1
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
2
|
Florêncio GP, Xavier AR, Natal ACDC, Sadoyama LP, Röder DVDDB, Menezes RDP, Sadoyama Leal G, Patrizzi LJ, Pena GDG. Synergistic Effects of Probiotics and Lifestyle Interventions on Intestinal Microbiota Composition and Clinical Outcomes in Obese Adults. Metabolites 2025; 15:70. [PMID: 39997695 PMCID: PMC11857521 DOI: 10.3390/metabo15020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity is a growing global epidemic. The composition of the intestinal microbiota can be influenced by several factors. Studies highlight the role of intestinal bacteria in the pathophysiology of obesity. So, the objective of this study was to investigate whether the use of probiotics, together with healthy lifestyle habits, contributes to weight reduction in obese individuals by analyzing the intestinal microbiota profile. METHODS A prospective study was carried out with 45 adults with obesity. Participants underwent guidance on healthy lifestyle habits, received a probiotic component containing different microbiological strains and were followed for 60 days. Clinical parameters, body composition, biochemical analysis, and intestinal microbiota assessment were performed before and after treatment. After 60 days, it was observed that the bacterial strains present in the probiotic were present in the patients' intestinal microbiota. Participants also showed improvements in physical activity, sleep quality, and anxiety management, as well as changes in some eating habits, such as a reduction in the consumption of processed foods and a significant increase in water intake. RESULTS A reduction in BMI, fasting glucose, insulin, HOMA-IR, LDL cholesterol, and triglycerides was observed, in addition to an increase in HDL cholesterol, improvement in bowel movement frequency, and stool consistency. Analysis of the intestinal microbiota revealed an increase in microbial diversity and a better balance between the bacterial phyla Firmicutes and Bacteroidetes. CONCLUSIONS The changes related to improving the composition of the intestinal microbiota, dietary habits, increased physical activity, reduced anxiety, and better sleep quality have significantly contributed to weight loss and improvements in physiological parameters in obese individuals.
Collapse
Affiliation(s)
- Glauber Pimentel Florêncio
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Analicy Rodrigues Xavier
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Ana Catarina de Castro Natal
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Lorena Prado Sadoyama
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | | | - Ralciane de Paula Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Geraldo Sadoyama Leal
- Institute of Biotechnology, Federal University of Catalão, Catalão 75704-020, GO, Brazil;
| | - Lislei Jorge Patrizzi
- Department of Physiotherapy, Federal University of Triângulo Mineiro, Uberaba 38025-350, MG, Brazil;
| | - Geórgia das Graças Pena
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| |
Collapse
|
3
|
Chantanaskul T, Patumcharoenpol P, Roytrakul S, Kingkaw A, Vongsangnak W. Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis. Int J Mol Sci 2024; 25:13533. [PMID: 39769296 PMCID: PMC11676981 DOI: 10.3390/ijms252413533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein-protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome-mycobiome-human gut studies associated with AD and other allergic diseases in infants.
Collapse
Affiliation(s)
- Thanawit Chantanaskul
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Sittirak Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 144 Thailand Science Park, Phaholyothin Road, Pathum Thani 12120, Thailand;
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
4
|
Liu X, Sun C, Zhou Q, Zheng X, Jiang S, Wang A, Han Y, Xu G, Liu B. Ferulic Acid Relieves the Oxidative Stress Induced by Oxidized Fish Oil in Oriental River Prawn ( Macrobrachium nipponense) with an Emphasis on Lipid Metabolism and Gut Microbiota. Antioxidants (Basel) 2024; 13:1463. [PMID: 39765792 PMCID: PMC11672775 DOI: 10.3390/antiox13121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
To investigate the potential of ferulic acid (FA) in attenuating the deleterious effects of oxidized fish oil (OF) on Macrobrachium nipponense, four experimental diets were formulated: 3% fresh fish oil (CT group, peroxide value: 2.2 mmol/kg), 3% oxidized fish oil (OF group, peroxide value: 318 mmol/kg), and 3% OF with an additional 160 and 320 mg/kg of FA (OF+FA160 group and OF+FA320 group, respectively). M. nipponense (initial weight: 0.140 ± 0.015 g) were randomly divided into four groups with six replicates (60 individuals per replicate) and reared for a period of 10 weeks. The results showed that the OF treatments significantly reduced the growth performance, the expression of antioxidant genes in the hepatopancreas, the levels of low-density lipoprotein cholesterol, and the gene expression levels of ACC, FAS, FABP10, ACBP, G6PDH, and SCD in the hepatopancreas (p < 0.05). OF supplementation significantly increased the levels of high-density lipoprotein cholesterol in hemolymph and the gene expression levels of CPT1 (p < 0.05). Addition of FA to the OF group significantly increased total bile acids (p < 0.05). In addition, it was found by Oil Red staining that the proportion of lipid droplets was significantly increased in the OF group (p < 0.05). However, the lipid droplets were alleviated by FA supplementation in the diet. OF was found to significantly reduce the diversity of intestinal microbiota by 16S rDNA sequencing and significantly increase the Firmicutes/Bacteroidetes (F/B) ratio (p < 0.05). Functional analysis of gut microbiota also showed that OF reduced lipolysis and led to fat deposition, which is related to gut microbiota. However, this study found that the composition of the gut microbiome of M. nipponense was changed by the addition of FA in the diet, including an increase in the abundance of Ruminococcaceae UCG-005 and Lachnospiraceae, a reduction in the F/B ratio, and an improvement in lipid metabolism. In conclusion, the OF induced oxidative stress, disturbed the balance of intestinal microbiota, promoted lipid accumulation, and caused disorders of lipid metabolism in M. nipponense by increasing lipid synthesis and reducing β-oxidation. However, the results of this study highlighted the potential of FA supplementation to modulate intestinal microbial composition, promote bile acid production, and activate genes related to lipid metabolism in the hepatopancreas, ultimately leading to a reduction in lipid deposition in M. nipponense.
Collapse
Affiliation(s)
- Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xiaochuan Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Aimin Wang
- Yancheng Academy of Fishery Science, Yancheng 224051, China; zam--
| | - Yongquan Han
- Guangzhou Cohoo Biotechnology Co., Ltd., Guangzhou 510663, China;
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
5
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
6
|
Rizk SK, Farag AGA, Shaeir SMA. A study of granulysin and pentraxin 3 genetic polymorphisms and their contribution to acne susceptibility. Arch Dermatol Res 2024; 316:691. [PMID: 39412662 DOI: 10.1007/s00403-024-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
This study aims to examine the genetic polymorphisms of the granulysin (GNLY) and pentraxin 3 (PTX3) genes and their association with acne in Egypt. Acne vulgaris is classified as a disorder of the pilosebaceous unit. Clinical, histological, and immunological findings indicate that inflammation is involved in every stage of acne development. GNLY and PTX3 are both involved in the body's immune system and may play a role in the pathophysiology of acne. This case-control study included 180 participants who have acne and 180 healthy controls. Real-time PCR was used to genotype GNLY rs7908 and PTX3 rs2305619 polymorphisms. Genotype occurrence and allelic spreading for both single nucleotide polymorphisms (SNP) are in Hardy-Weinberg equilibrium. Regarding rs7908, no statistical difference was observed in the genotype and allele distributions between acne patients and controls. On the other hand, rs2305619 showed a statistical difference in the genotype and allele distributions between acne patients and controls, with a marked prevalence of the GG group and G allele in acne patients. Our study revealed a significant link between the PTX3 rs2305619 and acne susceptibility in Egypt, with the AG + GG genotype strongly predicting acne. In contrast, the GNYL rs7908 polymorphism was not associated with acne. These results highlight a genetic component to acne and suggest that PTX3 rs2305619 could be a key marker for understanding acne susceptibility.
