1
|
Cho S, Choi SH, Maeng E, Park H, Ryu KS, Park KS. Boosting tumor homing of endogenous natural killer cells via therapeutic secretomes of chemically primed natural killer cells. J Immunother Cancer 2025; 13:e010371. [PMID: 40044578 PMCID: PMC11883546 DOI: 10.1136/jitc-2024-010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Natural killer (NK) cells play a critical role in modulating immune responses by secreting soluble factors, including chemotactic cytokines. Our previous study demonstrated the potent antitumor activity of Chem_NK, referring to NK cells chemically primed with 25 kDa branched polyethyleneimine. However, the potential of Chem_NK secretomes to educate other NK cells and enhance their tumor-homing ability remains unexplored. METHODS The effects of Chem_NK conditioned media (Chem CM) on NK cells were evaluated in vitro by examining chemokine receptor expression and migration toward cancer cells. In vivo, the impact of Chem_NK and Chem CM on endogenous NK cell populations was assessed using xenograft and syngeneic mouse tumor models. Cytokine array and signaling analyses were performed to identify factors secreted by Chem_NK and their role in activating recipient NK cells. RESULTS Chem CM effectively educated NK cells in vitro, enhancing chemokine receptor expression and improving their migration toward cancer cells. In vivo, adoptively transferred Chem_NK increased endogenous NK cell populations within xenograft tumors. Furthermore, direct injection of Chem CM into a syngeneic mouse tumor model significantly promoted endogenous NK cell infiltration into tumors and suppressed lung metastasis. Cytokine analysis revealed that Chem_NK secreted high levels of cytokines, which activated ERK1/2 signaling in recipient NK cells, leading to upregulation of chemokine receptors. CONCLUSIONS Chem_NK secretomes effectively enhance the tumor-homing ability of NK cells and amplify antitumor efficacy by educating other NK cells. These findings offer novel insights into activated NK cell-mediated immune communication and highlight the therapeutic potential of NK cell-derived secretomes in cancer therapy.
Collapse
Affiliation(s)
- Seohyun Cho
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Seung Hee Choi
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Eunchong Maeng
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hail Park
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Ki Seo Ryu
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kyung-Soon Park
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| |
Collapse
|
2
|
Rao ZY, Kuang J, Pan T, Qin YT, Huang QX, Sun YL, Zhao K, Jin XK, Yang CH, Zhang SM, Yan Y, Zhang XZ. Cationic Magnetic Nanoparticles Activate Natural Killer Cells for the Treatment of Glioblastoma. ACS NANO 2025; 19:649-661. [PMID: 39711185 DOI: 10.1021/acsnano.4c11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The blood-brain barrier (BBB) and the immunosuppressive microenvironment of glioblastoma (GBM) severely hinder the infiltration and activity of natural killer (NK) cells, thereby reducing their clinical efficacy in GBM treatment. To address this challenge, we introduced an engineered living material, HEFDS-NK cells, designed to enhance the penetration of NK cells across the BBB and improve their cytotoxicity against GBM. HEFDS comprises magnetic nanoparticles modified using cationic polyethylenimine (PEI), selenocysteine (Sec), and sodium hyaluronate (HA) and cocultured with NK cells to form HEFDS-NK cells. With the assistance of HA and magnet targeting, HEFDS-NK cells can effectively cross the BBB and localize at the GBM site. Moreover, PEI enhances the expression of C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 4 (CCR4) on NK cells, thereby improving their recognition and cytotoxicity against GBM. Additionally, Sec boosts the immune activity of NK cells against GBM. Upon recognizing GBM, the activated HEFDS-NK cells produce Granzyme B, Perforin, and IFN-γ, ultimately achieving effective therapy for GBM. This study demonstrates an effective treatment of GBM while enhancing NK cell activity and their ability to penetrate the BBB, providing an innovative and high-precision therapeutic approach for GBM.
Collapse
Affiliation(s)
- Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - You-Teng Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Liang Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Kai Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chi-Hui Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Khurana S, Heckman MG, Craig FE, Cochuyt JJ, Greipp P, Rahman ZA, Sproat LZ, Litzow M, Foran JM, Jiang LJ. Evaluation of Novel Targets, Including CC-Chemokine Receptor 4, in Adult T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Mayo Clinic Clinical and Pathologic Study. Arch Pathol Lab Med 2024; 148:471-475. [PMID: 37522711 DOI: 10.5858/arpa.2022-0482-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 08/01/2023]
Abstract
CONTEXT.— Unlike B-cell acute lymphoblastic leukemia/lymphoma (ALL/LBL), there have been few therapeutic advances in T-cell ALL (T-ALL)/LBL, an aggressive ALL/LBL subtype. OBJECTIVE.— To perform a focused tissue array study to elucidate tumor markers of therapeutic potential in T-ALL/LBL. DESIGN.— Using immunohistochemistry, we evaluated expression of leukemic antigens of interest, specifically CC-chemokine receptor 4 (CCR4), among others, on available remnant diagnostic material, including tumor tissue slides obtained from formalin-fixed, paraffin-embedded preserved tissues. RESULTS.— Our analysis identified, for the first time, expression of CCR4 in T-ALL/LBL in 11 of 27 cases (40.7%) and confirmed common expression of BCL2, CD38, and CD47, as reported previously. We also identified the expression of CD123 in 4 of 26 cases (15.4%), whereas BCL6 and PDL1 were expressed in a small number of T-ALL/LBL cases. The potential novel target CCR4 was significantly more common in the Pre/Pro-T immunophenotypic subtype, 6 of 9 (66.7%, P = .01). No additional differences in clinical and epidemiologic variables were noted among positive or negative CCR4 cases. CONCLUSIONS.— These findings support preclinical and clinical testing of therapies targeting CCR4, CD47, BCL2, CD38, and CD123 in T-ALL/LBL, and may help guide the development of targeted clinical trials in T-ALL/LBL, a rare disease in urgent need of novel therapies.
Collapse
Affiliation(s)
- Sharad Khurana
- From the Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson (Khurana)
| | - Michael G Heckman
- the Departments of Biomedical Statistics and Informatics (Heckman, Cochuyt) and Laboratory Medicine and Pathology (Jiang), and the Division of Hematology and Medical Oncology (Foran), Mayo Clinic Florida, Jacksonville
| | - Fiona E Craig
- the Divisions of Hematopathology (Craig) and Hematology and Medical Oncology (Sproat), Mayo Clinic Arizona, Phoenix
| | - Jordan J Cochuyt
- the Departments of Biomedical Statistics and Informatics (Heckman, Cochuyt) and Laboratory Medicine and Pathology (Jiang), and the Division of Hematology and Medical Oncology (Foran), Mayo Clinic Florida, Jacksonville
| | - Patricia Greipp
- the Divisions of Laboratory Genetics (Greipp) and Hematology (Litzow), Mayo Clinic, Rochester, Minnesota
| | - Zaid Abdel Rahman
- the Division of Hematology and Medical Oncology, Sanford Roger Maris Cancer Center, Fargo, North Dakota (Rahman)
| | - Lisa Z Sproat
- the Divisions of Hematopathology (Craig) and Hematology and Medical Oncology (Sproat), Mayo Clinic Arizona, Phoenix
| | - Mark Litzow
- the Divisions of Laboratory Genetics (Greipp) and Hematology (Litzow), Mayo Clinic, Rochester, Minnesota
| | - James M Foran
- the Departments of Biomedical Statistics and Informatics (Heckman, Cochuyt) and Laboratory Medicine and Pathology (Jiang), and the Division of Hematology and Medical Oncology (Foran), Mayo Clinic Florida, Jacksonville
| | - Liuyan Jennifer Jiang
- the Departments of Biomedical Statistics and Informatics (Heckman, Cochuyt) and Laboratory Medicine and Pathology (Jiang), and the Division of Hematology and Medical Oncology (Foran), Mayo Clinic Florida, Jacksonville
| |
Collapse
|
4
|
Döring Y, van der Vorst EP, Yan Y, Neideck C, Blanchet X, Jansen Y, Kemmerich M, Bayasgalan S, Peters LJ, Hristov M, Bidzhekov K, Yin C, Zhang X, Leberzammer J, Li Y, Park I, Kral M, Nitz K, Parma L, Gencer S, Habenicht A, Faussner A, Teupser D, Monaco C, Holdt L, Megens RT, Atzler D, Santovito D, von Hundelshausen P, Weber C. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:221-242. [PMID: 39044999 PMCID: PMC7616283 DOI: 10.1038/s44161-023-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2023] [Indexed: 07/25/2024]
Abstract
CCL17 is produced by conventional dendritic cells (cDCs), signals through CCR4 on regulatory T cells (Tregs), and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that cDCs from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers, and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, while FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Tregs.
