1
|
Gong EJ, Bang CS, Lee JJ. Computer-aided diagnosis in real-time endoscopy for all stages of gastric carcinogenesis: Development and validation study. United European Gastroenterol J 2024; 12:487-495. [PMID: 38400815 PMCID: PMC11091781 DOI: 10.1002/ueg2.12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/14/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVE Using endoscopic images, we have previously developed computer-aided diagnosis models to predict the histopathology of gastric neoplasms. However, no model that categorizes every stage of gastric carcinogenesis has been published. In this study, a deep-learning-based diagnosis model was developed and validated to automatically classify all stages of gastric carcinogenesis, including atrophy and intestinal metaplasia, in endoscopy images. DESIGN A total of 18,701 endoscopic images were collected retrospectively and randomly divided into train, validation, and internal-test datasets in an 8:1:1 ratio. The primary outcome was lesion-classification accuracy in six categories: normal/atrophy/intestinal metaplasia/dysplasia/early /advanced gastric cancer. External-validation of performance in the established model used 1427 novel images from other institutions that were not used in training, validation, or internal-tests. RESULTS The internal-test lesion-classification accuracy was 91.2% (95% confidence interval: 89.9%-92.5%). For performance validation, the established model achieved an accuracy of 82.3% (80.3%-84.3%). The external-test per-class receiver operating characteristic in the diagnosis of atrophy and intestinal metaplasia was 93.4 ± 0% and 91.3 ± 0%, respectively. CONCLUSIONS The established model demonstrated high performance in the diagnosis of preneoplastic lesions (atrophy and intestinal metaplasia) as well as gastric neoplasms.
Collapse
Affiliation(s)
- Eun Jeong Gong
- Department of Internal MedicineHallym University College of MedicineChuncheonKorea
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonKorea
- Institute of New Frontier ResearchHallym University College of MedicineChuncheonKorea
| | - Chang Seok Bang
- Department of Internal MedicineHallym University College of MedicineChuncheonKorea
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonKorea
- Institute of New Frontier ResearchHallym University College of MedicineChuncheonKorea
- Division of Big Data and Artificial IntelligenceChuncheon Sacred Heart HospitalChuncheonKorea
| | - Jae Jun Lee
- Institute of New Frontier ResearchHallym University College of MedicineChuncheonKorea
- Division of Big Data and Artificial IntelligenceChuncheon Sacred Heart HospitalChuncheonKorea
- Department of Anesthesiology and Pain MedicineHallym University College of MedicineChuncheonKorea
| |
Collapse
|
2
|
Gong EJ, Bang CS, Lee JJ, Jeong HM, Baik GH, Jeong JH, Dick S, Lee GH. Clinical Decision Support System for All Stages of Gastric Carcinogenesis in Real-Time Endoscopy: Model Establishment and Validation Study. J Med Internet Res 2023; 25:e50448. [PMID: 37902818 PMCID: PMC10644184 DOI: 10.2196/50448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Our research group previously established a deep-learning-based clinical decision support system (CDSS) for real-time endoscopy-based detection and classification of gastric neoplasms. However, preneoplastic conditions, such as atrophy and intestinal metaplasia (IM) were not taken into account, and there is no established model that classifies all stages of gastric carcinogenesis. OBJECTIVE This study aims to build and validate a CDSS for real-time endoscopy for all stages of gastric carcinogenesis, including atrophy and IM. METHODS A total of 11,868 endoscopic images were used for training and internal testing. The primary outcomes were lesion classification accuracy (6 classes: advanced gastric cancer, early gastric cancer, dysplasia, atrophy, IM, and normal) and atrophy and IM lesion segmentation rates for the segmentation model. The following tests were carried out to validate the performance of lesion classification accuracy: (1) external testing using 1282 images from another institution and (2) evaluation of the classification accuracy of atrophy and IM in real-world procedures in a prospective manner. To estimate the clinical utility, 2 experienced endoscopists were invited to perform a blind test with the same data set. A CDSS was constructed by combining the established 6-class lesion classification model and the preneoplastic lesion segmentation model with the previously established lesion detection model. RESULTS The overall lesion classification accuracy (95% CI) was 90.3% (89%-91.6%) in the internal test. For the performance validation, the CDSS achieved 85.3% (83.4%-97.2%) overall accuracy. The per-class external test accuracies for atrophy and IM were 95.3% (92.6%-98%) and 89.3% (85.4%-93.2%), respectively. CDSS-assisted endoscopy showed an accuracy of 92.1% (88.8%-95.4%) for atrophy and 95.5% (92%-99%) for IM in the real-world application of 522 consecutive screening endoscopies. There was no significant difference in the overall accuracy between the invited endoscopists and established CDSS in the prospective real-clinic evaluation (P=.23). The CDSS demonstrated a segmentation rate of 93.4% (95% CI 92.4%-94.4%) for atrophy or IM lesion segmentation in the internal testing. CONCLUSIONS The CDSS achieved high performance in terms of computer-aided diagnosis of all stages of gastric carcinogenesis and demonstrated real-world application potential.
