1
|
Bossi E, Serrao S, Reveglia P, Ferrara A, Nobile M, Limo E, Corso G, Paglia G. Pre-analytic assessment of dried blood and dried plasma spots: integration in mass spectrometry-based metabolomics and lipidomics workflow. Anal Bioanal Chem 2025; 417:1791-1805. [PMID: 39907755 PMCID: PMC11913995 DOI: 10.1007/s00216-025-05760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Microsampling, especially dried blood spots (DBS), emerged in recent years as a viable alternative to conventional blood collection since it is rapid, simple, minimally invasive, and has user-friendly characteristics. Moreover, DBS are able to avoid analyte degradation thanks to their great stability. Due to their versatility, clinical applications with DBS have increased, including mass spectrometry-based metabolomics and lipidomics studies. In this work, we evaluated and optimized extraction protocols testing five different extraction solutions to perform metabolomics and lipidomics studies on the same spot considering three commercially available microsampling devices, Capitainer, Whatman, and Telimmune. Parallelly, we also evaluated the short-term stability of the three devices at room temperature for up to 5 days. Our results showed that pure methanol was the best compromise to simultaneously extract from the same spot both the lipidome and polar metabolome. However, we also propose a two-step protocol combining methanol and water extraction that improves polar metabolite extraction and shows improved reproducibility in Capitainer and Whatman. Short-term stability results highlighted that both polar metabolites and lipids were stable for up to 6 days using the Capitainer device, while with Whatman and Telimmune, some significant variations were observed after 3 days for some classes of metabolites/lipids, suggesting the need for cold-chain storage when working with these devices.
Collapse
Affiliation(s)
- Eleonora Bossi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Antonietta Ferrara
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Marta Nobile
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Elena Limo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy.
| |
Collapse
|
2
|
Bossi E, Limo E, Pagani L, Monza N, Serrao S, Denti V, Astarita G, Paglia G. Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids. Metabolites 2024; 14:46. [PMID: 38248849 PMCID: PMC10818866 DOI: 10.3390/metabo14010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, with many routinely monitored during conventional wellness checks. The conventional method involves intravenous blood collection, extracting a few milliliters via venipuncture, a technique limited to clinical settings due to its dependence on trained personnel. Microsampling methods have evolved to be less invasive (collecting ≤150 µL of capillary blood), user-friendly (enabling self-collection), and suitable for remote collection in longitudinal studies. Dried blood spot (DBS), a pioneering microsampling technique, dominates clinical and research domains. Recent advancements in device technology address critical limitations of classical DBS, specifically variations in hematocrit and volume. This review presents a comprehensive overview of state-of-the-art microsampling devices, emphasizing their applications and potential for monitoring metabolites and lipids in blood. The scope extends to diverse areas, encompassing population studies, nutritional investigations, drug discovery, sports medicine, and multi-omics research.
Collapse
Affiliation(s)
- Eleonora Bossi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Elena Limo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Nicole Monza
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| |
Collapse
|
3
|
Shen X, Kellogg R, Panyard DJ, Bararpour N, Castillo KE, Lee-McMullen B, Delfarah A, Ubellacker J, Ahadi S, Rosenberg-Hasson Y, Ganz A, Contrepois K, Michael B, Simms I, Wang C, Hornburg D, Snyder MP. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat Biomed Eng 2024; 8:11-29. [PMID: 36658343 PMCID: PMC10805653 DOI: 10.1038/s41551-022-00999-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 μl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as well as thousands of molecular relationships associated with intra-day physiological variations (in heart rate, for example) and with the levels of clinical biomarkers (specifically, glucose and cortisol) and of physical activity. Combining wearables and multi-omics microsampling for frequent and scalable omics may facilitate dynamic health profiling and biomarker discovery.