Collapse
Affiliation(s)
- Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt.
| | - Azza Gaber Antar Farag
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | |
Collapse
|
7
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
8
|
Machado MSG, Rodrigues VF, Barbosa SC, Elias-Oliveira J, Pereira ÍS, Pereira JA, Pacheco TCF, Carlos D. IL-1 Receptor Contributes to the Maintenance of the Intestinal Barrier via IL-22 during Obesity and Metabolic Syndrome in Experimental Model. Microorganisms 2024; 12:1717. [PMID: 39203559 PMCID: PMC11357463 DOI: 10.3390/microorganisms12081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal permeability and bacterial translocation are increased in obesity and metabolic syndrome (MS). ILC3 cells contribute to the integrity of intestinal epithelium by producing IL-22 via IL-1β and IL-23. This study investigates the role of IL-1R1 in inducing ILC3 cells and conferring protection during obesity and MS. For this purpose, C57BL/6 wild-type (WT) and IL-1R1-deficient mice were fed a standard diet (SD) or high-fat diet (HFD) for 16 weeks. Weight and blood glucose levels were monitored, and adipose tissue and blood samples were collected to evaluate obesity and metabolic parameters. The small intestine was collected to assess immunological and junction protein parameters through flow cytometry and RT-PCR, respectively. The intestinal permeability was analyzed using the FITC-dextran assay. The composition of the gut microbiota was also analyzed by qPCR. We found that IL-1R1 deficiency exacerbates MS in HFD-fed mice, increasing body fat and promoting glucose intolerance. A worsening of MS in IL-1R1-deficient mice was associated with a reduction in the ILC3 population in the small intestine. In addition, we found decreased IL-22 expression, increased intestinal permeability and bacterial translocation to the visceral adipose tissue of these mice compared to WT mice. Thus, the IL-1R1 receptor plays a critical role in controlling intestinal homeostasis and obesity-induced MS, possibly through the differentiation or activation of IL-22-secreting ILC3s.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Carlos
- Laboratory of Immunoregulation of Metabolic Disease, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.S.G.M.); (V.F.R.); (S.C.B.); (J.E.-O.); (Í.S.P.); (J.A.P.); (T.C.F.P.)
| |
Collapse
|
9
|
Narang A, Rashid M, Thakur S, Jain SK, Kaur A, Kaur S. Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10343-y. [PMID: 39150651 DOI: 10.1007/s12602-024-10343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The global prevalence rate of diabetes in 2021 was 6.1% making diabetes one of the top 10 causes of death. Prolonged use of antidiabetic medications is associated with various side effects; therefore, alternative treatment strategies for diabetes need exploration. The antidiabetic properties of Lactiplantibacillus plantarum 2034 was explored both in in vitro and in vivo studies. Secretory metabolites of probiotic L. plantarum 2034 exhibited alpha-glucosidase, alpha-amylase, and lipase inhibitory activities, in vitro. Further, the antidiabetic efficacy of 2034 was evaluated in streptozotocin-nicotinamide-induced diabetic rats. In the therapeutic model, oral administration of L. plantarum resulted in normalization of body weight, fasting blood glucose, total cholesterol (TC), and liver enzymes, and significant (p < 0.05) reduction in insulin and triglyceride (TG) levels. Histological evaluation of pancreas, liver, and kidney showed restoration of normal architecture in probiotic-treated group. Similarly, in a preventive + therapeutic model, 14 days of pre-administration of 2034 in pre, pre + post, and cell-free supernatant resulted in significant reduction in glucose, TG, TC, and liver biochemistry of diabetic rats as compared to untreated diabetic rats. An oral glucose tolerance test showed that the glucose levels normalized within 90 min in all the treated groups. Further, the oxidative stress parameters were also studied that showed that in all the treated groups, the concentration of antioxidant enzymes significantly (p < 0.05) increased as compared to diabetic untreated rats. Thus, administration of L. plantarum 2034 and its metabolites successfully ameliorated hyperglycaemia and hypercholesterolemia in both the models probably due to inhibition of gut enzymes and by increasing the concentration of liver antioxidant enzymes.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
10
|
Yang C, Du Y, Zhao T, Zhao L, Liu L, Liu L, Yang X. Consumption of dietary turmeric promotes fat browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice. Food Funct 2024; 15:8153-8167. [PMID: 39011866 DOI: 10.1039/d4fo01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study was designed to verify the anti-obesity effect of dietary turmeric powder (TP) as a traditional cooking spice and its underlying mechanism. The HFD-fed C57BL/6J mice were supplemented with or without TP (8%) for 12 weeks. The results indicated that the glucolipid metabolism disorder of high-fat diet (HFD)-fed mice was significantly ameliorated through the supplementation of TP. The consumption of TP also induced beige-fat development and brown adipose tissue (BAT)-derived nonshivering thermogenesis in HFD-fed obese mice. 16S rDNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated the intestinal microbiota dysbiosis and microbial metabolism abnormality caused by HFD, reflected by dramatically increasing the relative abundance of Muribaculaceae, Candidatus_Saccharimonas, and Bifidobacterium and production of short-chain fatty acids (SCFAs) and succinate. Interestingly, TP-induced BAT thermogenesis and iWAT browning were highly correlated with the reconstruction of the gut microbiome and formation of SCFAs and succinate. Collectively, these findings manifest beneficial actions of TP on the promotion of adipose browning and thermogenesis in association with gut microbiota reconstruction, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Luyao Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Shi J, Shen H, Huang H, Zhan L, Chen W, Zhou Z, Lv Y, Xiong K, Jiang Z, Chen Q, Liu L. Gut microbiota characteristics of colorectal cancer patients in Hubei, China, and differences with cohorts from other Chinese regions. Front Microbiol 2024; 15:1395514. [PMID: 38962132 PMCID: PMC11220721 DOI: 10.3389/fmicb.2024.1395514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
The research on the correlation or causality between gut microbiota and the occurrence, development, and treatment of colorectal cancer (CRC) is receiving increasing emphasis. At the same time, the incidence and mortality of colorectal cancer vary among individuals and regions, as does the gut microbiota. In order to gain a better understanding of the characteristics of the gut microbiota in CRC patients and the differences between different regions, we initially compared the gut microbiota of 25 CRC patients and 26 healthy controls in the central region of China (Hubei Province) using 16S rRNA high-throughput sequencing technology. The results showed that Corynebacterium, Enterococcus, Lactobacillus, and Escherichia-Shigella were significantly enriched in CRC patients. In addition, we also compared the potential differences in functional pathways between the CRC group and the healthy control group using PICRUSt's functional prediction analysis. We then analyzed and compared it with five cohort studies from various regions of China, including Central, East, and Northeast China. We found that geographical factors may affect the composition of intestinal microbiota in CRC patients. The composition of intestinal microbiota is crucial information that influences colorectal cancer screening, early detection, and the prediction of CRC treatment outcomes. This emphasizes the importance of conducting research on CRC-related gut microbiota in various regions of China.