Collapse
Affiliation(s)
- Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Department of Anesthesiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hae Min Jeong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | | | | | | |
Collapse
|
3
|
Kim HJ, Gong EJ, Bang CS. Application of Machine Learning Based on Structured Medical Data in Gastroenterology. Biomimetics (Basel) 2023; 8:512. [PMID: 37999153 PMCID: PMC10669027 DOI: 10.3390/biomimetics8070512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
The era of big data has led to the necessity of artificial intelligence models to effectively handle the vast amount of clinical data available. These data have become indispensable resources for machine learning. Among the artificial intelligence models, deep learning has gained prominence and is widely used for analyzing unstructured data. Despite the recent advancement in deep learning, traditional machine learning models still hold significant potential for enhancing healthcare efficiency, especially for structured data. In the field of medicine, machine learning models have been applied to predict diagnoses and prognoses for various diseases. However, the adoption of machine learning models in gastroenterology has been relatively limited compared to traditional statistical models or deep learning approaches. This narrative review provides an overview of the current status of machine learning adoption in gastroenterology and discusses future directions. Additionally, it briefly summarizes recent advances in large language models.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (H.-J.K.); (E.-J.G.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Republic of Korea
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| | - Eun-Jeong Gong
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (H.-J.K.); (E.-J.G.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Republic of Korea
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| | - Chang-Seok Bang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (H.-J.K.); (E.-J.G.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Republic of Korea
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
4
|
Gong EJ, Bang CS, Lee JJ, Baik GH, Lim H, Jeong JH, Choi SW, Cho J, Kim DY, Lee KB, Shin SI, Sigmund D, Moon BI, Park SC, Lee SH, Bang KB, Son DS. Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study. Endoscopy 2023; 55:701-708. [PMID: 36754065 DOI: 10.1055/a-2031-0691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND : Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. METHODS : The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. RESULTS : The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). CONCLUSIONS : The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
Collapse
Affiliation(s)
- Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, South Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, South Korea
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | - Sung Chul Park
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ki Bae Bang
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, South Korea
| | - Dae-Soon Son
- Division of Data Science, Data Science Convergence Research Center, Hallym University, Chuncheon, South Korea
| |
Collapse
|
5
|
Gong EJ, Bang CS, Lee JJ, Yang YJ, Baik GH. Impact of the Volume and Distribution of Training Datasets in the Development of Deep-Learning Models for the Diagnosis of Colorectal Polyps in Endoscopy Images. J Pers Med 2022; 12:jpm12091361. [PMID: 36143146 PMCID: PMC9505038 DOI: 10.3390/jpm12091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Establishment of an artificial intelligence model in gastrointestinal endoscopy has no standardized dataset. The optimal volume or class distribution of training datasets has not been evaluated. An artificial intelligence model was previously created by the authors to classify endoscopic images of colorectal polyps into four categories, including advanced colorectal cancer, early cancers/high-grade dysplasia, tubular adenoma, and nonneoplasm. The aim of this study was to evaluate the impact of the volume and distribution of training dataset classes in the development of deep-learning models for colorectal polyp histopathology prediction from endoscopic images. Methods: The same 3828 endoscopic images that were used to create earlier models were used. An additional 6838 images were used to find the optimal volume and class distribution for a deep-learning model. Various amounts of data volume and class distributions were tried to establish deep-learning models. The training of deep-learning models uniformly used no-code platform Neuro-T. Accuracy was the primary outcome on four-class prediction. Results: The highest internal-test classification accuracy in the original dataset, doubled dataset, and tripled dataset was commonly shown by doubling the proportion of data for fewer categories (2:2:1:1 for advanced colorectal cancer: early cancers/high-grade dysplasia: tubular adenoma: non-neoplasm). Doubling the proportion of data for fewer categories in the original dataset showed the highest accuracy (86.4%, 95% confidence interval: 85.0–97.8%) compared to that of the doubled or tripled dataset. The total required number of images in this performance was only 2418 images. Gradient-weighted class activation mapping confirmed that the part that the deep-learning model pays attention to coincides with the part that the endoscopist pays attention to. Conclusion: As a result of a data-volume-dependent performance plateau in the classification model of colonoscopy, a dataset that has been doubled or tripled is not always beneficial to training. Deep-learning models would be more accurate if the proportion of fewer category lesions was increased.
