1
|
Cheng CW, Pedicini L, Alcala CM, Deligianni F, Smith J, Murray RD, Todd HJ, Forde N, McKeown L. RNA-seq analysis reveals transcriptome changes in livers from Efcab4b knockout mice. Biochem Biophys Rep 2025; 41:101944. [PMID: 40034259 PMCID: PMC11872658 DOI: 10.1016/j.bbrep.2025.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
EFCAB4B is an evolutionarily conserved protein that encodes for the Rab GTPase Rab46, and the CRAC channel modulator, CRACR2A. Previous genome wide association studies have demonstrated the association of EFCAB4B variants in the progression of non-alcoholic fatty liver disease (NAFLD). In this study we show that mice with global depletion of Efcab4b -/- have significantly larger livers than their wild-type (WT) counterparts. We performed RNA-sequencing (RNA-seq) analysis of liver tissues to investigate differential global gene expression among Efcab4b -/- and WT mice. Of the 69 differentially expressed genes (DEGs), analyses of biological processes found significant enrichment in liver and bile development, with 6 genes (Pck1, Aacs, Onecut1, E2f8, Xbp1, and Hes1) involved in both processes. Specific consideration of possible roles of DEGs or their products in NAFLD progression to (NASH) and hepatocarcinoma (HCC), demonstrated DEGs in the livers of Efcab4b -/- mice had roles in molecular pathways including lipid metabolism, inflammation, ER stress and fibrosis. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with EFCAB4B.
Collapse
Affiliation(s)
- Chew W. Cheng
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lucia Pedicini
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Cintli Morales Alcala
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Fenia Deligianni
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Jessica Smith
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Ryan D. Murray
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Harriet J. Todd
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Niamh Forde
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Wang LL, Lu YM, Wang YH, Wang YF, Fang RF, Sai WL, Yao DF, Yao M. Carnitine palmitoyltransferase-II inactivity promotes malignant progression of metabolic dysfunction-associated fatty liver disease via liver cancer stem cell activation. World J Gastroenterol 2024; 30:5055-5069. [PMID: 39713165 PMCID: PMC11612864 DOI: 10.3748/wjg.v30.i47.5055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/06/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the main chronic liver diseases. However, the roles of mitochondrial carnitine palmitoyl transferase-II (CPT-II) downregulation and liver cancer stem cell (LCSC) activation remain to be identified. AIM To investigate the dynamic alterations in CPT-II inactivity and LCSC activation during the malignant progression of MAFLD. METHODS Dynamic models of mouse MAFLD were generated via the consumption of a high-fat diet or the addition of 2-fluorenylacetamide for hepatocarcinogenesis. The mice were divided into groups on the basis of hematoxylin and eosin staining. Biochemistries, CPT-II, intrahepatic T cells, and LCSCs were determined and confirmed in clinical samples. The mitochondrial membrane potential (MMP) was analyzed. Differentially expressed genes were screened via RNA sequencing and enriched in KEGG pathways or GO functions. RESULTS Dynamic models of MAFLD malignant transformation were successfully generated on the basis of pathological examination. Hepatic lipid accumulation was associated with the loss of mitochondrial CPT-II activity and alterations in the MMP, with decreases in liver CD3+ or CD4+ T cells and increased AFP levels. In the lipid accumulation microenvironment, mitochondrial CPT-II was inactivated, followed by aberrant activation of CD44+ or CD24+ LCSCs, as validated in MAFLD or hepatocellular carcinoma patient samples. In terms of mechanism, the biological process category focused mainly on the metabolic regulation of cells in response to external stimuli. The enriched molecular functions included protein binding, cell apoptosis, and cell proliferation. CONCLUSION CPT-II inactivity promotes the malignant progression of MAFLD via the loss of innate immune function and abnormal LCSC activation.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yu-Ming Lu
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Han Wang
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Fan Wang
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Department of Immunology, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
3
|
Tu J, Wang B, Wang X, Huo K, Hu W, Zhang R, Li J, Zhu S, Liang Q, Han S. Current status and new directions for hepatocellular carcinoma diagnosis. LIVER RESEARCH 2024; 8:218-236. [PMID: 39958920 PMCID: PMC11771281 DOI: 10.1016/j.livres.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 12/01/2024] [Indexed: 02/18/2025]
Abstract
Liver cancer ranks as the sixth most common cancer globally, with hepatocellular carcinoma (HCC) accounting for approximately 75%-85% of cases. Most patients present with moderately advanced disease, while those with advanced HCC face limited and ineffective treatment options. Despite diagnostic efforts, no ideal tumor marker exists to date, highlighting the urgent clinical need for improved early detection of HCC. A key research objective is the development of assays that target specific pathways involved in HCC progression. This review explores the pathological origin and development of HCC, providing insights into the mechanistic rationale, clinical statistics, and the advantages and limitations of commonly used diagnostic tumor markers. Additionally, it discusses the potential of emerging biomarkers for early diagnosis and offers a brief overview of relevant assay methodologies. This review aims to summarize existing markers and investigate new ones, providing a basis for subsequent research.