Collapse
Affiliation(s)
- Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Ryan Kellogg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Daniel J Panyard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Nasim Bararpour
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Kevin Erazo Castillo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Brittany Lee-McMullen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Alireza Delfarah
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Jessalyn Ubellacker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sara Ahadi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Microbiology and Immunology, Stanford University Medical Center, Stanford, CA, USA
| | - Ariel Ganz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Basil Michael
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Ian Simms
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Chuchu Wang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Volani C, Malfertheiner C, Caprioli G, Fjelstrup S, Pramstaller PP, Rainer J, Paglia G. VAMS-Based Blood Capillary Sampling for Mass Spectrometry-Based Human Metabolomics Studies. Metabolites 2023; 13:metabo13020146. [PMID: 36837765 PMCID: PMC9958641 DOI: 10.3390/metabo13020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) is a recently developed sample collection method that enables single-drop blood collection in a minimally invasive manner. Blood biomolecules can then be extracted and processed for analysis using several analytical platforms. The integration of VAMS with conventional mass spectrometry (MS)-based metabolomics approaches is an attractive solution for human studies representing a less-invasive procedure compared to phlebotomy with the additional potential for remote sample collection. However, as we recently demonstrated, VAMS samples require long-term storage at -80 °C. This study investigated the stability of VAMS samples during short-term storage and compared the metabolome obtained from capillary blood collected from the fingertip to those of plasma and venous blood from 22 healthy volunteers. Our results suggest that the blood metabolome collected by VAMS samples is stable at room temperature only for up to 6 h requiring subsequent storage at -80 °C to avoid significant changes in the metabolome. We also demonstrated that capillary blood provides better coverage of the metabolome compared to plasma enabling the analysis of several intracellular metabolites presented in red blood cells. Finally, this work demonstrates that with the appropriate pre-analytical protocol capillary blood can be successfully used for untargeted metabolomics studies.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Christa Malfertheiner
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Giulia Caprioli
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Søren Fjelstrup
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Peter P. Pramstaller
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine, Affiliated to the University of Lübeck, Eurac Research, 39100 Bolzano, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Correspondence:
| |
Collapse
|
5
|
Zou R, Cao W, Chong L, Hua W, Xu H, Mao Y, Page J, Shi R, Xia Y, Hu TY, Zhang W, Ouyang Z. Point-of-Care Tissue Analysis Using Miniature Mass Spectrometer. Anal Chem 2018; 91:1157-1163. [PMID: 30525456 DOI: 10.1021/acs.analchem.8b04935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The combination of direct sampling ionization and miniature mass spectrometer presents a promising technical pathway of point-of-care analysis in clinical applications. In this work, a miniature mass spectrometry system was used for analysis of tissue samples. Direct tissue sampling coupled with extraction spray ionization was used with a home-built miniature mass spectrometer, Mini 12. Lipid species in tissue samples were well profiled in rat brain, kidney, and liver in a couple of minutes. By incorporating a photochemical (Paternò-Büchi) reaction, fast identification of lipid C═C location was realized. Relative quantitation of the lipid C═C isomer was performed by calculating the intensity ratio C═C diagnostic product ions, by which FA 18:1 (Δ9)/FA 18:1 (Δ11) was found to change significantly in mouse cancerous breast tissue samples. Accumulation of 2-hydroxylglutarate in human glioma samples, not in normal brains, can also be easily identified for rapid diagnosis.
Collapse
Affiliation(s)
- Ran Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Leelyn Chong
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Jessica Page
- Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yu Xia
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Tony Y Hu
- The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Wenpeng Zhang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
6
|
Volani C, Paglia G, Smarason SV, Pramstaller PP, Demetz E, Pfeifhofer-Obermair C, Weiss G. Metabolic Signature of Dietary Iron Overload in a Mouse Model. Cells 2018; 7:cells7120264. [PMID: 30544931 PMCID: PMC6315421 DOI: 10.3390/cells7120264] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
Iron is an essential co-factor for several metabolic processes, including the Krebs cycle and mitochondrial oxidative phosphorylation. Therefore, maintaining an appropriate iron balance is essential to ensure sufficient energy production and to avoid excessive reactive oxygen species formation. Iron overload impairs mitochondrial fitness; however, little is known about the associated metabolic changes. Here we aimed to characterize the metabolic signature triggered by dietary iron overload over time in a mouse model, where mice received either a standard or a high-iron diet. Metabolic profiling was assessed in blood, plasma and liver tissue. Peripheral blood was collected by means of volumetric absorptive microsampling (VAMS). Extracted blood and tissue metabolites were analyzed by liquid chromatography combined to high resolution mass spectrometry. Upon dietary iron loading we found increased glucose, aspartic acid and 2-/3-hydroxybutyric acid levels but low lactate and malate levels in peripheral blood and plasma, pointing to a re-programming of glucose homeostasis and the Krebs cycle. Further, iron loading resulted in the stimulation of the urea cycle in the liver. In addition, oxidative stress was enhanced in circulation and coincided with increased liver glutathione and systemic cysteine synthesis. Overall, iron supplementation affected several central metabolic circuits over time. Hence, in vivo investigation of metabolic signatures represents a novel and useful tool for getting deeper insights into iron-dependent regulatory circuits and for monitoring of patients with primary and secondary iron overload, and those ones receiving iron supplementation therapy.