Collapse
Affiliation(s)
- Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Pediatric Translational Medicine Institute and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Carlos Neideck
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Manuela Kemmerich
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | | | - Linsey J.F. Peters
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xi Zhang
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Julian Leberzammer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ya Li
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Inhye Park
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, United Kingdom
| | - Maria Kral
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Laura Parma
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Faussner
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Claudia Monaco
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Remco T.A. Megens
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy
| | | | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
5
|
Liu YH, Zhu L, Zhang ZW, Liu TT, Cheng QY, Zhang M, Niu YX, Ding L, Yan WM, Luo XP, Ning Q, Chen T. C-C chemokine receptor 5 is essential for conventional NK cell trafficking and liver injury in a murine hepatitis virus-induced fulminant hepatic failure model. J Transl Med 2023; 21:865. [PMID: 38017505 PMCID: PMC10685630 DOI: 10.1186/s12967-023-04665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that natural killer (NK) cells migrated into the liver from peripheral organs and exerted cytotoxic effects on hepatocytes in virus-induced liver failure. AIM This study aimed to investigate the potential therapeutic role of chemokine receptors in the migration of NK cells in a murine hepatitis virus strain 3 (MHV-3)-induced fulminant hepatic failure (MHV-3-FHF) model and its mechanism. RESULTS By gene array analysis, chemokine (C-C motif) receptor 5 (CCR5) was found to have remarkably elevated expression levels in hepatic NK cells after MHV-3 infection. The number of hepatic CCR5+ conventional NK (cNK) cells increased and peaked at 48 h after MHV-3 infection, while the number of hepatic resident NK (rNK) cells steadily declined. Moreover, the expression of CCR5-related chemokines, including macrophage inflammatory protein (MIP)-1α, MIP-1β and regulated on activation, normal T-cell expressed and secreted (RANTES) was significantly upregulated in MHV-3-infected hepatocytes. In an in vitro Transwell migration assay, CCR5-blocked splenic cNK cells showed decreased migration towards MHV-3-infected hepatocytes, and inhibition of MIP-1β or RANTES but not MIP-1α decreased cNK cell migration. Moreover, CCR5 knockout (KO) mice displayed reduced infiltration of hepatic cNK cells after MHV-3 infection, accompanied by attenuated liver injury and improved mouse survival time. Adoptive transfer of cNK cells from wild-type mice into CCR5 KO mice resulted in the abundant accumulation of hepatic cNK cells and aggravated liver injury. Moreover, pharmacological inhibition of CCR5 by maraviroc reduced cNK cell infiltration in the liver and liver injury in the MHV-3-FHF model. CONCLUSION The CCR5-MIP-1β/RANTES axis played a critical role in the recruitment of cNK cells to the liver during MHV-3-induced liver injury. Targeted inhibition of CCR5 provides a therapeutic approach to ameliorate liver damage during virus-induced acute liver injury.
Collapse
Affiliation(s)
- Yun-Hui Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Lin Zhu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Zhong-Wei Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Ting-Ting Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Qiu-Yu Cheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Meng Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Yu-Xin Niu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Lin Ding
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Wei-Ming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China.
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- National Medical Center for Major Public Health Events, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
6
|
Metzger R, Winter L, Bouznad N, Garzetti D, von Armansperg B, Rokavec M, Lutz K, Schäfer Y, Krebs S, Winheim E, Friedrich V, Matzek D, Öllinger R, Rad R, Stecher B, Hermeking H, Brocker T, Krug AB. CCL17 Promotes Colitis-Associated Tumorigenesis Dependent on the Microbiota. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2227-2238. [PMID: 36426975 DOI: 10.4049/jimmunol.2100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.
Collapse
Affiliation(s)
- Rebecca Metzger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lis Winter
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt von Armansperg
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin Lutz
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yvonne Schäfer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina Krebs
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Verena Friedrich
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
7
|
Suzuki H, Saito M, Asano T, Tanaka T, Kitamura K, Kudo Y, Kaneko MK, Kato Y. C 8Mab-3: An Anti-Mouse CCR8 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:110-114. [PMID: 35377236 DOI: 10.1089/mab.2022.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-C motif chemokine receptor 8 (CCR8) is highly expressed in regulatory T cells. CCR8 is also expressed in many cancers and is associated with those progression. The development of monoclonal antibodies (mAbs) for CCR8 leads to cancer immunotherapy and elucidation of unknown mechanisms of CCR8-dependent cancer progression. In this study, we have developed an anti-mouse CCR8 (mCCR8) mAb (clone C8Mab-3, rat IgG1, kappa) using the Cell-Based Immunization and Screening (CBIS) method. We revealed that C8Mab-3 and its recombinant antibody (recC8Mab-3) bind to mCCR8-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/mCCR8), but not to the parental CHO-K1 cells, in flow cytometry. In addition, C8Mab-3 and recC8Mab-3 reacted to P388 (a mouse lymphocyte-like cell) and J774-1 (a mouse macrophage-like cell), which express endogenous mCCR8. C8Mab-3 also detected exogenous and endogenous mCCR8 using immunocytochemistry. These results suggest that C8Mab-3, developed using the CBIS method, is useful for immunocytochemistry against exogenous and endogenous mCCR8.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Skin-resident dendritic cells mediate postoperative pain via CCR4 on sensory neurons. Proc Natl Acad Sci U S A 2022; 119:2118238119. [PMID: 35046040 PMCID: PMC8794894 DOI: 10.1073/pnas.2118238119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Interactions between the nervous and immune systems control the generation and maintenance of inflammatory pain. However, the immune cells and mediators controlling this response remain poorly characterized. We identified the cytokines CCL22 and CCL17 as secreted mediators that act directly on sensory neurons to mediate postoperative pain via their shared receptor, CCR4. We also show that skin-resident dendritic cells are key contributors to the inflammatory pain response. Blocking the interaction between these dendritic cell–derived ligands and their receptor can abrogate the pain response, highlighting CCR4 antagonists as potentially effective therapies for postoperative pain. Our findings identify functions for these tissue-resident myeloid cells and uncover mechanisms underlying pain pathophysiology. Inflammatory pain, such as hypersensitivity resulting from surgical tissue injury, occurs as a result of interactions between the immune and nervous systems with the orchestrated recruitment and activation of tissue-resident and circulating immune cells to the site of injury. Our previous studies identified a central role for Ly6Clow myeloid cells in the pathogenesis of postoperative pain. We now show that the chemokines CCL17 and CCL22, with their cognate receptor CCR4, are key mediators of this response. Both chemokines are up-regulated early after tissue injury by skin-resident dendritic and Langerhans cells to act on peripheral sensory neurons that express CCR4. CCL22, and to a lesser extent CCL17, elicit acute mechanical and thermal hypersensitivity when administered subcutaneously; this response abrogated by pharmacological blockade or genetic silencing of CCR4. Electrophysiological assessment of dissociated sensory neurons from naïve and postoperative mice showed that CCL22 was able to directly activate neurons and enhance their excitability after injury. These responses were blocked using C 021 and small interfering RNA (siRNA)-targeting CCR4. Finally, our data show that acute postoperative pain is significantly reduced in mice lacking CCR4, wild-type animals treated with CCR4 antagonist/siRNA, as well as transgenic mice depleted of dendritic cells. Together, these results suggest an essential role for the peripheral CCL17/22:CCR4 axis in the genesis of inflammatory pain via direct communication between skin-resident dendritic cells and sensory neurons, opening therapeutic avenues for its control.