Collapse
Affiliation(s)
- Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5821; Fax: +82-33-241-8064
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| |
Collapse
|
6
|
Gong EJ, Bang CS, Jung K, Kim SJ, Kim JW, Seo SI, Lee U, Maeng YB, Lee YJ, Lee JI, Baik GH, Lee JJ. Deep-Learning for the Diagnosis of Esophageal Cancers and Precursor Lesions in Endoscopic Images: A Model Establishment and Nationwide Multicenter Performance Verification Study. J Pers Med 2022; 12:jpm12071052. [PMID: 35887549 PMCID: PMC9320232 DOI: 10.3390/jpm12071052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Suspicion of lesions and prediction of the histology of esophageal cancers or premalignant lesions in endoscopic images are not yet accurate. The local feature selection and optimization functions of the model enabled an accurate analysis of images in deep learning. Objectives: To establish a deep-learning model to diagnose esophageal cancers, precursor lesions, and non-neoplasms using endoscopic images. Additionally, a nationwide prospective multicenter performance verification was conducted to confirm the possibility of real-clinic application. Methods: A total of 5162 white-light endoscopic images were used for the training and internal test of the model classifying esophageal cancers, dysplasias, and non-neoplasms. A no-code deep-learning tool was used for the establishment of the deep-learning model. Prospective multicenter external tests using 836 novel images from five hospitals were conducted. The primary performance metric was the external-test accuracy. An attention map was generated and analyzed to gain the explainability. Results: The established model reached 95.6% (95% confidence interval: 94.2–97.0%) internal-test accuracy (precision: 78.0%, recall: 93.9%, F1 score: 85.2%). Regarding the external tests, the accuracy ranged from 90.0% to 95.8% (overall accuracy: 93.9%). There was no statistical difference in the number of correctly identified the region of interest for the external tests between the expert endoscopist and the established model using attention map analysis (P = 0.11). In terms of the dysplasia subgroup, the number of correctly identified regions of interest was higher in the deep-learning model than in the endoscopist group, although statistically insignificant (P = 0.48). Conclusions: We established a deep-learning model that accurately classifies esophageal cancers, precursor lesions, and non-neoplasms. This model confirmed the potential for generalizability through multicenter external tests and explainability through the attention map analysis.
Collapse
Affiliation(s)
- Eun Jeong Gong
- Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Korea;
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.I.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5821; Fax: +82-33-241-8064
| | - Kyoungwon Jung
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, Korea;
| | - Su Jin Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan 50615, Korea;
| | - Jong Wook Kim
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang 10380, Korea;
| | - Seung In Seo
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.I.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Uhmyung Lee
- Department of Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (U.L.); (Y.B.M.)
| | - You Bin Maeng
- Department of Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (U.L.); (Y.B.M.)
| | - Ye Ji Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea;
| | - Jae Ick Lee
- Department of Life Science, Hallym University, Chuncheon 24252, Korea;
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.I.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| |
Collapse
|
7
|
No-Code Platform-Based Deep-Learning Models for Prediction of Colorectal Polyp Histology from White-Light Endoscopy Images: Development and Performance Verification. J Pers Med 2022; 12:jpm12060963. [PMID: 35743748 PMCID: PMC9225479 DOI: 10.3390/jpm12060963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The authors previously developed deep-learning models for the prediction of colorectal polyp histology (advanced colorectal cancer, early cancer/high-grade dysplasia, tubular adenoma with or without low-grade dysplasia, or non-neoplasm) from endoscopic images. While the model achieved 67.3% internal-test accuracy and 79.2% external-test accuracy, model development was labour-intensive and required specialised programming expertise. Moreover, the 240-image external-test dataset included only three advanced and eight early cancers, so it was difficult to generalise model performance. These limitations may be mitigated by deep-learning models developed using no-code platforms. Objective: To establish no-code platform-based deep-learning models for the prediction of colorectal polyp histology from white-light endoscopy images and compare their diagnostic performance with traditional models. Methods: The same 3828 endoscopic images used to establish previous models were used to establish new models based on no-code platforms Neuro-T, VLAD, and Create ML-Image Classifier. A prospective multicentre validation study was then conducted using 3818 novel images. The primary outcome was the accuracy of four-category prediction. Results: The model established using Neuro-T achieved the highest internal-test accuracy (75.3%, 95% confidence interval: 71.0–79.6%) and external-test accuracy (80.2%, 76.9–83.5%) but required the longest training time. In contrast, the model established using Create ML-Image Classifier required only 3 min for training and still achieved 72.7% (70.8–74.6%) external-test accuracy. Attention map analysis revealed that the imaging features used by the no-code deep-learning models were similar to those used by endoscopists during visual inspection. Conclusion: No-code deep-learning tools allow for the rapid development of models with high accuracy for predicting colorectal polyp histology.