Collapse
Affiliation(s)
- Chiara Volani
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Giuseppe Paglia
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Sigurdur V Smarason
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples. Clin Chim Acta 2018; 486:320-328. [DOI: 10.1016/j.cca.2018.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/09/2018] [Accepted: 08/11/2018] [Indexed: 01/05/2023]
|
8
|
Freeman JD, Rosman LM, Ratcliff JD, Strickland PT, Graham DR, Silbergeld EK. State of the Science in Dried Blood Spots. Clin Chem 2017; 64:656-679. [PMID: 29187355 DOI: 10.1373/clinchem.2017.275966] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.
Collapse
Affiliation(s)
- Jeffrey D Freeman
- National Health Mission Area, Johns Hopkins University Applied Physics Laboratory, Laurel, MD;
| | - Lori M Rosman
- Welch Medical Library, Johns Hopkins University, Baltimore, MD
| | - Jeremy D Ratcliff
- Public Health Studies Program, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Paul T Strickland
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - David R Graham
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ellen K Silbergeld
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
9
|
Volani C, Caprioli G, Calderisi G, Sigurdsson BB, Rainer J, Gentilini I, Hicks AA, Pramstaller PP, Weiss G, Smarason SV, Paglia G. Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow. Anal Bioanal Chem 2017; 409:6263-6276. [PMID: 28815270 DOI: 10.1007/s00216-017-0571-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/17/2017] [Accepted: 08/04/2017] [Indexed: 01/13/2023]
Abstract
Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 μL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but if VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Giulia Caprioli
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Giovanni Calderisi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Baldur B Sigurdsson
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Ivo Gentilini
- Transfusion Center of the Hospital of Bolzano, Lorenz Böhler Str. 5, 39100, Bozen, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Guenter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sigurdur V Smarason
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy
| | - Giuseppe Paglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano/Bozen, Italy.
| |
Collapse
|
10
|
Corso G, Dello Russo A, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: Rare disorders many diagnostic pitfalls. World J Gastroenterol 2017; 23:5257-5265. [PMID: 28839426 PMCID: PMC5550775 DOI: 10.3748/wjg.v23.i29.5257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
In recent decades, biotechnology produced a growth of knowledge on the causes and mechanisms of metabolic diseases that have formed the basis for their study, diagnosis and treatment. Unfortunately, it is well known that the clinical features of metabolic diseases can manifest themselves with very different characteristics and escape early detection. Also, it is well known that the prognosis of many metabolic diseases is excellent if diagnosed and treated early. In this editorial we briefly summarized two groups of inherited metabolic diseases, the defects of cholesterol biosynthesis and those of bile acids. Both groups show variable clinical manifestations but some clinical signs and symptoms are common in both the defects of cholesterol and bile acids. The differential diagnosis can be made analyzing sterol profiles in blood and/or bile acids in blood and urine by chromatographic techniques (GC-MS and LC-MS/MS). Several defects of both biosynthetic pathways are treatable so early diagnosis is crucial. Unfortunately their diagnosis is made too late, due either to the clinical heterogeneity of the syndromes (severe, mild and very mild) that to the scarcity of scientific dissemination of these rare diseases. Therefore, the delay in diagnosis leads the patient to the medical observation when the disease has produced irreversible damages to the body. Here, we highlighted simple clinical and laboratory descriptions that can potentially make you to suspect a defect in cholesterol biosynthesis and/or bile acids, as well, we suggest appropriate request of the laboratory tests that along with common clinical features can help to diagnose these defects.