Collapse
|
9
|
Moser B. Chemokine Receptor-Targeted Therapies: Special Case for CCR8. Cancers (Basel) 2022; 14:511. [PMID: 35158783 PMCID: PMC8833710 DOI: 10.3390/cancers14030511] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade inhibitors (CBIs) targeting cytotoxic T lymphocyte associated protein-4 (CTLA-4) and program death receptor-1 (PD-1) or its ligand-1 (PD-L1) have transformed the outlook of many patients with cancer. This remarkable progress has highlighted, from the translational point of view, the importance of immune cells in the control of tumor progression. There is still room for improvement, since current CBI therapies benefit a minority of patients. Moreover, interference with immune checkpoint receptors frequently causes immune related adverse events (irAEs) with life-threatening consequences in some of the patients. Immunosuppressive cells in the tumor microenvironment (TME), including intratumoral regulatory T (Treg) cells, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), contribute to tumor progression and correlate with a negative disease outlook. Recent reports revealed the selective expression of the chemokine receptor CCR8 on tumor Treg cells, making CCR8 a promising target in translational research. In this review, I summarize our current knowledge about the cellular distribution and function of CCR8 in physiological and pathophysiological processes. The discussion includes an assessment of how the removal of CCR8-expressing cells might affect both anti-tumor immunity as well as immune homeostasis at remote sites. Based on these considerations, CCR8 appears to be a promising novel target to be considered in future translational research.
Collapse
Affiliation(s)
- Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
10
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
11
|
Whiteside SK, Grant FM, Gyori DS, Conti AG, Imianowski CJ, Kuo P, Nasrallah R, Sadiyah F, Lira SA, Tacke F, Eil RL, Burton OT, Dooley J, Liston A, Okkenhaug K, Yang J, Roychoudhuri R. CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function. Immunol Suppl 2021; 163:512-520. [PMID: 33838058 PMCID: PMC8274197 DOI: 10.1111/imm.13337] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8-/- mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which were abolished in Ccr8-/- mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy.
Collapse
Affiliation(s)
- Sarah K. Whiteside
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Francis M. Grant
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - David S. Gyori
- Department of PhysiologySemmelweis UniversityBudapestHungary
| | | | - Charlotte J. Imianowski
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Paula Kuo
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Rabab Nasrallah
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Firas Sadiyah
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Sergio A. Lira
- Mount Sinai School of MedicineImmunology InstituteNew YorkNYUSA
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)Charité Universitätsmedizin BerlinBerlinGermany
| | - Robert L. Eil
- Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Oliver T. Burton
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - James Dooley
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Adrian Liston
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | | | - Jie Yang
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Rahul Roychoudhuri
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| |
Collapse
|
12
|
Satoh K, Kobayashi Y, Fujimaki K, Hayashi S, Ishida S, Sugiyama D, Sato T, Lim K, Miyamoto M, Kozuma S, Kadokura M, Wakita K, Hata M, Hirahara K, Amano M, Watanabe I, Okamoto A, Tuettenberg A, Jonuleit H, Tanemura A, Maruyama S, Agatsuma T, Wada T, Nishikawa H. Novel anti-GARP antibody DS-1055a augments anti-tumor immunity by depleting highly suppressive GARP+ regulatory T cells. Int Immunol 2021; 33:435-446. [PMID: 34235533 DOI: 10.1093/intimm/dxab027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T (Treg) cells, which are essential for maintaining self-tolerance, inhibit anti-tumor immunity, consequently hindering protective cancer immunosurveillance, and hampering effective anti-tumor immune responses in tumor-bearing hosts. Here, we show that depletion of Treg cells via targeting glycoprotein A repetitions predominant (GARP) induces effective anti-tumor immune responses. GARP was specifically expressed by highly suppressive Treg cells in the tumor microenvironment (TME) of multiple cancer types in humans. In the periphery, GARP was selectively induced in Treg cells, but not in effector T cells, by polyclonal stimulation. DS-1055a, a novel afucosylated anti-human GARP monoclonal antibody, efficiently depleted GARP+ Treg cells, leading to the activation of effector T cells. Moreover, DS-1055a decreased FoxP3+CD4+ T cells in the TME and exhibited remarkable anti-tumor activity in humanized mice bearing HT-29 tumors. We propose that DS-1055a is a new Treg-cell-targeted cancer immunotherapy agent with augmentation of anti-tumor immunity.
Collapse
Affiliation(s)
- Kazuki Satoh
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Yoichi Kobayashi
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kaori Fujimaki
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinko Hayashi
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Saori Ishida
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takahiko Sato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kyungtaek Lim
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Megumi Miyamoto
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Shiho Kozuma
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Michinori Kadokura
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Kenichi Wakita
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Masato Hata
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Kazuki Hirahara
- Biologics Planning Department, Daiichi Sankyo Co., Ltd., Gunma 370-0503, Japan
| | - Masato Amano
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Ichiro Watanabe
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Atsushi Okamoto
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Toshinori Agatsuma
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Teiji Wada
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
13
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol 2020; 51:280-291. [PMID: 33302322 DOI: 10.1002/eji.202048992] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
The adaptive immune system is modulated by an important subset of CD4+ T lymphocytes called Treg cells that function in maintaining immune homeostasis by preventing excessive immune activation. Both deficiency and overactivation of Treg cell function can result in disease pathology. While loss of Treg function can lead to autoimmunity, an overabundance of Treg activity can promote tumorigenesis. Blocking and/or depleting Tregs has emerged as a viable strategy to enhance antitumor immunity. A major limitation underlying the limited efficacy observed with Treg therapies in the clinic is lack of selective targeting, often attributed to concurrent depletion of antitumor effector T-cell populations. Novel approaches to improve the specificity of Treg targeting in the context of cancer include the use of T-cell receptor mimic antibodies, bispecific antibodies, and near-infrared photoimmunotherapy. Next-generation technology platforms and transcriptomic/computational-based screening methods have been recently developed to identify preferential Treg targets. Herein, we highlight key advancements and challenges pertaining to the development of novel Treg targeting cancer therapeutics and discuss ongoing clinical trials evaluating next-generation Treg therapies for solid tumors.