Collapse
Affiliation(s)
- Jinqi Tu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Bo Wang
- Animal Experimental Center, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Kugeng Huo
- Cyagen Biosciences (Guangzhou) Inc., Guangzhou, Guangdong, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Rongli Zhang
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnology 2023; 21:246. [PMID: 37528408 PMCID: PMC10394801 DOI: 10.1186/s12951-023-02015-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Santanu Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, 700129, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, India
| | - Krishnendu Acharyya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Li Y, Li L, Zhao H, Gao X, Li S. The Identification and Clinical Value Evaluation of CYCS Related to Asthma through Bioinformatics Analysis and Functional Experiments. DISEASE MARKERS 2023; 2023:5746940. [PMID: 37091894 PMCID: PMC10121352 DOI: 10.1155/2023/5746940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 04/25/2023]
Abstract
Background Asthma is one of the most common respiratory diseases and one of the largest burdens of health care resources across the world. This study is aimed at using bioinformatics methods to find effective clinical indicators for asthma and conducting experimental validation. Methods We downloaded GSE64913 data and performed differentially expressed gene (DEG) screening. Weighted gene coexpression network analysis (WGCNA) on DEGs was applied to identify key module most associated with asthma for protein-protein interaction (PPI) analysis. According to the degree value, ten genes were obtained and subjected to expression analysis and receiver operating characteristic (ROC) analysis. Next, key genes were screened for expression analysis and immunological analysis. Finally, cell counting kit-8 (CCK-8) and qRT-PCR were also conducted to observe the influence of hub gene on cell proliferation and inflammatory cytokines. Results From the GSE64913 dataset, 711 upregulated and 684 downregulated DEGs were found. In WGCNA, the top 10 genes in the key module were examined by expression analysis in asthma, and CYCS was determined as an asthma-related oncogene with a good predictive ability for the prognosis of asthmatic patients. CYCS is significantly associated with immune cells, such as HHLA2, IDO1, TGFBR1, and CCL18 and promoted the proliferation of asthmatic cells in vitro. Conclusion CYCS plays an oncogenic role in the pathophysiology of asthma, indicating that this gene may become a novel diagnostic biomarker and promising target of asthma treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Pulmonary Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China 201199
| | - Li Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China 200032
| | - Hua Zhao
- Department of Pulmonary Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China 201199
| | - Xiwen Gao
- Department of Pulmonary Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China 201199
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China 200032
| |
Collapse
|
6
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
7
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Oncogenic Wnt3a is a promising sensitive biomarker for monitoring hepatocarcinogenesis. Hepatobiliary Pancreat Dis Int 2022; 22:263-269. [PMID: 36435702 DOI: 10.1016/j.hbpd.