1
|
Kumar A, Aravind N, Gillani T, Kumar D. Artificial intelligence breakthrough in diagnosis, treatment, and prevention of colorectal cancer – A comprehensive review. Biomed Signal Process Control 2025; 101:107205. [DOI: 10.1016/j.bspc.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
|
2
|
Palomba G, Fernicola A, Corte MD, Capuano M, De Palma GD, Aprea G. Artificial intelligence in screening and diagnosis of surgical diseases: A narrative review. AIMS Public Health 2024; 11:557-576. [PMID: 39027395 PMCID: PMC11252578 DOI: 10.3934/publichealth.2024028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 07/20/2024] Open
Abstract
Artificial intelligence (AI) is playing an increasing role in several fields of medicine. It is also gaining popularity among surgeons as a valuable screening and diagnostic tool for many conditions such as benign and malignant colorectal, gastric, thyroid, parathyroid, and breast disorders. In the literature, there is no review that groups together the various application domains of AI when it comes to the screening and diagnosis of main surgical diseases. The aim of this review is to describe the use of AI in these settings. We performed a literature review by searching PubMed, Web of Science, Scopus, and Embase for all studies investigating the role of AI in the surgical setting, published between January 01, 2000, and June 30, 2023. Our focus was on randomized controlled trials (RCTs), meta-analysis, systematic reviews, and observational studies, dealing with large cohorts of patients. We then gathered further relevant studies from the reference list of the selected publications. Based on the studies reviewed, it emerges that AI could strongly enhance the screening efficiency, clinical ability, and diagnostic accuracy for several surgical conditions. Some of the future advantages of this technology include implementing, speeding up, and improving the automaticity with which AI recognizes, differentiates, and classifies the various conditions.
Collapse
Affiliation(s)
- Giuseppe Palomba
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Agostino Fernicola
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Marcello Della Corte
- Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona - OO. RR. Scuola Medica Salernitana, Salerno, Italy
| | - Marianna Capuano
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanni Domenico De Palma
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
3
|
Yadav A, Kumar A. Artificial intelligence in rectal cancer: What is the future? Artif Intell Cancer 2023; 4:11-22. [DOI: 10.35713/aic.v4.i2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in both men and women, and it is the second leading cause of cancer-related deaths globally. Around 60%-70% of CRC patients are diagnosed at advanced stages, with nearly 20% having liver metastases. It is noteworthy that the 5-year survival rates decline significantly from 80%-90% for localized disease to a mere 10%-15% for patients with metastasis at the time of diagnosis. Early diagnosis, appropriate therapeutic strategy, accurate assessment of treatment response, and prognostication is essential for better outcome. There has been significant technological development in the last couple of decades to improve the outcome of rectal cancer including Artificial intelligence (AI). AI is a broad term used to describe the study of machines that mimic human intelligence, such as perceiving the environment, drawing logical conclusions from observations, and performing complex tasks. At present AI has demonstrated a promising role in early diagnosis, prognosis, and treatment outcomes for patients with rectal cancer, a limited role in surgical decision making, and had a bright future.
Collapse
Affiliation(s)
- Alka Yadav
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| |
Collapse
|
4
|
Singh Y, Gogtay M, Yekula A, Soni A, Mishra AK, Tripathi K, Abraham GM. Detection of colorectal adenomas using artificial intelligence models in patients with chronic hepatitis C. World J Hepatol 2023; 15:107-115. [PMID: 36744168 PMCID: PMC9896503 DOI: 10.4254/wjh.v15.i1.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 11/14/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hepatitis C virus is known for its oncogenic potential, especially in hepatocellular carcinoma and non-Hodgkin lymphoma. Several studies have shown that chronic hepatitis C (CHC) has an increased risk of the development of colorectal cancer (CRC).
AIM To analyze this positive relationship and develop an artificial intelligence (AI)-based tool using machine learning (ML) algorithms to stratify these patient populations into risk groups for CRC/adenoma detection.
METHODS To develop the AI automated calculator, we applied ML to train models to predict the probability and the number of adenomas detected on colonoscopy. Data sets were split into 70:30 ratios for training and internal validation. The Scikit-learn standard scaler was used to scale values of continuous variables. Colonoscopy findings were used as the gold standard and deep learning architecture was used to train six ML models for prediction. A Flask (customizable Python framework) application programming interface (API) was used to deploy the trained ML model with the highest accuracy as a web application. Finally, Heroku was used for the deployment of the web-based API to https://adenomadetection.herokuapp.com.
RESULTS Of 415 patients, 206 had colonoscopy results. On internal validation, the Bernoulli naive Bayes model predicted the probability of adenoma detection with the highest accuracy of 56%, precision of 55%, recall of 55%, and F1 measure of 54%. Support vector regressor predicted the number of adenomas with the least mean absolute error of 0.905.
