Published online Jan 21, 2008. doi: 10.3748/wjg.14.348
Revised: July 4, 2007
Published online: January 21, 2008
Inflammatory bowel disease is characterized by a chronic inflammation of the intestinal mucosa. The mucosal epithelium of the alimentary tract constitutes a key element of the mucosal barrier to a broad spectrum of deleterious substances present within the intestinal lumen including bacterial microorganisms, various dietary factors, gastrointestinal secretory products and drugs. In addition, this mucosal barrier can be disturbed in the course of various intestinal disorders including inflammatory bowel diseases. Fortunately, the integrity of the gastrointestinal surface epithelium is rapidly reestablished even after extensive destruction. Rapid resealing of the epithelial barrier following injuries is accomplished by a process termed epithelial restitution, followed by more delayed mechanisms of epithelial wound healing including increased epithelial cell proliferation and epithelial cell differentiation. Restitution of the intestinal surface epithelium is modulated by a range of highly divergent factors among them a broad spectrum of structurally distinct regulatory peptides, variously described as growth factors or cytokines. Several regulatory peptide factors act from the basolateral site of the epithelial surface and enhance epithelial cell restitution through TGF-β-dependent pathways. In contrast, members of the trefoil factor family (TFF peptides) appear to stimulate epithelial restitution in conjunction with mucin glycoproteins through a TGF-β-independent mechanism from the apical site of the intestinal epithelium. In addition, a number of other peptide molecules like extracellular matrix factors and blood clotting factors and also non-peptide molecules including phospholipids, short-chain fatty acids (SCFA), adenine nucleotides, trace elements and pharmacological agents modulate intestinal epithelial repair mechanisms. Repeated damage and injury of the intestinal surface are key features of various intestinal disorders including inflammatory bowel diseases and require constant repair of the epithelium. Enhancement of intestinal repair mechanisms by regulatory peptides or other modulatory factors may provide future approaches for the treatment of diseases that are characterized by injuries of the epithelial surface.