Collapse
|
11
|
Ferreira CR, Yannell KE, Jarmusch AK, Pirro V, Ouyang Z, Cooks RG. Ambient Ionization Mass Spectrometry for Point-of-Care Diagnostics and Other Clinical Measurements. Clin Chem 2016; 62:99-110. [PMID: 26467505 PMCID: PMC6367930 DOI: 10.1373/clinchem.2014.237164] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/14/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND One driving motivation in the development of point-of-care (POC) diagnostics is to conveniently and immediately provide information upon which healthcare decisions can be based, while the patient is on site. Ambient ionization mass spectrometry (MS) allows direct chemical analysis of unmodified and complex biological samples. This suite of ionization techniques was introduced a decade ago and now includes a number of techniques, all seeking to minimize or eliminate sample preparation. Such approaches provide new opportunities for POC diagnostics and rapid measurements of exogenous and endogenous molecules (e.g., drugs, proteins, hormones) in small volumes of biological samples, especially when coupled with miniature mass spectrometers. CONTENT Ambient MS-based techniques are applied in diverse fields such as forensics, pharmaceutical development, reaction monitoring, and food analysis. Clinical applications of ambient MS are at an early stage but show promise for POC diagnostics. This review provides a brief overview of various ambient ionization techniques providing background, examples of applications, and the current state of translation to clinical practice. The primary focus is on paper spray (PS) ionization, which allows quantification of analytes in complex biofluids. Current developments in the miniaturization of mass spectrometers are discussed. SUMMARY Ambient ionization MS is an emerging technology in analytical and clinical chemistry. With appropriate MS instrumentation and user-friendly interfaces for automated analysis, ambient ionization techniques can provide quantitative POC measurements. Most significantly, the implementation of PS could improve the quality and lower the cost of POC testing in a variety of clinical settings.
Collapse
Affiliation(s)
- Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN
| | - Karen E Yannell
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN
| | - Alan K Jarmusch
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN
| | - Zheng Ouyang
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering and Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN;
| |
Collapse
|
12
|
A new DBS card with spot sizes independent of the hematocrit value of blood. Bioanalysis 2015; 7:2095-104. [DOI: 10.4155/bio.15.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: DBS cards have been a big promise for decades. However, blood with low hematocrit (Ht) values results on regular cellulose-based DBS cards in larger spot sizes, compared with blood with high Ht-values. A new material has been developed to solve this problem. Results: This material, based on hydrophilic-coated woven polyester fibers, shows spot sizes independent of the Ht-value of blood. Homogeneity over the spot is within 10% RSD. Conclusion: Quantitative measurements over a broad Ht range show nonbiased results compared with whole spot analysis. The cards are experienced as reproducible, robust and easy to use on aspects of punchability and extractability.
Collapse
|
13
|
Chen Y, Xu C, Xu F, Yang K, Wang Q, Zhao X, Wang Y, Chen B, Ding CF. Electro-Filtering Spray Ionization Source for Soil Analysis. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1070163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Abstract
Ambient ionization MS has become very popular in analytical science and has now evolved as an effective analytical tool in metabolomics, biological tissue imaging, protein and small molecule drug analysis, where biological samples are probed in a rapid and direct fashion with minimal sample preparation at ambient conditions. However, certain inherent challenges continue to hinder the vibrant prospects of these methods for in situ analyses or to replace conventional methods in bioanalysis. This review provides an introduction to the field and its application in bioanalysis, with an emphasis on the most recent developments and applications. Furthermore, ongoing challenges or limitations related to quantitation, sensitivity, selectivity, instrumentation and mass range of these ambient methods will also be discussed.