CONCLUSION Our AI-based tool can help providers stratify patients with CHC for early referral for screening colonoscopy. Along with providing a numerical percentage, the calculator can also comment on the number of adenomatous polyps a gastroenterologist can expect, prompting a higher adenoma detection rate.
Collapse
Affiliation(s)
- Yuvaraj Singh
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Maya Gogtay
- Hospice and Palliative Medicine, University of Texas Health-San Antonio, San Antonio, TX 78201, United States
| | - Anuroop Yekula
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Aakriti Soni
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Ajay Kumar Mishra
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Kartikeya Tripathi
- Division of Gastroenterology and Hepatology, UMass Chan School-Baystate Medical Center, Springfield, MA 01199, United States
| | - GM Abraham
- Division of Infectious Disease, Chief of Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| |
Collapse
|
5
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
6
|
Advancements in Oncology with Artificial Intelligence—A Review Article. Cancers (Basel) 2022; 14:cancers14051349. [PMID: 35267657 PMCID: PMC8909088 DOI: 10.3390/cancers14051349] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the advancement of artificial intelligence, including machine learning, the field of oncology has seen promising results in cancer detection and classification, epigenetics, drug discovery, and prognostication. In this review, we describe what artificial intelligence is and its function, as well as comprehensively summarize its evolution and role in breast, colorectal, and central nervous system cancers. Understanding the origin and current accomplishments might be essential to improve the quality, accuracy, generalizability, cost-effectiveness, and reliability of artificial intelligence models that can be used in worldwide clinical practice. Students and researchers in the medical field will benefit from a deeper understanding of how to use integrative AI in oncology for innovation and research. Abstract Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mammography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based tumor imaging analysis is independent of the experience level of evaluating physicians, and the results are expected to be more standardized and accurate. One of the biggest challenges is its generalizability worldwide. The current detection and screening methods for colon polyps and breast cancer have a vast amount of data, so they are ideal areas for studying the global standardization of artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on current management standards. ML offers the prospect of unraveling undiscovered features from routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring, and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types, standard management methods may be improved by augmenting personalized/precision medicine. This review aims to provide clinicians and medical researchers with a basic understanding of how ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are crucial in advancing the use of AI in oncology.
Collapse
|
7
|
Cianci P, Restini E. Artificial intelligence in colorectal cancer management. Artif Intell Cancer 2021; 2:79-89. [DOI: 10.35713/aic.v2.i6.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a new branch of computer science involving many disciplines and technologies. Since its application in the medical field, it has been constantly studied and developed. AI includes machine learning and neural networks to create new technologies or to improve existing ones. Various AI supporting systems are available for a personalized and novel strategy for the management of colorectal cancer (CRC). This mini-review aims to summarize the progress of research and possible clinical applications of AI in the investigation, early diagnosis, treatment, and management of CRC, to offer elements of knowledge as a starting point for new studies and future applications.
Collapse
Affiliation(s)
- Pasquale Cianci
- Department of Surgery and Traumatology, ASL BAT, Lorenzo Bonomo Hospital, Andria 76123, Puglia, Italy
| | - Enrico Restini
- Department of Surgery and Traumatology, ASL BAT, Lorenzo Bonomo Hospital, Andria 76123, Puglia, Italy
| |
Collapse
|
8
|
Cao B, Zhang KC, Wei B, Chen L. Status quo and future prospects of artificial neural network from the perspective of gastroenterologists. World J Gastroenterol 2021; 27:2681-2709. [PMID: 34135549 PMCID: PMC8173384 DOI: 10.3748/wjg.v27.i21.2681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial neural networks (ANNs) are one of the primary types of artificial intelligence and have been rapidly developed and used in many fields. In recent years, there has been a sharp increase in research concerning ANNs in gastrointestinal (GI) diseases. This state-of-the-art technique exhibits excellent performance in diagnosis, prognostic prediction, and treatment. Competitions between ANNs and GI experts suggest that efficiency and accuracy might be compatible in virtue of technique advancements. However, the shortcomings of ANNs are not negligible and may induce alterations in many aspects of medical practice. In this review, we introduce basic knowledge about ANNs and summarize the current achievements of ANNs in GI diseases from the perspective of gastroenterologists. Existing limitations and future directions are also proposed to optimize ANN’s clinical potential. In consideration of barriers to interdisciplinary knowledge, sophisticated concepts are discussed using plain words and metaphors to make this review more easily understood by medical practitioners and the general public.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke-Cheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. ACTA ACUST UNITED AC 2021; 28:1581-1607. [PMID: 33922402 PMCID: PMC8161764 DOI: 10.3390/curroncol28030149] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The development of artificial intelligence (AI) algorithms has permeated the medical field with great success. The widespread use of AI technology in diagnosing and treating several types of cancer, especially colorectal cancer (CRC), is now attracting substantial attention. CRC, which represents the third most commonly diagnosed malignancy in both men and women, is considered a leading cause of cancer-related deaths globally. Our review herein aims to provide in-depth knowledge and analysis of the AI applications in CRC screening, diagnosis, and treatment based on current literature. We also explore the role of recent advances in AI systems regarding medical diagnosis and therapy, with several promising results. CRC is a highly preventable disease, and AI-assisted techniques in routine screening represent a pivotal step in declining incidence rates of this malignancy. So far, computer-aided detection and characterization systems have been developed to increase the detection rate of adenomas. Furthermore, CRC treatment enters a new era with robotic surgery and novel computer-assisted drug delivery techniques. At the same time, healthcare is rapidly moving toward precision or personalized medicine. Machine learning models have the potential to contribute to individual-based cancer care and transform the future of medicine.