Collapse
|
8
|
Kim HJ, Gong EJ, Bang CS, Lee JJ, Suk KT, Baik GH. Computer-Aided Diagnosis of Gastrointestinal Protruded Lesions Using Wireless Capsule Endoscopy: A Systematic Review and Diagnostic Test Accuracy Meta-Analysis. J Pers Med 2022; 12:jpm12040644. [PMID: 35455760 PMCID: PMC9029411 DOI: 10.3390/jpm12040644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Wireless capsule endoscopy allows the identification of small intestinal protruded lesions, such as polyps, tumors, or venous structures. However, reading wireless capsule endoscopy images or movies is time-consuming, and minute lesions are easy to miss. Computer-aided diagnosis (CAD) has been applied to improve the efficacy of the reading process of wireless capsule endoscopy images or movies. However, there are no studies that systematically determine the performance of CAD models in diagnosing gastrointestinal protruded lesions. Objective: The aim of this study was to evaluate the diagnostic performance of CAD models for gastrointestinal protruded lesions using wireless capsule endoscopic images. Methods: Core databases were searched for studies based on CAD models for the diagnosis of gastrointestinal protruded lesions using wireless capsule endoscopy, and data on diagnostic performance were presented. A systematic review and diagnostic test accuracy meta-analysis were performed. Results: Twelve studies were included. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of protruded lesions were 0.95 (95% confidence interval, 0.93–0.97), 0.89 (0.84–0.92), 0.91 (0.86–0.94), and 74 (43–126), respectively. Subgroup analyses showed robust results. Meta-regression found no source of heterogeneity. Publication bias was not detected. Conclusion: CAD models showed high performance for the optical diagnosis of gastrointestinal protruded lesions based on wireless capsule endoscopy.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5821; Fax: +82-33-241-8064
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
9
|
Bang CS, Lee JJ, Baik GH. Computer-Aided Diagnosis of Gastrointestinal Ulcer and Hemorrhage Using Wireless Capsule Endoscopy: Systematic Review and Diagnostic Test Accuracy Meta-analysis. J Med Internet Res 2021; 23:e33267. [PMID: 34904949 PMCID: PMC8715364 DOI: 10.2196/33267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interpretation of capsule endoscopy images or movies is operator-dependent and time-consuming. As a result, computer-aided diagnosis (CAD) has been applied to enhance the efficacy and accuracy of the review process. Two previous meta-analyses reported the diagnostic performance of CAD models for gastrointestinal ulcers or hemorrhage in capsule endoscopy. However, insufficient systematic reviews have been conducted, which cannot determine the real diagnostic validity of CAD models. OBJECTIVE To evaluate the diagnostic test accuracy of CAD models for gastrointestinal ulcers or hemorrhage using wireless capsule endoscopic images. METHODS We conducted core databases searching for studies based on CAD models for the diagnosis of ulcers or hemorrhage using capsule endoscopy and presenting data on diagnostic performance. Systematic review and diagnostic test accuracy meta-analysis were performed. RESULTS Overall, 39 studies were included. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of ulcers (or erosions) were .97 (95% confidence interval, .95-.98), .93 (.89-.95), .92 (.89-.94), and 138 (79-243), respectively. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of hemorrhage (or angioectasia) were .99 (.98-.99), .96 (.94-0.97), .97 (.95-.99), and 888 (343-2303), respectively. Subgroup analyses showed robust results. Meta-regression showed that published year, number of training images, and target disease (ulcers vs erosions, hemorrhage vs angioectasia) was found to be the source of heterogeneity. No publication bias was detected. CONCLUSIONS CAD models showed high performance for the optical diagnosis of gastrointestinal ulcer and hemorrhage in wireless capsule endoscopy.