Collapse
Affiliation(s)
- Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Rajkumar Ganesan
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
15
|
Kim KS, Han JH, Choi SH, Jung HY, Park JD, An HJ, Kim SE, Kim DH, Doh J, Han DK, Kim IH, Park W, Park KS. Cationic Nanoparticle-Mediated Activation of Natural Killer Cells for Effective Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56731-56740. [PMID: 33290037 DOI: 10.1021/acsami.0c16357] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural killer (NK) cells have been recognized as a next-generation therapy for cancer as they are less likely to trigger adverse events (e.g., cytokine storm or graft-versus-host disease) than T cell-based therapeutics. Although NK cell activation strategies through genetic engineering and cytokine treatment have been actively studied for successful cancer treatment, the approaches are inefficient, expensive, and involve complex processing. Here, we developed a facile and efficient method of activating NK cells using cationic nanoparticles (cNPs). The cytotoxic activity of cNP-treated primary NK and NK-92MI cells against triple-negative breast cancer cells was over 2-fold higher than that of control NK cells in vitro. Molecular biological analyses confirmed that cNPs altered the expression of CCR4 and CXCR4 of NK cells that function as chemokine receptors. In vitro live cell imaging showed that the NK cells treated with cNPs were better than control NK cells at interacting with cancer cells. Consistent with these in vitro results, cNP-treated NK cells effectively inhibited tumor growth in an in vivo tumor animal model of triple-negative breast cancer. Additionally, NK cells treated with cNPs were tracked effectively in vivo by magnetic resonance imaging. Thus, cNP-mediated activation of NK cells has great potential as an NK cell-based cancer immunotherapy. Most of all, activating NK cells using cNPs has a great advantage over conventional methods in that immune cells can be activated by a one-step facile process with exogenously charged nanomaterials, without the need for genetic engineering or cytokine treatment.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Jun-Hyeok Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biological Science, Korea University, Seoul 02841, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Hae-Yun Jung
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Hee-Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biological Science, Korea University, Seoul 02841, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
16
|
Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020; 34:209-220. [PMID: 33051111 PMCID: PMC7501063 DOI: 10.1016/j.tmrv.2020.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions.
Platelets can act as circulating sentinels by expressing pathogen-associated molecular pattern receptors that bind pathogens and induce their killing and elimination. Activated platelets secrete and express a multitude of pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. Platelets express and secrete many critical immunoregulatory molecules that significantly affect both innate and adaptive immune responses. Platelets are the primary source of microparticles in the circulation and these augment the platelet’s ability to communicate with the immune system. Platelets and megakaryocytes can act as antigen presenting cells and present both foreign- and self-peptides to T-cells.
Collapse
Affiliation(s)
- Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
17
|
Li HL, Wang LH, Hu YL, Feng Y, Li XH, Liu YF, Li P, Mao QS, Xue WJ. Clinical and prognostic significance of CC chemokine receptor type 8 protein expression in gastrointestinal stromal tumors. World J Gastroenterol 2020; 26:4656-4668. [PMID: 32884223 PMCID: PMC7445867 DOI: 10.3748/wjg.v26.i31.4656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. Surgical resection and tyrosine kinase inhibitors are defined as the main treatments but cannot cure patients with advanced GIST, which eventually develops into recurrence and acquired drug resistance. Therefore, it is necessary to identify prognostic biomarkers and new therapeutic targets for GISTs. CC chemokine receptor type 8 (CCR8) protein participates in regulation of immune responses. Recent studies on CCR8 in non-small cell lung cancer and colorectal cancer showed that it was highly expressed in tumor-infiltrating regulatory T cells and correlated with a poor prognosis.
AIM To detect CCR8 expression in GIST tissues and analyze its relationships with clinicopathological features and prognosis in patients with GISTs.
METHODS Tissue samples were used for the tissue microarrays construction. The microarrays were then subjected to immunohistochemical analyses to detect CCR8 expression. Next, Kaplan–Meier analysis was utilized to calculate the survival rate of patients with complete follow-up data, and the potential prognostic value of CCR8 was evaluated by Cox regression analysis. Finally, a Gene Ontology/Kyoto Encyclopedia of Genes and Genomes single-gene enrichment chart of CCR8 was constructed using the STRING database.
RESULTS CCR8-positive signals were detected as brown or brown-yellow particles by immunohistochemistry located in the cytoplasm. Among 125 tissue samples, 74 had CCR8 high expression and 51 had low or negative expression. Statistical analyses suggested CCR8 was significantly correlated with tumor size, mitotic index, AFIP-Miettinen risk classification and tumor location. Kaplan–Meier and multivariate analyses showed that patients with low or negative CCR8 expression, mitotic index < 5/high-power fields (HPF) and tumor diameter < 5 cm had a better prognosis. Based on the STRING database, CCR8 was significantly enriched in biological processes such as tumor immunity, T lymphocyte chemotaxis, migration and pathways like the nuclear factor-κB and tumor necrosis factor pathways as well as intestinal immune regulation networks.
CONCLUSION CCR8 is a prognostic biomarker for malignant potential of GISTs, with high expression correlated with malignancy and poor prognosis.
Collapse
Affiliation(s)
- Huai-Liang Li
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Lin-Hua Wang
- Department of Intensive Care Unit, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Xiao-Hong Li
- Department of Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Yi-Fei Liu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Peng Li
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
18
|
Lim JY, Ryu DB, Kim TW, Lee SE, Park G, Yoon HK, Min CK. CCL1 blockade alleviates human mesenchymal stem cell (hMSC)-induced pulmonary fibrosis in a murine sclerodermatous graft-versus-host disease (Scl-GVHD) model. Stem Cell Res Ther 2020; 11:254. [PMID: 32586381 PMCID: PMC7318460 DOI: 10.1186/s13287-020-01768-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Human chronic graft-versus-host disease (CGVHD) shares clinical characteristics with a murine sclerodermatous GVHD (Scl-GVHD, B10.D2 → BALB/c) model that is characterized by skin and lung fibrosis. In this study, bone marrow- or adipose tissue-derived human mesenchymal stem cells (hMSCs) were injected into the Scl-GVHD mice to address their therapeutic effect on CGVHD. Methods Lethally irradiated BALB/c mice were transplanted with B10.D2 T cell-depleted bone marrow with or without spleen cells to generate Scl-GVHD. hMSCs were intravenously treated on days 3, 5, and 7 post-transplantation, and the control antibody or CCL1 blocking antibody was subcutaneously injected according to the same schedule as the hMSCs. Fourteen days after transplantation, the recipient mice were sacrificed, and their skin and lungs were analyzed. Results After the early injection of hMSCs after transplantation, the clinical and pathological severity of Scl-GVHD in the skin was significantly attenuated, whereas the pathological score was exacerbated in the lungs. hMSCs had migrated into the lungs, but not into the skin. CD11b monocyte/macrophages and CD4 T cells were markedly decreased in skin tissues, whereas there was an early recruitment of CD11b cells, and subsequently increased infiltration of CD4 T cells, in the lungs. Importantly, hMSCs persistently upregulated the expression of CCL1 in the lungs, but not in the skin. Concurrent treatment of hMSCs with a CCL1-blocking antibody alleviated the severity of the lung histopathology score and fibrosis with the preservation of the cutaneous protective effect against CGVHD. Infiltration of CD3 T cells and CD68 macrophages and upregulation of chemokines were also decreased in lung tissues, along with the recruitment of eosinophils and tissue IgE expression. In the skin, chemokine expression was further reduced after CCL1 blockade. Conclusions These data demonstrate that despite a protective effect against Scl-GVHD in the skin, administration of hMSCs exacerbated lung fibrosis associated with eosinophilia and airway inflammation through persistent CCL1 upregulation. CCL1 blockade offers a potential treatment of pulmonary complications induced after treatment with hMSCs.