Collapse
Affiliation(s)
- Jianguo Shi
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hexiao Shen
- School of Life Sciences and Health Engineering, Hubei University, Wuhan, China
| | - Hui Huang
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lifang Zhan
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Chen
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuohui Zhou
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongling Lv
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Xiong
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwei Jiang
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyi Chen
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
13
|
Leite G, Barlow GM, Rashid M, Hosseini A, Cohrs D, Parodi G, Morales W, Weitsman S, Rezaie A, Pimentel M, Mathur R. Characterization of the Small Bowel Microbiome Reveals Different Profiles in Human Subjects Who Are Overweight or Have Obesity. Am J Gastroenterol 2024; 119:1141-1153. [PMID: 38578969 PMCID: PMC11142649 DOI: 10.14309/ajg.0000000000002790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION Gut microbiome changes are linked to obesity, but findings are based on stool data. In this article, we analyzed the duodenal microbiome and serum biomarkers in subjects with normal weight, overweight, and obesity. METHODS Duodenal aspirates and serum samples were obtained from subjects undergoing standard-of-care esophagogastroduodenoscopy without colon preparation. Aspirate DNAs were analyzed by 16S rRNA and shotgun sequencing. Predicted microbial metabolic functions and serum levels of metabolic and inflammatory biomarkers were also assessed. RESULTS Subjects with normal weight (N = 105), overweight (N = 67), and obesity (N = 42) were identified. Overweight-specific duodenal microbial features include lower relative abundance (RA) of Bifidobacterium species and Escherichia coli strain K-12 and higher Lactobacillus intestinalis , L. johnsonii , and Prevotella loescheii RA. Obesity-specific features include higher Lactobacillus gasseri RA and lower L. reuteri (subspecies rodentium ), Alloprevotella rava , and Leptotrichia spp RA. Escalation features (progressive changes from normal weight through obesity) include decreasing Bacteroides pyogenes , Staphylococcus hominis , and unknown Faecalibacterium species RA, increasing RA of unknown Lactobacillus and Mycobacterium species, and decreasing microbial potential for biogenic amines metabolism. De-escalation features (direction of change altered in normal to overweight and overweight to obesity) include Lactobacillus acidophilus , L. hominis , L. iners , and Bifidobacterium dentium . An unknown Lactobacillus species is associated with type IIa dyslipidemia and overweight, whereas Alloprevotella rava is associated with type IIb and IV dyslipidemias. DISCUSSION Direct analysis of the duodenal microbiome has identified key genera associated with overweight and obesity, including some previously identified in stool, e.g., Bifidobacterium and Lactobacillus . Specific species and strains exhibit differing associations with overweight and obesity, including escalation and de-escalation features that may represent targets for future study and therapeutics.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Gillian M. Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Daniel Cohrs
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| |
Collapse
|
14
|
Li H, Ji Y, Luo H, Huizinga JD, Chen J. Ingesting yeast extract causes excitation of neurogenic and myogenic colonic motor patterns in the rat. J Cell Mol Med 2024; 28:e18343. [PMID: 38760903 PMCID: PMC11101669 DOI: 10.1111/jcmm.18343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 05/20/2024] Open
Abstract
Fermented foods play a significant role in the human diet for their natural, highly nutritious and healthy attributes. Our aim was to study the effect of yeast extract, a fermented substance extracted from natural yeast, on colonic motility to better understand its potential therapeutic role. A yeast extract was given to rats by gavage for 3 days, and myogenic and neurogenic components of colonic motility were studied using spatiotemporal maps made from video recordings of the whole colon ex vivo. A control group received saline gavages. The yeast extract caused excitation of the musculature by increasing the propagation length and duration of long-distance contractions, the major propulsive activity of the rat colon. The yeast extract also evoked rhythmic propulsive motor complexes (RPMCs) which were antegrade in the proximal and mid-colon and retrograde in the distal colon. RPMC activity was evoked by distention-induced neural activity, but it was myogenic in nature since we showed it to be generated by bethanechol in the presence of tetrodotoxin. In conclusion, ingestion of yeast extract stimulates rat colon motility by exciting neurogenic and myogenic control mechanisms.
Collapse
Affiliation(s)
- Hongfei Li
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yanzhao Ji
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Hesheng Luo
- Department of Gastroenterology and HepatologyRenmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System DiseasesWuhanHubeiChina
| | - Jan D. Huizinga
- Department of MedicineFarncombe Family Digestive Health Research Institute, McMaster UniversityHamiltonOntarioCanada
| | - Ji‐Hong Chen
- Department of MedicineFarncombe Family Digestive Health Research Institute, McMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
15
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
16
|
Pan Y, Bu T, Deng X, Jia J, Yuan G. Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis. Endocrine 2024; 84:1-15. [PMID: 38227168 DOI: 10.1007/s12020-023-03640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.
Collapse
Affiliation(s)
- Yi Pan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Bu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
17
|
Barati M, Mosharkesh E, Tahmassian AH, Khodaei M, Jabbari M, Kalhori A, Alipour M, Ghavidel AA, Khalili-Moghadam S, Fathollahi A, Davoodi SH. Engineered Probiotics for the Management of Congenital Metabolic Diseases: A Systematic Review. Prev Nutr Food Sci 2024; 29:1-7. [PMID: 38576877 PMCID: PMC10987387 DOI: 10.3746/pnf.2024.29.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 04/06/2024] Open
Abstract
Engineered probiotics (EPs) can be used to treat/manage chronic and congenital diseases. However, to the best of our knowledge, no systematic review has evaluated the effects of EPs on congenital metabolic disorders in murine models and human subjects. Thus, the present study systematically reviewed interventional studies that assessed the effects of EPs on congenital metabolic disorders. PubMed, Web of Science, and Scopus databases were searched up to February 2023 to retrieve related publications. Seventy-six articles were obtained in the primary step. After screening the titles/abstracts based on the inclusion and exclusion criteria, 11 papers were included. Finally, only seven articles were included after performing full-text evaluation. The included articles evaluated the effects of EPs on managing phenylketonuria (PKU, n=4) and hyperammonemia (n=3). Moreover, these studies examined mice and/or rats (n=6), monkeys (n=1), and humans (n=2). Studies on EPs and hyperammonemia revealed that some wild strains such as Lactobacillus plantarum have an innate ammonia-hyper-consuming potential; thus, there was no need to manipulate them. However, manipulation is needed to obtain a phenylalanine-metabolizing strain. In conclusion, EPs can be used to manage or treat congenital metabolic diseases including PKU.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Amir Hossein Tahmassian
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Maryam Khodaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 151674581, Iran
| | - Ali Kalhori
- Department of Food Science and Technology, Nutritional Science, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Alipour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Afshin Abdi Ghavidel
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Sajad Khalili-Moghadam
- Student Research Committee, Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Anwar Fathollahi
- Saqqez School of Nursing, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran
| | - Sayed Hossein Davoodi
- Student Research Committee, Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1461965381, Iran
| |
Collapse
|
18
|
Huber H, Schieren A, Holst JJ, Simon MC. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions - a narrative review. Am J Clin Nutr 2024; 119:599-627. [PMID: 38218319 PMCID: PMC10972717 DOI: 10.1016/j.ajcnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide and central mediator of glucose metabolism, is secreted by L cells in the intestine in response to food intake. Postprandial secretion of GLP-1 is triggered by nutrient-sensing via transporters and G-protein-coupled receptors (GPCRs). GLP-1 secretion may be lower in adults with obesity/overweight (OW) or type 2 diabetes mellitus (T2DM) than in those with normal glucose tolerance (NGT), but these findings are inconsistent. Because of the actions of GLP-1 on stimulating insulin secretion and promoting weight loss, GLP-1 and its analogs are used in pharmacologic preparations for the treatment of T2DM. However, physiologically stimulated GLP-1 secretion through the diet might be a preventive or synergistic method for improving glucose metabolism in individuals who are OW, or have impaired glucose tolerance (IGT) or T2DM. This narrative review focuses on fasting and postprandial GLP-1 secretion in individuals with different metabolic conditions and degrees of glucose intolerance. Further, the influence of relevant diet-related factors (e.g., specific diets, meal composition, and size, phytochemical content, and gut microbiome) that could affect fasting and postprandial GLP-1 secretion are discussed. Some studies showed diminished glucose- or meal-stimulated GLP-1 response in participants with T2DM, IGT, or OW compared with those with NGT, whereas other studies have reported an elevated or unchanged GLP-1 response in T2DM or IGT. Meal composition, especially the relationship between macronutrients and interventions targeting the microbiome can impact postprandial GLP-1 secretion, although it is not clear which macronutrients are strong stimulants of GLP-1. Moreover, glucose tolerance, antidiabetic treatment, grade of overweight/obesity, and sex were important factors influencing GLP-1 secretion. The results presented in this review highlight the potential of nutritional and physiologic stimulation of GLP-1 secretion. Further research on fasting and postprandial GLP-1 concentrations and the resulting metabolic consequences under different metabolic conditions is needed.