Collapse
Affiliation(s)
- Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
10
|
Bang CS. Artificial Intelligence in the Analysis of Upper Gastrointestinal Disorders. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past, conventional machine learning was applied to analyze tabulated medical data while deep learning was applied to study afflictions such as gastrointestinal disorders. Neural networks were used to detect, classify, and delineate various images of lesions because the local feature selection and optimization of the deep learning model enabled accurate image analysis. With the accumulation of medical records, the evolution of computational power and graphics processing units, and the widespread use of open-source libraries in large-scale machine learning processes, medical artificial intelligence (AI) is overcoming its limitations. While early studies prioritized the automatic diagnosis of cancer or pre-cancerous lesions, the current expanded scope of AI includes benign lesions, quality control, and machine learning analysis of big data. However, the limited commercialization of medical AI and the need to justify its application in each field of research are restricting factors. Modeling assumes that observations follow certain statistical rules, and external validation checks whether assumption is correct or generalizable. Therefore, unused data are essential in the training or internal testing process to validate the performance of the established AI models. This article summarizes the studies on the application of AI models in upper gastrointestinal disorders. The current limitations and the perspectives on future development have also been discussed.
Collapse
|
11
|
Bang CS, Lee JJ, Baik GH. Computer-Aided Diagnosis of Diminutive Colorectal Polyps in Endoscopic Images: Systematic Review and Meta-analysis of Diagnostic Test Accuracy. J Med Internet Res 2021; 23:e29682. [PMID: 34432643 PMCID: PMC8427459 DOI: 10.2196/29682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background Most colorectal polyps are diminutive and benign, especially those in the rectosigmoid colon, and the resection of these polyps is not cost-effective. Advancements in image-enhanced endoscopy have improved the optical prediction of colorectal polyp histology. However, subjective interpretability and inter- and intraobserver variability prohibits widespread implementation. The number of studies on computer-aided diagnosis (CAD) is increasing; however, their small sample sizes limit statistical significance. Objective This review aims to evaluate the diagnostic test accuracy of CAD models in predicting the histology of diminutive colorectal polyps by using endoscopic images. Methods Core databases were searched for studies that were based on endoscopic imaging, used CAD models for the histologic diagnosis of diminutive colorectal polyps, and presented data on diagnostic performance. A systematic review and diagnostic test accuracy meta-analysis were performed. Results Overall, 13 studies were included. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of diminutive colorectal polyps (adenomatous or neoplastic vs nonadenomatous or nonneoplastic) were 0.96 (95% CI 0.93-0.97), 0.93 (95% CI 0.91-0.95), 0.87 (95% CI 0.76-0.93), and 87 (95% CI 38-201), respectively. The meta-regression analysis showed no heterogeneity, and no publication bias was detected. Subgroup analyses showed robust results. The negative predictive value of CAD models for the diagnosis of adenomatous polyps in the rectosigmoid colon was 0.96 (95% CI 0.95-0.97), and this value exceeded the threshold of the diagnosis and leave strategy. Conclusions CAD models show potential for the optical histological diagnosis of diminutive colorectal polyps via the use of endoscopic images. Trial Registration PROSPERO CRD42021232189; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=232189
Collapse
Affiliation(s)
- Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
12
|
Kim JH, Nam SJ, Park SC. Usefulness of artificial intelligence in gastric neoplasms. World J Gastroenterol 2021; 27:3543-3555. [PMID: 34239268 PMCID: PMC8240061 DOI: 10.3748/wjg.v27.i24.3543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, studies in many medical fields have reported that image analysis based on artificial intelligence (AI) can be used to analyze structures or features that are difficult to identify with human eyes. To diagnose early gastric cancer, related efforts such as narrow-band imaging technology are on-going. However, diagnosis is often difficult. Therefore, a diagnostic method based on AI for endoscopic imaging was developed and its effectiveness was confirmed in many studies. The gastric cancer diagnostic program based on AI showed relatively high diagnostic accuracy and could differentially diagnose non-neoplastic lesions including benign gastric ulcers and dysplasia. An AI system has also been developed that helps to predict the invasion depth of gastric cancer through endoscopic images and observe the stomach during endoscopy without blind spots. Therefore, if AI is used in the field of endoscopy, it is expected to aid in the diagnosis of gastric neoplasms and determine the application of endoscopic therapy by predicting the invasion depth.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Kangwon Do, South Korea