Collapse
Affiliation(s)
- Ji-Young Lim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Da-Bin Ryu
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Tae Woo Kim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Sung-Eun Lee
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Gyeongsin Park
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
19
|
Ballegeer M, Saelens X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:v12050542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
20
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542&set/a 882111696+808152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
21
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020. [DOI: 10.3390/v12050542
expr 836379838 + 819716165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
22
|
Blanco-Pérez F, Kato Y, Gonzalez-Menendez I, Laiño J, Ohbayashi M, Burggraf M, Krause M, Kirberg J, Iwakura Y, Martella M, Quintanilla-Martinez L, Shibata N, Vieths S, Scheurer S, Toda M. CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis. Sci Rep 2019; 9:9608. [PMID: 31270368 PMCID: PMC6610106 DOI: 10.1038/s41598-019-45653-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.
Collapse
Affiliation(s)
- Frank Blanco-Pérez
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan Laiño
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Masaharu Ohbayashi
- Department of Nursing, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Manja Burggraf
- Junior Research Group 1 Experimental Allergy Models", Paul-Ehrlich-Institut, Langen, Germany
| | - Maren Krause
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science (TUS), Chiba, Japan
| | - Manuela Martella
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Stefan Vieths
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Stephan Scheurer
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Masako Toda
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany. .,Junior Research Group 1 Experimental Allergy Models", Paul-Ehrlich-Institut, Langen, Germany. .,Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
23
|
Inflammatory chemokine profiles and their correlations with effector CD4 T cell and regulatory cell subpopulations in cutaneous lupus erythematosus. Cytokine 2019; 119:95-112. [DOI: 10.1016/j.cyto.2019.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
|
24
|
Vila-Caballer M, González-Granado JM, Zorita V, Abu Nabah YN, Silvestre-Roig C, Del Monte-Monge A, Molina-Sánchez P, Ait-Oufella H, Andrés-Manzano MJ, Sanz MJ, Weber C, Kremer L, Gutiérrez J, Mallat Z, Andrés V. Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. J Mol Cell Cardiol 2019; 132:154-163. [PMID: 31121182 DOI: 10.1016/j.yjmcc.2019.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.
Collapse
Affiliation(s)
- Marian Vila-Caballer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Universidad Cardenal Herrera-CEU (CEU Universities), Valencia, Spain
| | - José M González-Granado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain; LamImSys Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yafa N Abu Nabah
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Carlos Silvestre-Roig
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | | | - Hafid Ait-Oufella
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - María J Sanz
- Departamento de Farmacología, Universidad de Valencia and Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Leonor Kremer
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Julio Gutiérrez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ziad Mallat
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain.
| |
Collapse
|
25
|
Karin N. Chemokines and cancer: new immune checkpoints for cancer therapy. Curr Opin Immunol 2018; 51:140-145. [PMID: 29579623 DOI: 10.1016/j.coi.2018.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/29/2018] [Accepted: 03/01/2018] [Indexed: 02/08/2023]
Abstract
The current review focuses on two chemokine-chemokine receptor interactions: CXCL10-CXCR3 and CCL1-CCR8. We show that CXCL10 acts on CD4+ and CD8+ T cells to enhance anti-tumor immunity, and explore the translational perspectives of these findings. As for CCR8 very recently, we identified a novel subset of CCR8+CD4+FOXp3+ regulatory T cells (Treg) that are major drivers of immune regulation. We observed that one of the four CCR8 ligands, CCL1, produced by these cells, potentiates their suppressive activity via induction of CCR8, FOXp3, CD39, Granzyme-B, and IL-10 in a positive feedback mechanism, making them master drivers of immune regulation. Collectively, this suggests blocking the CCR8-CCL1 interaction, alone or combined with other immune checkpoint inhibitors, as an approach to treat malignant diseases.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, P.O.B. 9697, Haifa 31096, Israel.
| |
Collapse
|
26
|
CCR8 +FOXp3 + T reg cells as master drivers of immune regulation. Proc Natl Acad Sci U S A 2017; 114:6086-6091. [PMID: 28533380 DOI: 10.1073/pnas.1621280114] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The current study identifies CCR8+ regulatory T cells (Treg cells) as drivers of immunosuppression. We show that in human peripheral blood cells, more than 30% of Treg up-regulate CCR8 following activation in the presence of CCL1. This interaction induces STAT3-dependent up-regulation of FOXp3, CD39, IL-10, and granzyme B, resulting in enhanced suppressive activity of these cells. Of the four human CCR8 ligands, CCL1 is unique in potentiating Treg cells. The relevance of these observations has been extended using an experimental model of multiple sclerosis [experimental autoimmune encephalomyelitis, (EAE)] and a stabilized version of mouse CCL1 (CCL1-Ig). First, we identified a self-feeding mechanism by which CCL1 produced by Treg cells at an autoimmune site up-regulates the expression of its own receptor, CCR8, on these cells. Administration of CCL1-Ig during EAE enhanced the in vivo proliferation of these CCR8+ regulatory cells while inducing the expression of CD39, granzyme B, and IL-10, resulting in the efficacious suppression of ongoing EAE. The critical role of the CCL1-CCR8 axis in Treg cells was further dissected through adoptive transfer studies using CCR8-/- mice. Collectively, we demonstrate the pivotal role of CCR8+ Treg cells in restraining immunity and highlight the potential clinical implications of this discovery.
Collapse
|
27
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
28
|
Abstract
The prognosis of patients with classical Hodgkin lymphoma following chemo- and radiotherapy has been excellent during the last 4 decades. However, the development of secondary malignancies is of major concern. Therefore, the reduction of radiotherapy application is a major objective of ongoing clinical trials. De-escalation of treatment may increase the risk of relapses and thus may lead to reappearance of prognostic factors. Prognostic biomarkers might help to identify patients who are at increased risk of relapse. This review summarizes the current knowledge about potential prognostic biomarkers for patients with classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Martin S Staege
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Stefanie Kewitz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Toralf Bernig
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Caspar Kühnöl
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Christine Mauz-Körholz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| |
Collapse
|
29
|
Hillen MR, Moret FM, van der Wurff-Jacobs K, Radstake T, Hack CE, Lafeber F, van Roon J. Targeting CD1c-expressing classical dendritic cells to prevent thymus and activation-regulated chemokine (TARC)-mediated T-cell chemotaxis in rheumatoid arthritis. Scand J Rheumatol 2016; 46:11-16. [PMID: 27250804 DOI: 10.3109/03009742.2016.1158311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Thymus and activation-regulated chemokine (TARC) attracts cells that express the C-C chemokine receptor type 4 (CCR4), including CD4 T cells. As expression of CCR4 is increased on peripheral T cells and intra-articular interleukin (IL)-17-producing cells in patients with rheumatoid arthritis (RA), we investigated whether TARC plays a role in the attraction of T cells to the synovial compartment. In addition, we assessed the role of classical dendritic cells (cDCs) in the production of TARC in RA. METHOD TARC was measured in synovial fluid (SF) samples from RA and osteoarthritis (OA) patients. Spontaneous and thymic stromal lymphopoietin (TSLP)-induced TARC production by mononuclear cells (MCs) and CD1c cDCs from peripheral blood (PB) and SF was assessed. The role of TARC in CD4 T-cell migration towards cDCs was assessed and the contribution of CD1c-expressing cells to TARC production was studied. RESULTS TARC concentrations were higher in SF of RA patients compared to OA patients. MCs from SF produced TARC spontaneously and produced more TARC upon stimulation than paired PBMCs. Blocking TARC strongly inhibited CD4 T-cell chemotaxis by TSLP-stimulated cDCs, associated with decreased production of tumour necrosis factor (TNF)-α. Depletion of cDCs from SFMCs strongly reduced TARC production. CONCLUSIONS TARC levels are increased in RA SF and our data indicate that this results from production by SFMCs and in particular CD1c cDCs. TARC attracts T cells and TARC secretion by MCs is crucially dependent on the presence of CD1c cDCs. Considering the potential of SF cDCs to activate T cells and induce pro-inflammatory cytokine secretion, targeting intra-articular cDCs constitutes a novel therapeutic approach in RA.