Collapse
Affiliation(s)
- Hanna Huber
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden; Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Alina Schieren
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marie-Christine Simon
- Department Nutrition and Microbiota, University of Bonn, Institute of Nutrition and Food Science, Bonn, Germany.
| |
Collapse
|
19
|
Sung J, Rajendraprasad SS, Philbrick KL, Bauer BA, Gajic O, Shah A, Laudanski K, Bakken JS, Skalski J, Karnatovskaia LV. The human gut microbiome in critical illness: disruptions, consequences, and therapeutic frontiers. J Crit Care 2024; 79:154436. [PMID: 37769422 PMCID: PMC11034825 DOI: 10.1016/j.jcrc.2023.154436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
With approximately 39 trillion cells and over 20 million genes, the human gut microbiome plays an integral role in both health and disease. Modern living has brought a widespread use of processed food and beverages, antimicrobial and immunomodulatory drugs, and invasive procedures, all of which profoundly disrupt the delicate homeostasis between the host and its microbiome. Of particular interest is the human gut microbiome, which is progressively being recognized as an important contributing factor in many aspects of critical illness, from predisposition to recovery. Herein, we describe the current understanding of the adverse impacts of standard intensive care interventions on the human gut microbiome and delve into how these microbial alterations can influence patient outcomes. Additionally, we explore the potential association between the gut microbiome and post-intensive care syndrome, shedding light on a previously underappreciated avenue that may enhance patient recuperation following critical illness. There is an impending need for future epidemiological studies to encompass detailed phenotypic analyses of gut microbiome perturbations. Interventions aimed at restoring the gut microbiome represent a promising therapeutic frontier in the quest to prevent and treat critical illnesses.
Collapse
Affiliation(s)
- Jaeyun Sung
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kemuel L Philbrick
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ognjen Gajic
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| | - Johan S Bakken
- Department of Infectious Diseases, St Luke's Hospital, Duluth, MN, United States of America
| | - Joseph Skalski
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
20
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Soveid N, Hajmir MM, Radmehr M, Khalili P, Mirzaei K. Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort. Front Nutr 2024; 11:1326782. [PMID: 38321994 PMCID: PMC10844432 DOI: 10.3389/fnut.2024.1326782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Epidemiologic research suggests that gut microbiota alteration (dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS). Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-derived metabolite, as well as kynurenine pathways (KP), which are known as a new marker for an early predictor of chronic diseases. Hence, the current study aimed to investigate the association between KYN and TMAO with MetS and its components. Methods This case-control study was conducted on 250 adults aged 18 years or over of Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC) in the baseline phase. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ) and dietary intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were measured by standard protocol. Result The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were directly correlated, after adjusting for confounding factors, the odds of MetS in individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31-4.28, P-value = 0.004), also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times, which is statistically significant (OR: 1.48, 95% CI: 0.83-2.63, P-value = 0.04). High levels of TMAO compared with the reference group increased the odds of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05). Additionally, there was a statistically significant high level of KYN increased odds of abdominal obesity (P < 0.05). Conclusion Our study revealed a positive association between serum TMAO and KYN levels and MetS and some of its components. For underlying mechanisms and possible clinical implications of the differences. Prospective studies in healthy individuals are necessary.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Feješ A, Belvončíková P, Porcel Sanchis D, Borbélyová V, Celec P, Džunková M, Gardlík R. The Effect of Cross-Sex Fecal Microbiota Transplantation on Metabolism and Hormonal Status in Adult Rats. Int J Mol Sci 2024; 25:601. [PMID: 38203771 PMCID: PMC10778742 DOI: 10.3390/ijms25010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing evidence of sexual dimorphism in the pathophysiology of metabolic complications caused by sex steroids is under investigation. The gut microbiota represents a complex microbial ecosystem involved in energy metabolism, immune response, nutrition acquisition, and the health of host organisms. Gender-specific differences in composition are present between females and males. The purpose of this study was to use cross-sex fecal microbiota transplantation (FMT) for the detection of sex-dependent metabolic, hormonal, and gut microbiota changes in female and male recipients. Healthy non-obese female and male Wistar rats were divided into donor, same-sex, and cross-sex recipient groups. After a 30-day period of FMT administration, biochemical markers (glucose and lipid metabolism) and sex hormones were measured, and the gut microbiota was analyzed. The cross-sex male recipients displayed a significantly lower testosterone concentration compared to the males that received same-sex FMT. Sex-dependent changes caused by cross-sex FMT were detected, while several bacterial taxa correlated with plasma testosterone levels. This study represents the first to study the effect of cross-sex changes in the gut microbiome concerning metabolic and hormonal changes/status in adult non-obese Wistar rats. Herein, we present cross-sex FMT as a potential tool to modify sex-specific pathologies.
Collapse
Affiliation(s)
- Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Paulína Belvončíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 469 80 Valencia, Spain; (D.P.S.)
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 469 80 Valencia, Spain; (D.P.S.)
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| |
Collapse
|
22
|
Dash NR, Al Bataineh MT, Alili R, Al Safar H, Alkhayyal N, Prifti E, Zucker JD, Belda E, Clément K. Functional alterations and predictive capacity of gut microbiome in type 2 diabetes. Sci Rep 2023; 13:22386. [PMID: 38104165 PMCID: PMC10725451 DOI: 10.1038/s41598-023-49679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The gut microbiome plays a significant role in the development of Type 2 Diabetes Mellitus (T2DM), but the functional mechanisms behind this association merit deeper investigation. Here, we used the nanopore sequencing technology for metagenomic analyses to compare the gut microbiome of individuals with T2DM from the United Arab Emirates (n = 40) with that of control (n = 44). DMM enterotyping of the cohort resulted concordantly with previous results, in three dominant groups Bacteroides (K1), Firmicutes (K2), and Prevotella (K3) lineages. The diversity analysis revealed a high level of diversity in the Firmicutes group (K2) both in terms of species richness and evenness (Wilcoxon rank-sum test, p value < 0.05 vs. K1 and K3 groups), consistent with the Ruminococcus enterotype described in Western populations. Additionally, functional enrichment analyses of KEGG modules showed significant differences in abundance between individuals with T2DM and controls (FDR < 0.05). These differences include modules associated with the degradation of amino acids, such as arginine, the degradation of urea as well as those associated with homoacetogenesis. Prediction analysis with the Predomics approach suggested potential biomarkers for T2DM, including a balance between a depletion of Enterococcus faecium and Blautia lineages with an enrichment of Absiella spp or Eubacterium limosum in T2DM individuals, highlighting the potential of metagenomic analysis in predicting predisposition to diabetic cardiomyopathy in T2DM patients.
Collapse
Affiliation(s)
- Nihar Ranjan Dash
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad T Al Bataineh
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Rohia Alili
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | | | - Edi Prifti
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Jean-Daniel Zucker
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Eugeni Belda
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, 93143, Bondy, France
| | - Karine Clément
- INSERM, Nutrition and obesities: systemics approaches (NutriOmics), Sorbonne University, Paris, France.
- Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
23
|
Nevzorova YA, Cubero FJ. Obesity under the moonlight of c-MYC. Front Cell Dev Biol 2023; 11:1293218. [PMID: 38116204 PMCID: PMC10728299 DOI: 10.3389/fcell.2023.1293218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
The moonlighting protein c-Myc is a master regulator of multiple biological processes including cell proliferation, differentiation, angiogenesis, apoptosis and metabolism. It is constitutively and aberrantly expressed in more than 70% of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is involved in several inflammatory, autoimmune, metabolic and other non-cancerous diseases. In this review, we addressed the role of c-Myc in obesity. Obesity is a systemic disease, accompanied by multi-organ dysfunction apart from white adipose tissue (WAT), such as the liver, the pancreas, and the intestine. c-Myc plays a big diversity of functions regulating cellular proliferation, the maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range of metabolic genes, modulates the inflammatory response, induces insulin resistance (IR), and contributes to the regulation of intestinal dysbiosis. Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in order to mitigate obesity and its consequences.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
24
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Contreras M, Artigas-Jerónimo S, González-García A, Gortázar C, de la Fuente J. Multi-omics analysis of zebrafish response to tick saliva reveals biological processes associated with alpha-Gal syndrome. Biomed Pharmacother 2023; 168:115829. [PMID: 37922649 DOI: 10.1016/j.biopha.2023.115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
The alpha-Gal syndrome (AGS) is a tick-borne allergy. A multi-omics approach was used to determine the effect of tick saliva and mammalian meat consumption on zebrafish gut transcriptome and proteome. Bioinformatics analysis using R software was focused on significant biological and metabolic pathway changes associated with AGS. Ortholog mapping identified highly concordant human ortholog genes for the detection of disease-enriched pathways. Tick saliva treatment increased zebrafish mortality, incidence of hemorrhagic type allergic reactions and changes in behavior and feeding patterns. Transcriptomics analysis showed downregulation of biological and metabolic pathways correlated with anti-alpha-Gal IgE and allergic reactions to tick saliva affecting blood circulation, cardiac and vascular smooth muscle contraction, behavior and sensory perception. Disease enrichment analysis revealed downregulated orthologous genes associated with human disorders affecting nervous, musculoskeletal, and cardiovascular systems. Proteomics analysis revealed suppression of pathways associated with immune system production of reactive oxygen species and cardiac muscle contraction. Underrepresented proteins were mainly linked to nervous and metabolic human disorders. Multi-omics data revealed inhibition of pathways associated with adrenergic signaling in cardiomyocytes, and heart and muscle contraction. Results identify tick saliva-related biological pathways supporting multisystemic organ involvement and linking α-Gal sensitization with other illnesses for the identification of potential disease biomarkers.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Centre for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
25
|
Koneru S, Thiruvadi V, Ramesh M. Gut microbiome and its clinical implications: exploring the key players in human health. Curr Opin Infect Dis 2023; 36:353-359. [PMID: 37593952 DOI: 10.1097/qco.0000000000000958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The human gut harbors a diverse community of microorganisms known as the gut microbiota. Extensive research in recent years has shed light on the profound influence of the gut microbiome on human health and disease. This review aims to explore the role of the gut microbiome in various clinical conditions and highlight the emerging therapeutic potential of targeting the gut microbiota for disease management. RECENT FINDINGS Knowledge of the influence of gut microbiota on human physiology led to the development of various therapeutic possibilities such as fecal microbiota transplant (FMT), phage therapy, prebiotics, and probiotics. Recently, the U.S. FDA approved two FMT products for the treatment of recurrent Clostridioides difficile infection with ongoing research for the treatment of various disease conditions. SUMMARY Advancement in the knowledge of the association between gut microbiota and various disease processes has paved the way for novel therapeutics.
Collapse
Affiliation(s)
- Sindhuja Koneru
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | |
Collapse
|
26
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
27
|
Shukla S, Srivastava A, Verma D, Gangopadhyay S, Chauhan A, Srivastava V, Budhwar S, Tyagi D, Sharma DC. Analysis of gut bacteriome of in utero arsenic-exposed mice using 16S rRNA-based metagenomic approach. Front Microbiol 2023; 14:1147505. [PMID: 37840722 PMCID: PMC10570621 DOI: 10.3389/fmicb.2023.1147505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/31/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Approximately 200 million people worldwide are affected by arsenic toxicity emanating from the consumption of drinking water containing inorganic arsenic above the prescribed maximum contaminant level. The current investigation deals with the role of prenatal arsenic exposure in modulating the gut microbial community and functional pathways of the host. Method 16S rRNA-based next-generation sequencing was carried out to understand the effects of in utero 0.04 mg/kg (LD) and 0.4 mg/kg (HD) of arsenic exposure. This was carried out from gestational day 15 (GD-15) until the birth of pups to understand the alterations in bacterial diversity. Results The study focused on gestational exposure to arsenic and the altered gut microbial community at phyla and genus levels, along with diversity indices. A significant decrease in firmicutes was observed in the gut microbiome of mice treated with arsenic. Functional analysis revealed that a shift in genes involved in crucial pathways such as insulin signaling and non-alcoholic fatty liver disease pathways may lead to metabolic diseases in the host. Discussion The present investigation may hypothesize that in utero arsenic exposure can perturb the gut bacterial composition significantly as well as the functional pathways of the gestationally treated pups. This research paves the way to further investigate the probable mechanistic insights in the field of maternal exposure environments, which may play a key role in epigenetic modulations in developing various disease endpoints in the progeny.
Collapse
Affiliation(s)
- Shagun Shukla
- Department of Microbiology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Anchal Chauhan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific Innovation and Research (AcSIR), Ghaziabad, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Savita Budhwar
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Dushyant Tyagi
- Department of Mathematics and Statistics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India
| | - Deepak Chand Sharma
- Department of Microbiology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Han K, Feng G, Li T, Wan Z, Zhao W, Yang X. Extension Region Domain of Soybean 7S Globulin Contributes to Serum Triglyceride-Lowering Effect via Modulation of Bile Acids Homeostasis. Mol Nutr Food Res 2023; 67:e2200883. [PMID: 37423975 DOI: 10.1002/mnfr.202200883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/14/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Soybean 7S globulin (β-conglycinin), a major soybean storage protein, has been demonstrated to exert remarkable triglyceride (TG) and cholesterol-lowering effects, yet the underlying mechanism remains controversial. METHODS AND RESULTS A comparative investigation is performed to assess the contribution of different structural domains of soybean 7S globulin, including core region (CR) and extension region (ER) domains, to biological effects of soybean 7S globulin using a high-fat diet rat model. The results show that ER domain mainly contributes to the serum TG-lowering effect of soybean 7S globulin, but not for CR domain. Metabolomics analysis reveals that oral administration of ER peptides obviously influences the metabolic profiling of serum bile acids (BAs), as well as significantly increased the fecal excretion of total BAs. Meanwhile, ER peptides supplementation reshapes the composition of gut microbiota and impacts the gut microbiota-dependent biotransformation of BAs which indicate by a significantly increased secondary BAs concentration in fecal samples. These results highlight that TG-lowering effects of ER peptides mainly stem from their modulation of BAs homeostasis. CONCLUSION Oral administration of ER peptides can effectively lower serum TG level by regulating BAs metabolism. ER peptides have potential to be used as a candidate pharmaceutical for the intervention of dyslipidemia.
Collapse
Affiliation(s)
- Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Wenjing Zhao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Li Y, Liu T, Qin L, Wu L. Effects of probiotic administration on overweight or obese children: a meta-analysis and systematic review. J Transl Med 2023; 21:525. [PMID: 37542325 PMCID: PMC10401801 DOI: 10.1186/s12967-023-04319-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in overweight or obese children by meta-analysis, namely, body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), adiponectin, leptin and tumor necrosis factor-α (TNF-α) and summarize the mechanisms of action of probiotics based on the existing researches. METHODS Six databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed and CNKI) were searched until March 2023. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model or random effect model to observe the effects of probiotic administration on the included indicators. RESULTS Four publications with a total of 206 overweight or obesity children were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HDL-C (MD, 0.06; 95% CI 0.03, 0.09; P = 0.0001), LDL-C (MD, - 0.06; 95% CI - 0.12, - 0.00; P = 0.04), adiponectin (MD, 1.39; 95% CI 1.19, 1.59; P < 0.00001), leptin (MD, - 2.72; 95% CI - 2.9, - 2.54; P < 0.00001) and TNF-α (MD, - 4.91; 95% CI - 7.15, - 2.67; P < 0.0001) compared to those in the placebo group. Still, for BMI, the palcebo group seemed to be better than the probiotic group (MD, 0.85; 95% CI 0.04, 1.66; P = 0.04). TC (MD, - 0.05; 95% CI - 0.12, 0.02; P = 0.14) and TG (MD, - 0.16; 95% CI - 0.36, 0.05; P = 0.14) were not different between two groups. CONCLUSIONS This review drew that probiotics might act as a role in regulating HDL-C, LDL-C, adiponectin, leptin and TNF-α in overweight or obesity children. Additionally, our systematic review yielded that probiotics might regulate lipid metabolism and improve obese associated symptoms by some paths. This meta-analysis has been registered at PROSPERO with ID: CRD42023408359.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
30
|
Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr 2023; 10:1213010. [PMID: 37485384 PMCID: PMC10358859 DOI: 10.3389/fnut.2023.1213010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
Collapse
Affiliation(s)
- Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Diru Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
32
|
Schamarek I, Anders L, Chakaroun RM, Kovacs P, Rohde-Zimmermann K. The role of the oral microbiome in obesity and metabolic disease: potential systemic implications and effects on taste perception. Nutr J 2023; 22:28. [PMID: 37237407 DOI: 10.1186/s12937-023-00856-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its metabolic sequelae still comprise a challenge when it comes to understanding mechanisms, which drive these pandemic diseases. The human microbiome as a potential key player has attracted the attention of broader research for the past decade. Most of it focused on the gut microbiome while the oral microbiome has received less attention. As the second largest niche, the oral microbiome is associated with a multitude of mechanisms, which are potentially involved in the complex etiology of obesity and associated metabolic diseases. These mechanisms include local effects of oral bacteria on taste perception and subsequent food preference as well as systemic effects on adipose tissue function, the gut microbiome and systemic inflammation. This review summarizes a growing body of research, pointing towards a more prominent role of the oral microbiome in obesity and associated metabolic diseases than expected. Ultimately, our knowledge on the oral microbiome may support the development of new patient oriented therapeutic approaches inevitable to relieve the health burden of metabolic diseases and to reach long-term benefits in patients´ lives.