| | - Seung-Joo Nam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Kangwon Do, South Korea
| | - Sung Chul Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Kangwon Do, South Korea
| |
Collapse
|
13
|
Bang CS, Lim H, Jeong HM, Hwang SH. Use of Endoscopic Images in the Prediction of Submucosal Invasion of Gastric Neoplasms: Automated Deep Learning Model Development and Usability Study. J Med Internet Res 2021; 23:e25167. [PMID: 33856356 PMCID: PMC8085753 DOI: 10.2196/25167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In a previous study, we examined the use of deep learning models to classify the invasion depth (mucosa-confined versus submucosa-invaded) of gastric neoplasms using endoscopic images. The external test accuracy reached 77.3%. However, model establishment is labor intense, requiring high performance. Automated deep learning (AutoDL) models, which enable fast searching of optimal neural architectures and hyperparameters without complex coding, have been developed. OBJECTIVE The objective of this study was to establish AutoDL models to classify the invasion depth of gastric neoplasms. Additionally, endoscopist-artificial intelligence interactions were explored. METHODS The same 2899 endoscopic images that were employed to establish the previous model were used. A prospective multicenter validation using 206 and 1597 novel images was conducted. The primary outcome was external test accuracy. Neuro-T, Create ML Image Classifier, and AutoML Vision were used in establishing the models. Three doctors with different levels of endoscopy expertise were asked to classify the invasion depth of gastric neoplasms for each image without AutoDL support, with faulty AutoDL support, and with best performance AutoDL support in sequence. RESULTS The Neuro-T-based model reached 89.3% (95% CI 85.1%-93.5%) external test accuracy. For the model establishment time, Create ML Image Classifier showed the fastest time of 13 minutes while reaching 82.0% (95% CI 76.8%-87.2%) external test accuracy. While the expert endoscopist's decisions were not influenced by AutoDL, the faulty AutoDL misled the endoscopy trainee and the general physician. However, this was corrected by the support of the best performance AutoDL model. The trainee gained the most benefit from the AutoDL support. CONCLUSIONS AutoDL is deemed useful for the on-site establishment of customized deep learning models. An inexperienced endoscopist with at least a certain level of expertise can benefit from AutoDL support.
Collapse
Affiliation(s)
- Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hae Min Jeong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sung Hyeon Hwang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
14
|
Cho BJ, Bang CS, Lee JJ, Seo CW, Kim JH. Prediction of Submucosal Invasion for Gastric Neoplasms in Endoscopic Images Using Deep-Learning. J Clin Med 2020; 9:jcm9061858. [PMID: 32549190 PMCID: PMC7356204 DOI: 10.3390/jcm9061858] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Endoscopic resection is recommended for gastric neoplasms confined to mucosa or superficial submucosa. The determination of invasion depth is based on gross morphology assessed in endoscopic images, or on endoscopic ultrasound. These methods have limited accuracy and pose an inter-observer variability. Several studies developed deep-learning (DL) algorithms classifying invasion depth of gastric cancers. Nevertheless, these algorithms are intended to be used after definite diagnosis of gastric cancers, which is not always feasible in various gastric neoplasms. This study aimed to establish a DL algorithm for accurately predicting submucosal invasion in endoscopic images of gastric neoplasms. Pre-trained convolutional neural network models were fine-tuned with 2899 white-light endoscopic images. The prediction models were subsequently validated with an external dataset of 206 images. In the internal test, the mean area under the curve discriminating submucosal invasion was 0.887 (95% confidence interval: 0.849–0.924) by DenseNet−161 network. In the external test, the mean area under the curve reached 0.887 (0.863–0.910). Clinical simulation showed that 6.7% of patients who underwent gastrectomy in the external test were accurately qualified by the established algorithm for potential endoscopic resection, avoiding unnecessary operation. The established DL algorithm proves useful for the prediction of submucosal invasion in endoscopic images of gastric neoplasms.
Collapse
Affiliation(s)
- Bum-Joo Cho
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang 14068, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
- Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Correspondence: (B.-J.C.); (C.S.B.); Tel.: +82-31-380-3835 (B.-J.C.); +82-33-240-5821 (C.S.B.)
| | - Chang Seok Bang
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Correspondence: (B.-J.C.); (C.S.B.); Tel.: +82-31-380-3835 (B.-J.C.); +82-33-240-5821 (C.S.B.)
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Chang Won Seo
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang 14068, Korea;
| | - Ju Han Kim
- Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul 03080, Korea;
| |
Collapse
|