Collapse
Affiliation(s)
- Athanasia Mitsala
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
- Correspondence: ; Tel.: +30-6986423707
| | - Christos Tsalikidis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Michail Pitiakoudis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Constantinos Simopoulos
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Alexandra K. Tsaroucha
- Laboratory of Experimental Surgery & Surgical Research, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
10
|
Wang Y, Nie H, He X, Liao Z, Zhou Y, Zhou J, Ou C. The emerging role of super enhancer-derived noncoding RNAs in human cancer. Theranostics 2020; 10:11049-11062. [PMID: 33042269 PMCID: PMC7532672 DOI: 10.7150/thno.49168] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Super enhancers (SEs) are large clusters of adjacent enhancers that drive the expression of genes which regulate cellular identity; SE regions can be enriched with a high density of transcription factors, co-factors, and enhancer-associated epigenetic modifications. Through enhanced activation of their target genes, SEs play an important role in various diseases and conditions, including cancer. Recent studies have shown that SEs not only activate the transcriptional expression of coding genes to directly regulate biological functions, but also drive the transcriptional expression of non-coding RNAs (ncRNAs) to indirectly regulate biological functions. SE-derived ncRNAs play critical roles in tumorigenesis, including malignant proliferation, metastasis, drug resistance, and inflammatory response. Moreover, the abnormal expression of SE-derived ncRNAs is closely related to the clinical and pathological characterization of tumors. In this review, we summarize the functions and roles of SE-derived ncRNAs in tumorigenesis and discuss their prospective applications in tumor therapy. A deeper understanding of the potential mechanism underlying the action of SE-derived ncRNAs in tumorigenesis may provide new strategies for the early diagnosis of tumors and targeted therapy.
Collapse
|
11
|
Shah SH, Iqbal MJ, Ahmad I, Khan S, Rodrigues JJPC. Optimized gene selection and classification of cancer from microarray gene expression data using deep learning. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05367-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
12
|
Menaga D, Revathi S. AN EMPIRICAL STUDY OF CANCER CLASSIFICATION TECHNIQUES BASED ON THE NEURAL NETWORKS. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2020. [DOI: 10.4015/s1016237220500131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Cancer is one of the most common dreadful diseases prevailing worldwide, and patients with cancer are rescued only when the cancer is detected at a very early stage. Early detection of cancer is appropriate as in the fourth stage, but the chance of survival is limited. The symptoms of cancers are rigorous, and therefore, all the symptoms should be studied properly before the diagnosis. Thus, an automatic prediction system is necessary for classifying the tumor, i.e. malignant or benign tumor. Over the past few years, cancer classification is increased rapidly, but there is no general technique to find novel cancer classes (class discovery) or to assign tumors to known classes. Accordingly, this survey analyzes distinct cancer classification techniques. Thus, this review article provides a detailed review of 50 research papers presenting the suggested cancer classification techniques, like Deep learning-based techniques, Neural network-based techniques, and Hybrid techniques. Moreover, an elaborative analysis and discussion are made based on the year of publication, utilized datasets, accuracy range, evaluation metrics, implementation tool, and adopted classification methods. Eventually, the research gaps and issues of various cancer classification schemes are presented for extending the researchers towards a better future scope.