Collapse
|
15
|
Cho YT, Su H, Wu WJ, Wu DC, Hou MF, Kuo CH, Shiea J. Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem 2015; 69:209-54. [PMID: 25934363 DOI: 10.1016/bs.acc.2015.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometric techniques frequently used in clinical diagnosis, such as gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, ambient ionization mass spectrometry, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF/MS), are discussed. Due to its ability to rapidly detect large biomolecules in trace amounts, MALDI-TOF/MS is an ideal tool for characterizing disease biomarkers in biologic samples. Clinical applications of MS for the identification and characterization of microorganisms, DNA fragments, tissues, and biofluids are introduced. Approaches for using MALDI-TOF/MS to detect various disease biomarkers including peptides, proteins, and lipids in biological fluids are further discussed. Finally, various sample pretreatment methods which improve the detection efficiency of disease biomarkers are introduced.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
LC-MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:1-6. [PMID: 24618029 DOI: 10.1016/j.jchromb.2014.01.054] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/26/2022]
Abstract
The present review aims to critically discuss some of the major problems and limitations of LC-MS based metabolomics as experienced from an analytical chemistry standpoint. Metabolomics offers distinct advantages to a variety of life sciences. Continuous development of the field has been realised due to intensive efforts from a great many scientists from widely divergent backgrounds and research interests as demonstrated by the contents of this special issue. The aim of this commentary is to describe current hindrances to field's progress, (some unique to metabolomics, some common with other omics fields or with conventional targeted bioanalysis) to propose some potential solutions to overcome these constraints and to provide a future perspective for likely developments in the field.
Collapse
|
17
|
Abstract
This Review provides a general understanding of paper spray-MS, including the methodology and theory associated with a number of different related applications. This method has become a direct sampling/ionization method for mass spectrometric analysis at ambient conditions and, as a result, it has greatly simplified and increased the speed of mass-spectrum analysis. It has now become an increasingly popular and important method for MS. The first part of this review discusses the fundamentals of paper spray. Some modifications are also reviewed, including nib-assisted paper spray, droplet monitoring, high-throughput paper spray, leaf spray, tissue spray and wooden tip spray. The second part focuses on recent applications, including the analysis of DBS, foodstuffs, drugs and oil. These studies show that paper spray-MS has great potential for use as a fast sampling ionization method, and for the direct analysis of biological and chemical samples at ambient conditions.
Collapse
|
18
|
Recent advances in the bioanalytical applications of dried matrix spotting for the analysis of drugs and their metabolites. Bioanalysis 2013; 5:2581-8. [DOI: 10.4155/bio.13.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DBS techniques for the bioanalysis of drugs and metabolites from whole blood have been demonstrated to be a useful tool in drug development. The term dried matrix spot (DMS) has been used to indicate that the DBS technique has been applied to nonblood matrices. DMS methods often employ a color-indicating process that enhances the ability to analyze these mostly transparent fluids when spotted onto collection paper. The color-indicating dye allows the analyst to visually confirm the location of the dried sample spot. Other benefits of using a color-indicating dye include improved method accuracy and precision, because the process of adding the dye allows for the concurrent addition of the IS prior to sample addition and extraction. To date, matrices that have been analyzed using DMS include cerebrospinal fluid, synovial fluid, saliva, tears, urine and plasma.
Collapse
|
19
|
Koop DR, Bleyle LA, Munar M, Cherala G, Al-Uzri A. Analysis of tacrolimus and creatinine from a single dried blood spot using liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 926:54-61. [PMID: 23548676 PMCID: PMC4160148 DOI: 10.1016/j.jchromb.2013.02.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/28/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Abstract
Long term therapeutic drug monitoring and assessment of renal function are required in renal transplant recipients on immunosuppressant therapy such as tacrolimus. Dry blood spots (DBS) have been used successfully in the clinic for many years and offers a convenient, simple and non-invasive method for repeated blood tests. We developed and performed a preliminary validation of a method for the analysis of tacrolimus and creatinine from a single DBS using liquid chromatography-tandem mass spectrometric (LC-MS/MS). Tacrolimus and creatinine were extracted from a 6mm punch with a mixture of methanol/acetonitrile containing ascomycin and deuterated creatinine as internal standards. A 10 μl aliquot of the extract was analyzed directly after dilution for creatinine with normal phase high performance liquid chromatography and multiple reaction monitoring. The remainder of the extract was processed and analyzed for tacrolimus. The lower limit of quantification for tacrolimus was 1 ng/ml with accuracy of 0.34% bias and precision (CV) of 11.1%. The precision ranged from 1.33% to 7.68% and accuracy from -4.44% to 11.6% bias for the intra- and inter-day analysis. The lower limit of quantification of creatinine was 0.01 mg/dL with precision of 7.94%. Accuracy was based on recovery of additional creatinine spiked into whole blood samples and ranged from -2.45% bias at 5 mg/dL to 3.75% bias at 0.5 mg/dL. Intra- and inter-day precision was from 3.48 to 4.11%. The assay was further validated with DBS prepared from pediatric renal transplant recipients. There was excellent correlation between the levels of tacrolimus and creatinine obtained from the clinical laboratory and the DBS method developed. After additional validation, this assay may have a significant impact on compliance with medication intake as well as potentially lowering the cost associated with intravenous blood draws in clinical laboratories.