Collapse
Affiliation(s)
- M R Hillen
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Centre Utrecht , The Netherlands
| | - F M Moret
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Centre Utrecht , The Netherlands
| | - Kmg van der Wurff-Jacobs
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands
| | - Trdj Radstake
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Centre Utrecht , The Netherlands
| | - C E Hack
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Centre Utrecht , The Netherlands
| | - Fpjg Lafeber
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands
| | - Jag van Roon
- a Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , The Netherlands.,b Laboratory of Translational Immunology , University Medical Centre Utrecht , The Netherlands
| |
Collapse
|
30
|
Lu T, Jiao X, Si M, He P, Zou J, Zhang S, Zeng K. The Correlation of Serums CCL11, CCL17, CCL26, and CCL27 and Disease Severity in Patients with Urticaria. DISEASE MARKERS 2016; 2016:1381760. [PMID: 27057079 PMCID: PMC4737450 DOI: 10.1155/2016/1381760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chemokines may be involved in the pathogenesis of urticaria, but their correlation with disease severity as well as eruption type is unclear. OBJECTIVES The aim of this study was to explore the expression of chemokines in patients with urticaria. The association between disease severity and levels of chemokines was analysed. MATERIALS AND METHODS Serums CCL11, CCL17, CCL26, and CCL27, D-dimer, C-reactive protein, and total IgE were measured in 51 patients with urticaria and in 25 healthy control subjects. RESULTS Serums CCL11, CCL17, CCL26, and CCL27 were significantly higher in patients with urticaria than in the healthy controls (P < 0.05). Serum CCL27 strongly correlated with urticarial disease severity. Serums CCL17, CCL26, and CCL27 significantly correlated with D-dimer, while innercorrelations were noted among the chemokines. CONCLUSION Our findings reveal that chemokines participate in the pathogenesis of urticaria. Further study in larger cohort is needed to testify whether they could be the biomarkers for predicting the severity of urticaria.
Collapse
Affiliation(s)
- Tao Lu
- Department of Dermatology, The Affiliated Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyang Jiao
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou 515041, China
| | - Mengya Si
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou 515041, China
| | - Ping He
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou 515041, China
| | - Jinbo Zou
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Shuping Zhang
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Kang Zeng
- Department of Dermatology, The Affiliated Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
- *Kang Zeng:
| |
Collapse
|
31
|
Ellegård R, Crisci E, Andersson J, Shankar EM, Nyström S, Hinkula J, Larsson M. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:1698-704. [PMID: 26157174 DOI: 10.4049/jimmunol.1500618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
Collapse
Affiliation(s)
- Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Jonas Andersson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Esaki M Shankar
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Sofia Nyström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| |
Collapse
|
32
|
Lay MK, Céspedes PF, Palavecino CE, León MA, Díaz RA, Salazar FJ, Méndez GP, Bueno SM, Kalergis AM. Human metapneumovirus infection activates the TSLP pathway that drives excessive pulmonary inflammation and viral replication in mice. Eur J Immunol 2015; 45:1680-95. [PMID: 25763996 DOI: 10.1002/eji.201445021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/28/2015] [Accepted: 03/10/2015] [Indexed: 11/05/2022]
Abstract
Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infections in children and the elderly. The mechanism by which this virus triggers an inflammatory response still remains unknown. Here, we evaluated whether the thymic stromal lymphopoietin (TSLP) pathway contributes to lung inflammation upon hMPV infection. We found that hMPV infection promotes TSLP expression both in human airway epithelial cells and in the mouse lung. hMPV infection induced lung infiltration of OX40L(+) CD11b(+) DCs. Mice lacking the TSLP receptor deficient mice (tslpr(-/-) ) showed reduced lung inflammation and hMPV replication. These mice displayed a decreased number of neutrophils as well a reduction in levels of thymus and activation-regulated chemokine/CCL17, IL-5, IL-13, and TNF-α in the airways upon hMPV infection. Furthermore, a higher frequency of CD4(+) and CD8(+) T cells was found in tslpr(-/-) mice compared to WT mice, which could contribute to controlling viral spread. Depletion of neutrophils in WT and tslpr(-/-) mice decreased inflammation and hMPV replication. Remarkably, blockage of TSLP or OX40L with specific Abs reduced lung inflammation and viral replication following hMPV challenge in mice. Altogether, these results suggest that activation of the TSLP pathway is pivotal in the development of pulmonary pathology and pulmonary hMPV replication.
Collapse
Affiliation(s)
- Margarita K Lay
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Céspedes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian E Palavecino
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel A León
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo P Méndez
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France.,Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
33
|
Miyagaki T, Sugaya M. Immunological milieu in mycosis fungoides and Sézary syndrome. J Dermatol 2015; 41:11-8. [PMID: 24438139 DOI: 10.1111/1346-8138.12305] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 12/11/2022]
Abstract
Tumor genesis and development are driven by a combination of intrinsic events such as oncogene activation and tumor-suppressor gene inactivation, and extrinsic events that are dependent on the interaction with the stroma. Different types of growth factors, cytokines and chemokines secreted by the surrounding stromal cells are thought to play key roles in solid tumor progression. Accumulating evidence indicates that the immunological milieu plays an essential role in tumor development, not only in solid tumors, but also in hematopoietic malignancies. Understanding the interactions between tumor cells and microenvironment in mycosis fungoides (MF) and Sézary syndrome (SS) could provide a basis for the development of new treatments for these diseases that are sometimes resistant to current therapies. This article focuses on the wide variety of cell types and immunological milieus, affecting the characteristic features of MF and SS, such as skin-homing of tumor cells, T-helper type 2-dominant tumor microenvironment, accumulation of dermal dendritic cells, epidermal hyperplasia, angiogenesis and pruritus.
Collapse
Affiliation(s)
- Tomomitsu Miyagaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
34
|
Bischoff L, Alvarez S, Dai DL, Soukhatcheva G, Orban PC, Verchere CB. Cellular mechanisms of CCL22-mediated attenuation of autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3054-64. [PMID: 25740943 DOI: 10.4049/jimmunol.1400567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune destruction of insulin-producing β cells in type 1 diabetes and islet transplantation involves a variety of immune pathways but is primarily mediated by self-reactive T cells. Chemokines can modulate local immune responses in inflammation and tumors by recruiting immune cells. We have reported that expression of the chemokine CCL22 in pancreatic β cells in the NOD mouse prevents autoimmune attack by recruiting T regulatory cells (Tregs), protecting mice from diabetes. In this study we show that invariant NKT cells are also recruited to CCL22-expressing islet transplants and are required for CCL22-mediated protection from autoimmunity. Moreover, CCL22 induces an influx of plasmacytoid dendritic cells, which correlates with higher levels of IDO in CCL22-expressing islet grafts. In addition to its chemotactic properties, we found that CCL22 activates Tregs and promotes their ability to induce expression of IDO by dendritic cells. Islet CCL22 expression thus produces a tolerogenic milieu through the interplay of Tregs, invariant NKT cells, and plasmacytoid dendritic cells, which results in suppression of effector T cell responses and protection of β cells. The immunomodulatory properties of CCL22 could be harnessed for prevention of graft rejection and type 1 diabetes as well as other autoimmune disorders.