Collapse
Affiliation(s)
- Imke Schamarek
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University Leipzig and the University Clinic Leipzig, AöR, Liebigstraße 20, 04103, Leipzig, Germany.
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Lars Anders
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Rima M Chakaroun
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
- Deutsches Zentrum Für Diabetesforschung, 85764, Neuherberg, Germany
| | - Kerstin Rohde-Zimmermann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University Leipzig and the University Clinic Leipzig, AöR, Liebigstraße 20, 04103, Leipzig, Germany
| |
Collapse
|
33
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
34
|
Wan Y, Wang S, Niu Y, Duo B, Liu Y, Lu Z, Zhu R. Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Front Cell Infect Microbiol 2023; 13:1139436. [PMID: 36968119 PMCID: PMC10034768 DOI: 10.3389/fcimb.2023.1139436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundRecent studies reported the association between the changes in gut microbiota and sepsis, but there is unclear for the gut microbes on aged sepsis is associated acute lung injury (SALI), and metformin treatment for the change in gut microbiota. This study aimed to investigate the effect of metformin on gut microbiota and SALI in aged rats with sepsis. It also explored the therapeutic mechanism and the effect of metformin on aged rats with SALI.MethodsAged 20-21 months SD rats were categorized into three groups: sham-operated rats (AgS group), rats with cecal ligation and puncture (CLP)-induced sepsis (AgCLP group), and rats treated with metformin (100 mg/kg) orally 1 h after CLP treatment (AgMET group). We collected feces from rats and analyzed them by 16S rRNA sequencing. Further, the lung samples were collected for histological analysis and quantitative real-time PCR (qPCR) assay and so on.ResultsThis study showed that some pathological changes occurring in the lungs of aged rats, such as hemorrhage, edema, and inflammation, improved after metformin treatment; the number of hepatocyte death increased in the AgCLP group, and decreased in the AgMET group. Moreover, metformin relieved SALI inflammation and damage. Importantly, the gut microbiota composition among the three groups in aged SALI rats was different. In particular, the proportion of E. coli and K. pneumoniae was higher in AgCLP group rats than AgS group rats and AgMET group rats; while metformin could increase the proportion of Firmicutes, Lactobacillus, Ruminococcus_1 and Lactobacillus_johnsonii in aged SALI rats. Moreover, Prevotella_9, Klebsiella and Escherichia_Shigella were correlated positively with the inflammatory factor IL-1 in the lung tissues; Firmicutes was correlated negatively with the inflammatory factor IL-1 and IL-6 in the lung tissues.ConclusionsOur findings suggested that metformin could improve SALI and gut microbiota in aged rats, which could provide a potential therapeutic treatment for SALI in aged sepsis.
Collapse
Affiliation(s)
- Youdong Wan
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuya Wang
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yifan Niu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Boyang Duo
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yinshuang Liu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Lu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhu
- Department of Health Management, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Ruixue Zhu,
| |
Collapse
|
35
|
Haldar S, Muralidaran Y, Míguez D, Mulla SI, Mishra P. Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160571. [PMID: 36471520 DOI: 10.1016/j.scitotenv.2022.160571] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario, plastic pollution has become one of the serious environmental hazard problems due to its improper handling and insufficiency in degradation. Nanoplastics (NPs) are formed when plastic fragments are subjected to ultraviolet radiation, natural weathering, and biodegradation. This review paper focuses on the source of origin, bioaccumulation, potential nanoplastics toxicity impact towards environment and human system and management strategies towards plastic pollution. Moreover, this study demonstrates that nanoplastics interfere with metabolic pathways and cause organ dysfunction. A wide range of studies have documented the alteration of organism physiology and behavior, caused by NPs exposure. A major source of NPs exposure is via ingestion because these plastics are found in foods or food packaging, however, they can also enter the human body via inhalation but in a less well-defined form. In recent literature, the studies demonstrate the mechanisms for NP uptake, affecting factors that have been discussed followed by cytotoxic mechanisms of NPs. However, study on challenges regarding NPs toxicity for the risk assessment of human health is limited. It is important to perform and focus more on the possible impacts of NPs on human health to identify the key challenges and explore the potential impacts of their environmental accumulation and its toxicity impacts.
Collapse
Affiliation(s)
- Shoumi Haldar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Yuvashree Muralidaran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Diana Míguez
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay (LATU), Edificio Los Abetos, Avenida Italia 6201, C.P. 11500, Montevideo, Uruguay
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, Karnataka, India
| | - Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.
| |
Collapse
|
36
|
Barlow GM, Celly S, Mathur R. Changes in the Gut Microbiome as Seen in Diabetes and Obesity. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:61-81. [DOI: 10.1007/978-3-031-46712-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Wang Y, Li T, Liu Y, Yang C, Liu L, Zhang X, Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct 2022; 13:13014-13027. [PMID: 36449351 DOI: 10.1039/d2fo02415b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heimao tea (HMT) is a kind of fermented dark tea that has various health benefits. However, the available information regarding the anti-obesity effect of HMT and its active ingredients is still limited. Herein, we extracted the polysaccharides from Heimao tea (HMTP) and evaluated the anti-obesity effect and the underlying mechanism of HMTP. 12-Week administration of HMTP ameliorated lipid accumulation in the adipose tissue and improved glucolipid metabolism in high-fat diet (HFD)-fed mice. HMTP also induced browning of inguinal white adipose tissue (iWAT) and enhanced the thermogenic activity of interscapular brown adipose tissue (iBAT) by upregulating the expression of a series of thermogenic genes, such as Ucp1, Prdm16, and Pgc1α. Interestingly, the anti-obesity effect of HMTP was closely associated with altered relative abundance of the gut microbes, especially Dubosiella and Romboutsia, with significant increases, in which the abundance of Dubosiella and Romboutsia was negatively correlated with the body weight (r = -0.567, p < 0.05; r = -0.407, p < 0.05) and positively correlated with the iBAT index (r = 0.520, p < 0.05; r = 0.315, p < 0.05). Our data suggest that the alteration of the gut microbiota may play a critical role in HMTP-induced iWAT browning and iBAT activation, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
38
|
Wei X, Gao Y, Cheng F, Yun S, Chang M, Cao J, Cheng Y, Feng C. The Effects of a High-Fat/Cholesterol Diet on the Intestine of Rats Were Attenuated by Sparassis latifolia Polysaccharides. Food Technol Biotechnol 2022; 60:469-487. [PMID: 36816874 PMCID: PMC9901340 DOI: 10.17113/ftb.60.04.22.7561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/28/2022] [Indexed: 11/12/2022] Open
Abstract
Research background Sparassis latifolia polysaccharides can regulate lipids and cholesterol in serum and liver. However, little is known about the regulation mechanism of the polysaccharides on cholesterol metabolism and especially the causal relationship with gut microbiota regulation. This study will provide a theoretical basis for the cholesterol-lowering mechanism of S. latifolia polysaccharides and further development of functional foods. Experimental approach In this study, we investigated how the regulation mechanism of Sparassis latifolia polysaccharides affects intestinal cholesterol metabolism in high-fat and high-cholesterol diet-fed rats. Briefly, enzymatic colorimetric microplate assay was used to determine the concentration of faecal bile acid. Gas chromatography-mass spectrometry was used to detect the content of cholesterol and alcohol in faeces. Haematoxylin and eosin staining method was applied to observe the changes in the structure of the small intestine tissue. The related gene expressions in jejunum and ileum were detected by real-time fluorescent quantitative polymerase chain reaction. The related protein expressions in jejunum were studied by using Western blot. High-throughput sequencing was used to detect the intestinal flora changes of the caecal contents. Gas chromatography-mass spectrometry was applied to detect the concentration of short-chain fatty acids in the caecal content. Results and conclusions The results showed that Sparassis latifolia polysaccharides could improve the intestinal morphological structure and physiological indices in rats fed high-fat and high-cholesterol diet. Moreover, it could improve intestinal cholesterol metabolism disorder induced by high-fat and high-cholesterol diets via the reduction of the expression of HMGCR, NPC1L1, ACAT2, MTP, ASBT and IBABP mRNA or protein, increasing ABCG8 mRNA expression. In addition, it could also increase the relative abundance of Bacteroides, Butyricicoccus, Parabacteroides, Parasutteerella and Alloprevotella and the short-chain fatty acid concentration, to comprehensively regulate the intestinal cholesterol metabolism. The metabolomics analysis found that Sparassis latifolia polysaccharides could affect lipid, carbohydrate and other related metabolites. Some biomarkers associated with cholesterol metabolism correlated significantly with the abundance of specific intestinal microbiota. Novelty and scientific contribution These findings indicate that Sparassis latifolia polysaccharides could attenuate intestinal cholesterol metabolism disorder, correlating with modulating gut microbiota and improving host metabolism. They provide theoretical support for the development of Sparassis latifolia as a new food resource.
