1080.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 303]  [Cited by in F6Publishing: 441]  [Article Influence: 73.5]  [Reference Citation Analysis (0)]
36.  Sharpton SR, Ajmera V, Loomba R. Emerging Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease: From Composition to Function. Clin Gastroenterol Hepatol. 2019;17:296-306.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 116]  [Cited by in F6Publishing: 102]  [Article Influence: 20.4]  [Reference Citation Analysis (0)]