Collapse
Affiliation(s)
- Loraine Bischoff
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Sigrid Alvarez
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Derek L Dai
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Galina Soukhatcheva
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Paul C Orban
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
35
|
Remer M, Al-Shamkhani A, Glennie M, Johnson P. Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunotherapy 2014; 6:1187-206. [DOI: 10.2217/imt.14.94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glyco-engineering has been developed to enhance the pharmacological properties of monoclonal antibodies (mAbs) resulting in superior immune effector function. Mogamulizumab is the first approved glyco-engineered therapeutic antibody and first approved mAb to target the CC chemokine receptor 4 (CCR4). CCR4 is principally expressed on Tregs and helper T cells (Th) where it functions to induce homing of these leukocytes to sites of inflammation. Tregs play an essential role in maintaining immune balance; however, in malignancy, Tregs impair host antitumor immunity and provide a favorable environment for tumors to grow. CCR4 is highly expressed by aggressive peripheral T-cell lymphomas (PTCLs), particularly adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphomas (CTCLs). Mogamulizumab is a humanized anti-CCR4 mAb with a defucosylated Fc region that enhances antibody-dependent cellular cytotoxicity (ADCC). In addition, mogamulizumab depletes CCR4+ Tregs, potentially evoking antitumor immune responses by autologous effector cells. This ability is highly pertinent as subsets of malignant T cells are believed to function as CD4+ Tregs, overexpressing CCR4. Clinical trials with mogamulizumab have demonstrated clinical efficacy and tolerability for the treatment of relapsed/refractory aggressive T-cell lymphomas, previously associated with very poor outcomes.
Collapse
Affiliation(s)
- Marcus Remer
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Martin Glennie
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Peter Johnson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| |
Collapse
|
36
|
Sugaya M. Chemokines and Skin Diseases. Arch Immunol Ther Exp (Warsz) 2014; 63:109-15. [DOI: 10.1007/s00005-014-0313-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
37
|
|
38
|
Chemokine receptor CCR8 is required for lipopolysaccharide-triggered cytokine production in mouse peritoneal macrophages. PLoS One 2014; 9:e94445. [PMID: 24714157 PMCID: PMC3979852 DOI: 10.1371/journal.pone.0094445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/16/2014] [Indexed: 02/02/2023] Open
Abstract
Chemokine (C-C motif) receptor 8 (CCR8), the chemokine receptor for chemokine (C-C motif) ligand 1 (CCL1), is expressed in T-helper type-2 lymphocytes and peritoneal macrophages (PMφ) and is involved in various pathological conditions, including peritoneal adhesions. However, the role of CCR8 in inflammatory responses is not fully elucidated. To investigate the function of CCR8 in macrophages, we compared cytokine secretion from mouse PMφ or bone marrow-derived macrophages (BMMφ) stimulated with various Toll-like receptor (TLR) ligands in CCR8 deficient (CCR8-/-) and wild-type (WT) mice. We found that CCR8-/- PMφ demonstrated attenuated secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 when stimulated with lipopolysaccharide (LPS). In particular, LPS-induced IL-10 production absolutely required CCR8. CCR8-dependent cytokine secretion was characteristic of PMφ but not BMMφ. To further investigate this result, we selected the small molecule compound R243 from a library of compounds with CCR8-antagonistic effects on CCL1-induced Ca2+ flux and CCL1-driven PMφ aggregation. Similar to CCR8-/- PMφ, R243 attenuated secretion of TNF-α, IL-6, and most strikingly IL-10 from WT PMφ, but not BMMφ. CCR8-/- PMφ and R243-treated WT PMφ both showed suppressed c-jun N-terminal kinase activity and nuclear factor-κB signaling after LPS treatment when compared with WT PMφ. A c-Jun signaling pathway inhibitor also produced an inhibitory effect on LPS-induced cytokine secretion that was similar to that of CCR8 deficiency or R243 treatment. As seen in CCR8-/- mice, administration of R243 attenuated peritoneal adhesions in vivo. R243 also prevented hapten-induced colitis. These results are indicative of cross talk between signaling pathways downstream of CCR8 and TLR-4 that induces cytokine production by PMφ. Through use of CCR8-/- mice and the new CCR8 inhibitor, R243, we identified a novel macrophage innate immune response pathway that involves a chemokine receptor.
Collapse
|
39
|
Inui S, Noguchi F, Nakajima T, Itami S. Serum thymus and activation-regulated chemokine as disease activity and response biomarker in alopecia areata. J Dermatol 2013; 40:881-5. [DOI: 10.1111/1346-8138.12273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Shigeki Inui
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| | - Fumihito Noguchi
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| | - Takeshi Nakajima
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| | - Satoshi Itami
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| |
Collapse
|
40
|
Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells. Cancer Gene Ther 2013; 20:469-77. [PMID: 23846252 PMCID: PMC3775601 DOI: 10.1038/cgt.2013.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/15/2013] [Indexed: 12/20/2022]
Abstract
Murine dendritic cells (DC) transduced to express the Type-1 transactivator T-bet (i.e. mDC.Tbet) and delivered intratumorally as a therapy are superior to control wild-type DC in slowing the growth of established subcutaneous MCA205 sarcomas in vivo. Optimal antitumor efficacy of mDC.Tbet-based gene therapy was dependent on host natural killer (NK) cells and CD8(+) T cells, and required mDC.Tbet expression of major histocompatibility complex class I molecules, but was independent of the capacity of the injected mDC.Tbet to produce proinflammatory cytokines (interleukin-12 family members or interferon-γ) or to migrate to tumor-draining lymph nodes based on CCR7 ligand chemokine recruitment. Conditional (CD11c-DTR) or genetic (BATF3(-/-)) deficiency in host antigen-crosspresenting DC did not diminish the therapeutic action of intratumorally delivered wild-type mDC.Tbet. Interestingly, we observed that intratumoral delivery of mDC.Tbet (versus control mDC.Null) promoted the acute infiltration of NK cells and naive CD45RB(+) T cells into the tumor microenvironment (TME) in association with elevated expression of NK- and T-cell-recruiting chemokines by mDC.Tbet. When taken together, our data support a paradigm for extranodal (cross)priming of therapeutic Type-1 immunity in the TME after intratumoral delivery of mDC.Tbet-based gene therapy.
Collapse
|
41
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
42
|
van Helden MJG, Zaiss DMW, Sijts AJAM. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS One 2012; 7:e52027. [PMID: 23272202 PMCID: PMC3521727 DOI: 10.1371/journal.pone.0052027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/13/2012] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in control of viral infections. We recently showed that intranasal infection of mice with influenza virus induced the accumulation of NK cells in the airways. NK cells however did not proliferate in the airways or in the draining lymph node, but in the bone marrow mainly. As also monocyte-precursors undergo vigorous proliferation in the bone marrow (BM) during infections and then egress CCR2-dependently, we decided to determine the role of CCR2 in NK cell migration during intranasal influenza virus infection. We show that a unique population of NK cells in the BM expressed CCR2 and that monocyte chemotactic protein-1 (MCP-1), one of the CCR2 ligands, was produced in the airways of influenza virus infected mice. Analysis of BM chimeric mice reconstituted with a mix of wild-type (wt) and CCR2-deficient BM cells showed that upon influenza virus infection, a significantly lower proportion of CCR2-deficient than wt NK cells was recovered from the bronchoalveolar lavage (BAL). Taken together, our data demonstrate that during influenza virus infection a proportion of NK cells migrate in a CCR2-dependent fashion.