Collapse
Affiliation(s)
- Xin Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China
| | - Yuan Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China,Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu 030801, Shanxi, PRChina
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR. China,Corresponding author: Phone: +13835498063, E-mail:
| |
Collapse
|
39
|
Xanthan gum oligosaccharides ameliorate glucose metabolism and related gut microbiota dysbiosis in type 2 diabetic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Wang JH, Hwang SJ, Shin KS, Lim DW, Son CG. Bacillus subtilis-Fermented Amomum xanthioides Ameliorates Metabolic-Syndrome-Like Pathological Conditions in Long-Term HFHFD-Fed Mice. Antioxidants (Basel) 2022; 11:2254. [PMID: 36421440 PMCID: PMC9687221 DOI: 10.3390/antiox11112254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/03/2023] Open
Abstract
In modern society, numerous metabolic disorders are widespread globally. The present study aimed to demonstrate whether Bacillus subtilis-fermented Amomum xanthioides (BSAX) exerts anti-metabolic disturbance effects compared with the ethyl acetate fraction of Amomum xanthioides (EFAX), a previously verified functional fraction. Mice fed with a high-fat, high-fructose diet (HFHFD) for 10 wk presented a typical model of metabolic dysfunction, and BSAX significantly attenuated a string of metabolic-syndrome-related pathological parameters, such as body, fat, organ mass, lipid markers (TGs, TC, free fatty acids), and glucose metabolism (glucose, insulin), without influencing appetite. Further, BSAX markedly lowered malondialdehyde (MDA) and ROS in the blood and restored antioxidative parameters (SOD, GSH, and CAT in liver tissue, and total bilirubin in serum) by elevating Nrf2 and HO-1. Moreover, BSAX noticeably restored gut microbiota diversity and normalized lipid-metabolism-associated proteins, including SREBP-1, p-AMPK, and PPAR-α. Generally, most metabolic parameters were improved by BSAX to a greater extent than EFAX, except for liver weight and hepatic TC. In conclusion, BSAX alleviates metabolic dysfunction by enhancing lipid metabolism and antioxidative capacity and is more effective than EFAX. Therefore, the application of high-yield, effective BSAX might be a promising approach for curing and preventing metabolic disorders.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang 10326, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| |
Collapse
|
41
|
Rehman AU, Siddiqui NZ, Farooqui NA, Alam G, Gul A, Ahmad B, Asim M, Khan AI, Xin Y, Zexu W, Song Ju H, Xin W, Lei S, Wang L. Morchella esculenta mushroom polysaccharide attenuates diabetes and modulates intestinal permeability and gut microbiota in a type 2 diabetic mice model. Front Nutr 2022; 9:984695. [PMID: 36276816 PMCID: PMC9582931 DOI: 10.3389/fnut.2022.984695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a health issue that causes serious worldwide economic problems. It has previously been reported that natural polysaccharides have been studied with regard to regulating the gut microbiota, which plays an important role in T2DM. Here, we investigate the effects of Morchella esculenta polysaccharide (MEP) on a high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM in BALB/c mice. The administration of MEP effectively regulated hyperglycemia and hyperlipidemia and improved insulin sensitivity. We also determined an improvement in gut microbiota composition by 16sRNA pyrosequencing. Treatment with MEP showed an increase in beneficial bacteria, i.e., Lactobacillus and Firmicutes, while the proportion of the opportunistic bacteria Actinobacteria, Corynebacterium, and Facklamia decreased. Furthermore, the treatment of T2DM mice with MEP resulted in reduced endotoxemia and insulin resistance-related pro-inflammatory cytokines interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Moreover, MEP treatment improved intestinal permeability by modulating the expression of the colon tight-junction proteins zonula occludens-1 (ZO-1), occludin, claudin-1, and mucin-2 protein (MUC2). Additionally, MEP administration affects the metagenome of microbial communities in T2DM mice by altering the functional metabolic pathways. All these findings suggested that MEP is a beneficial prebiotic associated with ameliorating the gut microbiota and its metabolites in T2DM.
Collapse
Affiliation(s)
- Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Gulzar Alam
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Aneesa Gul
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Bashir Ahmad
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Asim
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hyo Song Ju
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Sun Lei
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Liang Wang,
| |
Collapse
|
42
|
Boro M, Bhadra S, Verma AK. Prebiotics and Probiotics in Regulation of Metabolic Disorders. PREBIOTICS AND PROBIOTICS IN DISEASE REGULATION AND MANAGEMENT 2022:239-269. [DOI: 10.1002/9781394167227.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Study and determination of fructan-type polysaccharide content in Erigeron annuus L. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Fructan-type polysaccharidescomes from natural sources and occur in a large variety of plants, where they play important biological roles as reserve carbohydrate. One of the most commonly distributed compound from this group – inulin has been part of human daily diet for hundreds of years, as it is found in many fruits and vegetables, among others, bananas, onions and wheat. The inulin-type fructans: inulin and fructooligosaccharides (FOS) are considered to be functional food elements, the consumption of which brings about health benefits. Indeed, inulin can be consumed to increase the dietary fiber content. Fructan compounds, inulin and fructooligosaccharides have a strong bifidogenic effect, and have a positive action on the gut microbiota. In this work, we preformed gas-chromatography-mass spectrometry analysis of Erigeron annuus L. herb. The GC-MS analysis of carbohydrate composition confirmed the presence of free (arabinose, glucose, fructose 1, fructose 2) and fermented (arabinose, glucose, fructose 1, fructose 2, sucrose) carbohydrates at the quantity of 69.83 and 91.70 mg/g d.w., respectively.