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The effective treatment for hepatocellular carcinoma (HCC) depends on early diagnosis. Previously, the abnormal expression of Wnt3a as the key signaling molecule in the Wnt/β-catenin pathway was found in HCC cells and could be released into the circulation. In this study, we used rat model of hepatocarcinogenesis to dynamically investigate the alteration of oncogenic Wnt3a and to explore its early monitor value for HCC. METHODS Sprague-Dawley rats (SD) were fed with diet 2-fluorenylacetamide (2-FAA, 0.05%) for inducing hepatocarcinogenesis, and grouped based on liver morphological alteration by Hematoxylin & Eosin (H&E) staining; rats fed with normal chow were used as normal control (NC). Total RNA and protein were purified from rat livers. Differently expressed genes (DEGs) or Wnt3a mRNA, cellular distribution, and Wnt3a protein levels were analyzed by whole genome microarray with signal logarithm ratio (SLR log2cy5/cy3), immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. RESULTS Models of rat hepatocarcinogenesis were successfully established based on liver histopathological H&E staining. Rats were divided into the cell degeneration (rDeg), precancerosis (rPre-C) and HCC (rHCC) groups. Total numbers of the up- and down-regulated DEGs with SLR ≥ 8 were 55 and 48 in the rDeg group, 268 and 57 in the rPre-C group, and 312 and 201 in the rHCC group, respectively. Significantly altered genes were involved in cell proliferation, signal transduction, tumor metastasis, and apoptosis. Compared with the NC group, Wnt3a mRNA was increased by 4.6 folds (P < 0.001) in the rDeg group, 7.4 folds (P < 0.001) in the rPre-C group, and 10.4 folds (P < 0.001) in the rHCC group; the positive rates of liver Wnt3a were 66.7% (P = 0.001) in the rDeg group, 100% (P < 0.001) in the rPre-C group, and 100% (P < 0.001) in the rHCC group, respectively. Also, there were significant differences of liver Wnt3a (P < 0.001) or serum Wnt3a (P < 0.001) among different groups. CONCLUSIONS Overexpression of Wnt3a was associated with rat hepatocarcinogenesis and it should be expected to be a promising monitoring biomarker for HCC occurrence at early stage.
Collapse
|
9
|
Yao M, Cai Y, Wu ZJ, Zhou P, Sai WL, Wang DF, Wang L, Yao DF. Effects of targeted-edited oncogenic insulin-like growth factor-1 receptor with specific-sgRNA on biological behaviors of HepG2 cells. World J Clin Cases 2022; 10:10017-10030. [PMID: 36246809 PMCID: PMC9561564 DOI: 10.12998/wjcc.v10.i28.10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Insulin-like growth factor-1 receptor (IGF-1R) is over-expressed in hepatocellular carcinoma (HCC). However, the relationship between IGF-1R activation and HCC progression remains unidentified.
AIM To investigate the effects of editing IGF-1R on the biological features of HCC cells.
METHODS Immunohistochemistry analyzed the expressions of IGF-1R and P-glyco protein (P-gp) in HCC tissues and their distal non-cancerous tissues (non-Ca). IGF-1R was edited with Crispr/Cas9 system, screened specific sgRNAs, and then transfected into HepG2 cells. CCK-8, scratch wound test detected cell proliferation, migration, invasion and transwell assays, respectively. Alterations of IGF-1R and P-gp were confirmed by Western blotting. Alterations of anti-cancer drug IC50 values were analyzed at the cell level.
RESULTS The positive rates of IGF-1R (93.6%, χ2 = 63.947) or P-gp (88.2%, χ2 = 58.448) were significantly higher (P < 0.001) in the HCC group than those (36.6% in IGF-1R or 26.9% in P-gp) in the non-Ca group. They were positively correlated between high IGF-1R and P-gp expression, and they were associated with hepatitis B virus infection and vascular invasion of HCC. Abnormal expressions of circulating IGF-1R and P-gp were confirmed and associated with HCC progression. Biological feature alterations of HCC cells transfected with specific sgRNA showed IGF-1R expression down-regulation, cell proliferation inhibition, cell invasion or migration potential decreasing, and enhancing susceptibility of HepG2 cells to anti-cancer drugs.
CONCLUSION Edited oncogenic IGF-1R was useful to inhibit biological behaviors of HepG2 cells.