Collapse
Affiliation(s)
- Dennis R Koop
- Department of Physiology and Pharmacology and Bioanalytical Shared Resource/Pharmacokinetics Core, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
20
|
Ross RS, Stambouli O, Grüner N, Marcus U, Cai W, Zhang W, Zimmermann R, Roggendorf M. Detection of infections with hepatitis B virus, hepatitis C virus, and human immunodeficiency virus by analyses of dried blood spots--performance characteristics of the ARCHITECT system and two commercial assays for nucleic acid amplification. Virol J 2013; 93:309-21. [PMID: 22244848 DOI: 10.1016/j.antiviral.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nowadays, dried blood spots (DBS) are primarily used to obtain diagnostic access to risk collectives such as intravenous drug users, who are prone to infections with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). Before DBS analyses can be used in this diagnostic context, however, a comprehensive evaluation of its performance characteristics must be conducted. To the best of our knowledge, the current study presents for the first time such essential data for the Abbott ARCHITECT system, which is currently the worldwide leading platform in this field of infection diagnostics. METHODS The investigation comprised 1,762 paired serum/DBS samples and a total of 3,524 determinations with the Abbott ARCHITECT HBsAg, anti-HBc, anti-HBs, anti-HCV and HIV-1-p24-antigen/anti-HIV 1/2 assays as well as with the artus HBV LC PCR and VERSANT HCV RNA qualitative (TMA) tests. RESULTS In the context of DBS testing, a specificity of 100% was recorded for the seven serological and molecular biological assays. The analytical sensitivity of HBsAg, anti-HBc, anti-HBs, anti-HCV, HIV-1-p24-antigen/anti-HIV 1/2, HBV DNA, and HCV RNA detections in DBS eluates was 98.6%, 97.1%, 97.5%, 97.8%, 100%, 93%, and 100%, respectively. DISCUSSION/CONCLUSIONS The results obtained indicate that it is today possible to reliably detect HBsAg, anti-HBc, anti-HBs, anti-HCV and HIV-1-p24 antigen/anti-HIV 1/2 with state-of-the-art analytical systems such as the Abbott ARCHITECT in DBS eluates even when a comparatively high elution volume of 1,000 μl is used. They also provide evidence for the inherent analytical limits of DBS testing, which primarily concern the anti-HBc/anti-HBs system for individuals with HIV infections and nucleic acid tests with relatively low analytical sensitivity.