Collapse
|
44
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
45
|
Gaundal L, Myhrstad MCW, Rud I, Gjøvaag T, Byfuglien MG, Retterstøl K, Holven KB, Ulven SM, Telle-Hansen VH. Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals. Food Nutr Res 2022; 66:8580. [PMID: 35844956 PMCID: PMC9250133 DOI: 10.29219/fnr.v66.8580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Metabolic diseases have been related to gut microbiota, and new knowledge indicates that diet impacts host metabolism through the gut microbiota. Identifying specific gut bacteria associated with both diet and metabolic risk markers may be a potential strategy for future dietary disease prevention. However, studies investigating the association between the gut microbiota, diet, and metabolic markers in healthy individuals are scarce. Objective We explored the relationship between a panel of gut bacteria, dietary intake, and metabolic and anthropometric markers in healthy adults. Design Forty-nine volunteers were included in this cross-sectional study. Measures of glucose, serum triglyceride, total cholesterol, hemoglobin A1c (HbA1c), blood pressure (BP), and body mass index (BMI) were collected after an overnight fast, in addition to fecal samples for gut microbiota analyzes using a targeted approach with a panel of 48 bacterial DNA probes and assessment of dietary intake by a Food Frequency Questionnaire (FFQ). Correlations between gut bacteria, dietary intake, and metabolic and anthropometric markers were assessed by Pearson’s correlation. Gut bacteria varying according to dietary intake and metabolic markers were assessed by a linear regression model and adjusted for age, sex, and BMI. Results Of the 48 gut bacteria measured, 24 and 16 bacteria correlated significantly with dietary intake and metabolic and/or anthropometric markers, respectively. Gut bacteria including Alistipes, Lactobacillus spp., and Bacteroides stercoris differed according to the intake of the food components, fiber, sodium, saturated fatty acids, and dietary indices, and metabolic markers (BP and total cholesterol) after adjustments. Notably, Bacteroides stercoris correlated positively with the intake of fiber, grain products, and vegetables, and higher Bacteroides stercoris abundance was associated with higher adherence to Healthy Nordic Food Index (HNFI) and lower diastolic BP after adjustment. Conclusion Our findings highlight the relationship between the gut microbiota, diet, and metabolic markers in healthy individuals. Further investigations are needed to address whether these findings are causally linked and whether targeting these gut bacteria can prevent metabolic diseases.
Collapse
Affiliation(s)
- Line Gaundal
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Ida Rud
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Terje Gjøvaag
- Department of Occupational Therapy, Prosthetics and Orthotics, Oslo Metropolitan University, Oslo, Norway
| | | | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- Vibeke H. Telle-Hansen, Faculty of Health Sciences, Oslo Metropolitan University, Post box 4, St. Olavsplass, 0130 Oslo, Norway.
| |
Collapse
|
46
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
47
|
Cheah IK, Lee JZ, Tang RMY, Koh PW, Halliwell B. Does Lactobacillus reuteri influence ergothioneine levels in the human body? FEBS Lett 2022; 596:1241-1251. [PMID: 35486429 DOI: 10.1002/1873-3468.14364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The dietary thione-thiol, ergothioneine (ET), accumulates in human and animal tissues and may play important roles in disease prevention. ET biosynthesis has only been described in fungi and certain bacteria, and humans and animals are widely assumed to accumulate ET solely from diet. However, a recent study suggested that Lactobacillus/Limosilactobacillus reuteri, a commensal gut bacterium, may produce ET, thereby protecting the host against social defeat stress and sleep disturbances. Upon our further investigation, no evidence of ET biosynthesis was observed in L. reuteri when a heavy-labelled histidine precursor was administered. Instead, we discovered that L. reuteri avidly accumulates ET. This observation may indicate a possible mechanism by which the gut microbiota could influence tissue levels of ET in the host.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Jovan Z Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596
| | - Richard M Y Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Pei Wen Koh
- Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
48
|
Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol 2022; 29:793-798. [PMID: 35388531 DOI: 10.1111/iju.14894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
The gut microbiome is linked to several diseases such as Alzheimer's disease, rheumatoid arthritis, and colon cancer. The gut microbiome is also associated with the modulation of immune function, resulting in a different response to immune checkpoint therapy. The gut microbiome differs according to lifestyle, diet, sex, race, genetic background, and country. Lifestyle, especially diet, plays an important role in the development and progression of prostate cancer. Recent studies have revealed a connection between the gut microbiome and prostate cancer. A high-fat diet causes gut dysbiosis and gut bacterial metabolites, such as short-chain fatty acids and phospholipids that enter systemic circulation result in promoting prostate cancer growth. Additionally, the gut microbiota can serve as a source of testosterone, which affects prostate cancer progression. Men with castration-resistant prostate cancer have an increased abundance of gut bacteria with androgenic functions. Men with high-risk prostate cancer share a specific gut microbial profile and profiling gut microbiota could be a potentially effective tool to screen men with high-risk prostate cancer. Lifestyle modifications can improve the gut microbiome. Furthermore, altering the gut microbiome using prebiotic or probiotic interventions may prevent or delay prostate cancer development. Further study into the "Gut-Prostate Axis" would help in the discovery of new strategies for the prevention, screening, and treatment of prostate cancer.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eri Banno
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
49
|
Gan Q, Ye W, Zhao X, Teng Y, Mei S, Long Y, Ma J, Rehemutula R, Zhang X, Zeng F, Jin H, Liu F, Huang Y, Gao X, Zhu C. Mediating effects of gut microbiota in the associations of air pollutants exposure with adverse pregnancy outcomes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113371. [PMID: 35248925 DOI: 10.1016/j.ecoenv.2022.113371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The aim of this study was to investigate alterations in gut microbiota after exposure to air pollutants during pregnancy and its mediation effect in inducing adverse pregnancy outcomes (APOs). METHODS Participants (n = 916) were enrolled between 2017 and 2018 from a prospective cohort study of pregnant women in Guangzhou, China. The relative abundance of fecal microbiota was profiled using 16SrRNA V4 region sequencing. Exposure to air pollutants in each trimester of pregnancy was assessed using measurements from the nearest monitoring station. APOs including pre-term birth (PTB), post-term birth (POTB), low birth weight (LBW), macrosomia fetus (MF), birth defects (BDs), pathological cesarean section (PCS) and postpartum hemorrhage (PPH)) were determined by referring to reliable clinical records and diagnostic criteria. Univariate analysis, multivariate analysis and mediation analysis were performed to estimate the association among air pollutants, gut microbiota and APOs. RESULTS Air pollutants exposure during pregnancy was significantly correlated with the alterations in the gut microbiota, and increased risks of various APOs by 1.07-1.36-fold (P < 0.05). The mediation analyses indicated that alterations in Eggerthella, Phascolarctobacterium and Clostridium partially mediated the effects of air pollutants exposure (PM2.5, PM10, O3, NO2 and SO2) on APOs. The relative abundance of f_Micrococcaceae explained 11.39%, 64.90% and 54.80% of the correlation between SO2, PM2.5, PM10 and POTB, respectively; whereas g_Rothia explained 11.97%, 67.80% and 54.50%, respectively. g_Parabacteroides explained 53.0% of the correlation between PM2.5 and PTB. CONCLUSIONS Increased air pollutants exposure during pregnancy may induce adverse pregnancy outcomes via alteration of the gut microbiota.
Collapse
Affiliation(s)
- Qiangsheng Gan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Weitao Ye
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xueqin Zhao
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Yaoyao Teng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanshan Mei
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Jun Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Rehemayi Rehemutula
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoyan Zhang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Fangling Zeng
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Hongmei Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China
| | - Yaogang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Gao
- Faculty of Dentistry, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chunyan Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
50
|
Isacco CG, Nguyen KC, Pham VH, Di Palma G, Aityan SK, Tomassone D, Distratis P, Lazzaro R, Balzanelli MG, Inchingolo F. Bone decay and diabetes type 2 in searching for a link. Endocr Metab Immune Disord Drug Targets 2022; 22:904-910. [PMID: 35331127 DOI: 10.2174/1871530322666220324150327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| | - Kieu Cd Nguyen
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Van H Pham
- Phan Chau Trinh University of Medicine Hoi An City Vietnam
| | - Gianna Di Palma
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| | | | - Diego Tomassone
- Foundation of Physics Research Center (FoPRC), Celico-CS, Italy
| | - Pietro Distratis
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Rita Lazzaro
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Mario G Balzanelli
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| |
Collapse
|