Collapse
Affiliation(s)
- Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yin Cai
- Department of Oncology, Xinghua People’s Hospital, Xinghua 225700, Jiangsu Province, China
| | - Zhi-Jun Wu
- Department of Oncology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong 226002, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - De-Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
10
|
Wu MN, Zheng WJ, Ye WX, Wang L, Chen Y, Yang J, Yao DF, Yao M. Oncogenic tuftelin 1 as a potential molecular-targeted for inhibiting hepatocellular carcinoma growth. World J Gastroenterol 2021; 27:3327-3341. [PMID: 34163115 PMCID: PMC8218352 DOI: 10.3748/wjg.v27.i23.3327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Abnormal tuftelin 1 (TUFT1) has been reported in multiple cancers and exhibits oncogenic roles in tumor progression. However, limited data are available on the relationship between TUFT1 and hepatocellular carcinoma (HCC), and the exact biological mechanism of TUFT1 is still poorly understood in HCC.
AIM To investigate TUFT1 expression in HCC and how interfering TUFT1 transcription affects HCC growth.
METHODS TUFT1 in HCC and non-HCC tissues based on databases of the Cancer Genome Atlas and Oncomine were analyzed, and TUFT1 in human HCC tissues on microarray were detected by immunohistochemistry for clinicopathological features, overall survival, and disease-free survival. HCC cells were transfected with constructed vectors of TUFT1 that interfere or over-express TUFT1 for analyzing the biological behaviors of HCC cells. Proliferation, invasion, migration, and apoptosis of cells were detected by cell counting kit-8, scratch assay, transwell tests, and flow cytometry and confirmed by Western blotting, respectively.
RESULTS Abnormal TUFT1 levels in databases expressed in HCC at messenger RNA (mRNA) level and HCC tissues were mainly located in cytoplasm and membrane. The level of TUFT1 expression in the HCC group was significantly higher (χ2 = 18.563, P < 0.001) than that in the non-cancerous group, closely related to clinical staging, size, vascular invasion of tumor, hepatitis B e-antigen positive, and ascites (P < 0.01) of HCC patients, and negatively to HCC patients’ overall survival and disease-free survival (P < 0.001). After interfering with TUFT1 transcription at mRNA level in the MHCC-97H cells by the specific TUFT1-short hairpin RNA, cell proliferation, invasion, and metastasis were significantly inhibited with increasing apoptosis rate. In contrast, proliferation, invasion, and migration were significantly enhanced after over-expression of TUFT1 mRNA in Hep3B cells in vitro.
CONCLUSION Oncogenic TUFT1 was associated with the progression of HCC and could be a potential molecular-target for inhibiting HCC growth.
Collapse
Affiliation(s)
- Meng-Na Wu
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Xin Ye
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ying Chen
- Department of Oncology, The Affiliated Second Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jie Yang
- Department of Molecular Biology, Life Science School of Nantong University, Nantong 226009, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
11
|
Sub-chronic exposure to PhIP induces oxidative damage and DNA damage, and disrupts the amino acid metabolism in the colons of Wistar rats. Food Chem Toxicol 2021; 153:112249. [PMID: 33945839 DOI: 10.1016/j.fct.2021.112249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Heterocyclic amines (HCAs) are a group of mutagenic compounds produced during thermal processing of protein-rich foods. One of the most abundant HCAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) has potential carcinogenic and mutagenic effects on human organs, especially the colon. This study aimed to explore the toxic effects of PhIP on amino acid metabolism in the colon of Wistar rats using RNA-seq and LC-MS/MS. Exposure to PhIP for 4 weeks induced oxidative damage and DNA damage in the colons, and disrupted the expression of related genes involved in tryptophan metabolism, beta(β)-alanine metabolism, valine, leucine, and isoleucine degradation, and glutathione metabolic pathways. Moreover, the levels of fecal metabolites related to amino acid metabolism were affected by PhIP. Cumulatively, these results indicate that PhIP can induce colonic oxidative injury and disorders related to amino acid metabolism, thereby providing a new theoretical basis for the study of PhIP toxicity.
Collapse
|
12
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|