Collapse
Affiliation(s)
- D. Menaga
- B.S. Abdur Rahman Crescent Institute of Science and Technology, Seethakathi Estate G.S.T Main Road Vandalur, Chennai, Tamil Nadu 600048, India
| | - S. Revathi
- B.S. Abdur Rahman Crescent Institute of Science and Technology, Seethakathi Estate G.S.T Main Road Vandalur, Chennai, Tamil Nadu 600048, India
| |
Collapse
|
13
|
Boeri C, Chiappa C, Galli F, De Berardinis V, Bardelli L, Carcano G, Rovera F. Machine Learning techniques in breast cancer prognosis prediction: A primary evaluation. Cancer Med 2020; 9:3234-3243. [PMID: 32154669 PMCID: PMC7196042 DOI: 10.1002/cam4.2811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
More than 750 000 women in Italy are surviving a diagnosis of breast cancer. A large body of literature tells us which characteristics impact the most on their prognosis. However, the prediction of each disease course and then the establishment of a therapeutic plan and follow‐up tailored to the patient is still very complicated. In order to address this issue, a multidisciplinary approach has become widely accepted, while the Multigene Signature Panels and the Nottingham Prognostic Index are still discussed options. The current technological resources permit to gather many data for each patient. Machine Learning (ML) allows us to draw on these data, to discover their mutual relations and to esteem the prognosis for the new instances. This study provides a primary evaluation of the application of ML to predict breast cancer prognosis. We analyzed 1021 patients who underwent surgery for breast cancer in our Institute and we included 610 of them. Three outcomes were chosen: cancer recurrence (both loco‐regional and systemic) and death from the disease within 32 months. We developed two types of ML models for every outcome (Artificial Neural Network and Support Vector Machine). Each ML algorithm was tested in accuracy (=95.29%‐96.86%), sensitivity (=0.35‐0.64), specificity (=0.97‐0.99), and AUC (=0.804‐0.916). These models might become an additional resource to evaluate the prognosis of breast cancer patients in our daily clinical practice. Before that, we should increase their sensitivity, according to literature, by considering a wider population sample with a longer period of follow‐up. However, specificity, accuracy, minimal additional costs, and reproducibility are already encouraging.
Collapse
Affiliation(s)
- Carlo Boeri
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| | - Corrado Chiappa
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| | - Federica Galli
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| | - Valentina De Berardinis
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| | - Laura Bardelli
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| | - Giulio Carcano
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| | - Francesca Rovera
- SSD Breast Unit - ASST-Settelaghi Varese, Senology Research Center, Department of Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis. Artif Intell Med 2019; 102:101746. [PMID: 31980088 DOI: 10.1016/j.artmed.2019.101746] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
In this paper, the urinary bladder cancer diagnostic method which is based on Multi-Layer Perceptron and Laplacian edge detector is presented. The aim of this paper is to investigate the implementation possibility of a simpler method (Multi-Layer Perceptron) alongside commonly used methods, such as Deep Learning Convolutional Neural Networks, for the urinary bladder cancer detection. The dataset used for this research consisted of 1997 images of bladder cancer and 986 images of non-cancer tissue. The results of the conducted research showed that using Multi-Layer Perceptron trained and tested with images pre-processed with Laplacian edge detector are achieving AUC value up to 0.99. When different image sizes are compared it can be seen that the best results are achieved if 50×50 and 100×100 images were used.
Collapse
|
15
|
Wang Q, Wei J, Chen Z, Zhang T, Zhong J, Zhong B, Yang P, Li W, Cao J. Establishment of multiple diagnosis models for colorectal cancer with artificial neural networks. Oncol Lett 2019; 17:3314-3322. [PMID: 30867765 PMCID: PMC6396131 DOI: 10.3892/ol.2019.10010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to develop multiple diagnosis models for colorectal cancer (CRC) based on data from The Cancer Genome Atlas database and analysis with artificial neural networks in order to enhance CRC diagnosis methods. A genetic algorithm and mean impact value were used to select genes to be used as numerical encoded parameters to reflect cancer metastasis or aggression. Back propagation and learning vector quantization neural networks were used to build four diagnosis models: Cancer/Normal, M0/M1, carcinoembryonic antigen (CEA) <5/≥5 and Clinical stage I-II/III-IV. The performance of each model was evaluated by predictive accuracy (ACC), the area under the receiver operating characteristic curve (AUC) and a 10-fold cross-validation test. The ACC and AUC of the Cancer/Normal, M0/M1, CEA and Clinical stage models were 100%, 1.000; 87.14%, 0.670; 100%, 1.000; and 100%, 1.000, respectively. The 10-fold cross-validation test of the ACC values and sensitivity for each test were 93.75-99.39%, 1.0000; 80.58-88.24%, 0.9286-1.0000; 67.21-92.31%, 0.7091-1.0000; and 59.13-68.85%, 0.6017-0.6585, respectively. The diagnosis models developed in the current study combined gene expression profiling data and artificial intelligence algorithms to create tools for improved diagnosis of CRC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Jianchang Wei
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Zhuanpeng Chen
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Junbin Zhong
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Bingzheng Zhong
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Wanglin Li
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
16
|
Wang X, Chen H, Chang C, Jiang M, Wang X, Xu L. Study the therapeutic mechanism of Amomum compactum in gentamicin-induced acute kidney injury rat based on a back propagation neural network algorithm. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:81-88. [DOI: 10.1016/j.jchromb.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/19/2016] [Accepted: 12/03/2016] [Indexed: 01/08/2023]
|