Collapse
Affiliation(s)
- R Stefan Ross
- Institute of Virology, National Reference Centre for Hepatitis C, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Plamen A. Demirev
- Johns Hopkins University Applied Physics Laboratory, Laurel,
Maryland 20723, United States
| |
Collapse
|
22
|
Dried blood spots as a sampling technique for the quantitative determination of guanfacine in clinical studies. Bioanalysis 2011; 3:2501-14. [DOI: 10.4155/bio.11.262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Dried blood spot (DBS) technology was evaluated for the quantitative determination of guanfacine in human blood in clinical studies. A very sensitive DBS assay has been developed using HPLC coupled with an AB Sciex 5500 QTRAP® (Applied Biosystems/MDS Sciex, ON, Canada) MS system (LC–MS/MS) with a linear calibration range of 0.05 to 25 ng/ml. High-resolution MS using an Exactive Orbitrap® (ThermoFisher, LLC., CA, USA) was compared with the QTRAP using extracted exact mass ion current profiles for guanfacine and its stable-isotope-incorporated internal standard. The sample preparation employed liquid–liquid extraction with methyl t-butyl ether of 5 mm punched DBS card disks, followed by reversed-phase HPLC separation coupled with either MS/MS or high-resolution MS. Routine experiments were performed to establish the robustness of the DBS assay, including precision, accuracy, linearity, selectivity, sensitivity and long-term stability of up to 76 days. In addition, several factors that potentially affect quantitation were investigated, including blood volume for DBS spotting, punch size and punch location. Results: A sensitive research assay with a LLOQ of 0.05 ng/ml was developed and subjected to several components of a method validation common to a regulated bioanalysis procedure employing DBS. This method development and partial validation study determined that spot volume, punch size or punch location do not affect assay accuracy and precision. The DBS approach was successfully applied to a clinical study (a Phase I, randomized, double-blind, placebo-controlled, crossover study to assess the effect of varying multiple oral doses of guanfacine on the pharmacokinetic, pharmacodynamic, safety, and tolerability profiles in healthy adult subjects). The pharmacokinetic profiles for 12 volunteers generated from the DBS assay and from a previously validated plasma assay were compared and were found to be comparable. DBS incurred samples collected from finger prick blood and directly applied to the DBS cards were also analyzed for comparison. Conclusion: From a bioanalytical perspective, DBS sample collection and analysis is a potentially viable alternative for guanfacine determination in clinical studies, utilizing approximately 100 µl of blood per subject profile compared with a few millilitres of blood drawn for conventional plasma bioanalysis.
Collapse
|
23
|
Corso G, D'Apolito O, Garofalo D, Paglia G, Dello Russo A. Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:669-679. [PMID: 21683155 DOI: 10.1016/j.bbalip.2011.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022]
Abstract
Free carnitine and acylcarnitines play an important role in the metabolism of fatty acids. Sterols are structural lipids found in the membranes of many eukaryotic cells, and they also have functional roles such as the regulation of membrane permeability and fluidity, activity of membrane-bound enzymes and signals transduction. Abnormal profiles of these compounds in biological fluids may be useful markers of metabolic changes. In this review, we describe the subset of the lipidome represented by acylcarnitines and sterols, and we summarize how these compounds have been analyzed in the past. Over the last 50years, lipid mass spectrometry (MS) has evolved to become one of the most useful techniques for metabolic analysis. Today, the introduction of new ambient ionization techniques coupled to MS (AMS), which are characterized by the direct desorbing/ionizing of molecules from solid samples, is generating new possibilities for in situ analysis. Recently, we developed an AMS approach called APTDCI to desorb/ionize using a heated gas flow and an electrical discharge to directly analyze sterols and indirectly investigate acylcarnitines in dried blood or plasma spot samples. Here, we also describe the APTDCI method and some of its clinical applications, and we underline the common complications and issues that remain to be resolved.
Collapse
Affiliation(s)
- Gaetano Corso
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | |
Collapse
|
24
|
Strathmann FG, Hoofnagle AN. Current and future applications of mass spectrometry to the clinical laboratory. Am J Clin Pathol 2011; 136:609-16. [PMID: 21917684 DOI: 10.1309/ajcpw0ta8obbngck] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mass spectrometry is an analytic technique with high specificity and a growing presence in laboratory medicine. Various types of mass spectrometers are being used in an increasing number of clinical laboratories around the world, and, as a result, significant improvements in assay performance are occurring rapidly in areas such as toxicology, endocrinology, and biochemical genetics. This review serves as a basic introduction to mass spectrometry, its uses, and associated challenges in the clinical laboratory and ends with a brief discussion of newer methods with the greatest potential for clinical diagnostics.
Collapse
Affiliation(s)
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| |
Collapse
|
25
|
Direct analysis of dried blood spots coupled with mass spectrometry: concepts and biomedical applications. Anal Bioanal Chem 2011; 402:2485-98. [DOI: 10.1007/s00216-011-5161-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/17/2011] [Accepted: 06/02/2011] [Indexed: 11/25/2022]
|