Collapse
Affiliation(s)
- Mary J. G. van Helden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Dietmar M. W. Zaiss
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
- * E-mail: (DMWZ); (AJAMS)
| | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
- * E-mail: (DMWZ); (AJAMS)
| |
Collapse
|
43
|
Abstract
Although the etiology of multiple sclerosis (MS) is not known, the consensus is that Th1 cells sensitized to myelin proteins in the periphery are recruited into the CNS and damage the myelin sheath. Natural killers (NK) are cells that spontaneously lyse tumor target cells and have immunoregulatory activity secreting multiple cytokines and chemokines, as well as interacting with cells of innate and adaptive immune systems. A great discovery in the field is the cloning of several inhibitory and activating receptors. Another important contribution is the discovery that these cells express many seven-transmembrane-spanning domain receptors which aid them in extravasations into injured tissues. Despite all this progress, the role of NK cells in autoimmune diseases including MS is still not quite clear. In this paper, I will summarize recent findings related to the effects of these cells in both MS and the animal model of experimental autoimmune encephalomyelitis (EAE). Hence, I will discuss the effects of drugs used to treat MS/EAE and then explain their effects on NK cells. These include anti-CD25 or daclizumab, interferon-β (IFN-β), natalizumab, glatiramer acetate (GA), and fingolimod (FTY720). Finally, I will explain the contribution of the recently discovered NK17/NK1 cells in MS disease.
Collapse
Affiliation(s)
- A. A. Maghazachi
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, POB 1103, 0317 Oslo, Norway
| |
Collapse
|
44
|
Denis C, Deiteren K, Mortier A, Tounsi A, Fransen E, Proost P, Renauld JC, Lambeir AM. C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity. PLoS One 2012; 7:e34199. [PMID: 22479563 PMCID: PMC3313992 DOI: 10.1371/journal.pone.0034199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system.
Collapse
Affiliation(s)
- Catherine Denis
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kathleen Deiteren
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Amel Tounsi
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Edegem, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
45
|
Heiseke AF, Faul AC, Lehr HA, Förster I, Schmid RM, Krug AB, Reindl W. CCL17 promotes intestinal inflammation in mice and counteracts regulatory T cell-mediated protection from colitis. Gastroenterology 2012; 142:335-45. [PMID: 22057112 DOI: 10.1053/j.gastro.2011.10.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/20/2011] [Accepted: 10/17/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.
Collapse
Affiliation(s)
- Alexander F Heiseke
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Pandya AD, Al-Jaderi Z, Høglund RA, Holmøy T, Harbo HF, Norgauer J, Maghazachi AA. Identification of human NK17/NK1 cells. PLoS One 2011; 6:e26780. [PMID: 22039549 PMCID: PMC3198820 DOI: 10.1371/journal.pone.0026780] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/04/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells have both cytolytic and immunoregulatory functions. We recently described that these cells release the inflammatory cytokines IL-17 and IFN-γ. However, the precise identity of the NK cell subset(s) that secrete these cytokines is not known. METHODOLOGY/PRINCIPAL FINDINGS To isolate the cells secreting IL-17 and IFN-γ, we took advantage of the findings that Th17/Th1 cells express chemokine receptors. Therefore, CD56(+)NK cells were stained with antibodies against various chemokine receptors and intracellularly with antibodies toward IL-17 and IFN-γ. Consequently, we identified previously unrecognized subset of NK cells generated from normal human peripheral blood after activation with IL-2 but not PMA plus ionomycin. The cells are characterized by the expression of CD56(+) and CCR4(+), produce IL-17 and IFN-γ and are consequently named NK17/NK1 cells. They also express CD161, NKp30, NKp44, NKp46, NKG2D, CD158, CCL22, IL-2Rβ and the common γ chain but not CD127 or IL-23R. Further, they possess T-bet and RORγt transcription factors. Antibodies to IL-1β, IL-6, IL-21, or TGF-β1 do not inhibit IL-2-induced generation of NK17/NK1 cells, suggesting that IL-2 has the capacity to polarize these cells. Notably, NK17/NK1 cells are abundant in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) without activation, and are generated from the peripheral blood of these patients after activation with IL-2. CONCLUSIONS/SIGNIFICANCE NK17/NK1 cells identified here have not been previously described in healthy or MS patients.
Collapse
Affiliation(s)
- Abhilash D. Pandya
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Zaidoon Al-Jaderi
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rune A. Høglund
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve Holmøy
- Institute of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne F. Harbo
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Azzam A. Maghazachi
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
47
|
Miyagaki T, Sugaya M. Erythrodermic cutaneous T-cell lymphoma: How to differentiate this rare disease from atopic dermatitis. J Dermatol Sci 2011; 64:1-6. [DOI: 10.1016/j.jdermsci.2011.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
48
|
Abstract
Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue.
Collapse
Affiliation(s)
- Michelle L McCully
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University Cardiff, UK
| | | |
Collapse
|
49
|
Olkhanud PB, Rochman Y, Bodogai M, Malchinkhuu E, Wejksza K, Xu M, Gress RE, Hesdorffer C, Leonard WJ, Biragyn A. Thymic stromal lymphopoietin is a key mediator of breast cancer progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5656-62. [PMID: 21490155 PMCID: PMC3401482 DOI: 10.4049/jimmunol.1100463] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation is a double-edged sword that can promote or suppress cancer progression. In this study, we report that thymic stromal lymphopoietin (TSLP), an IL-7-like type 1 inflammatory cytokine that is often associated with the induction of Th2-type allergic responses in the lungs, is also expressed in human and murine cancers. Our studies with murine cancer cells indicate that TSLP plays an essential role in cancer escape, as its inactivation in cancer cells alone was sufficient to almost completely abrogate cancer progression and lung metastasis. The cancer-promoting activity of TSLP primarily required signaling through the TSLP receptor on CD4(+) T cells, promoting Th2-skewed immune responses and production of immunosuppressive factors such as IL-10 and IL-13. Expression of TSLP therefore may be a useful prognostic marker, and its targeting could have therapeutic potential.
Collapse
Affiliation(s)
| | - Yrina Rochman
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | - Ronald E. Gress
- Experimental Transplantation and Immunology Branch, National Institutes of Health, Bethesda, MD
| | | | - Warren J. Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Arya Biragyn
- Please address correspondence to: Arya Biragyn, Ph.D. National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, Maryland 21224. Ph. (410) 558-8680; Fax: (410) 558-8284: or Warren J. Leonard, M.D., National Heart, Lung, and Blood Institute, NIH, Bldg. 10, Rm. 7B05, Bethesda, MD 20892-1674 Ph. (301) 496-0098; Fax: (301) 402-0971:
| |
Collapse
|
50
|
Nakagami Y, Kawashima K, Etori M, Yonekubo K, Suzuki C, Jojima T, Kuribayashi T, Nara F, Yamashita M. A novel CC chemokine receptor 4 antagonist RS-1269 inhibits ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice. Basic Clin Pharmacol Toxicol 2011; 107:793-7. [PMID: 20406201 DOI: 10.1111/j.1742-7843.2010.00578.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is growing evidence that chemokines recruit leukocytes in allergic, inflammatory and immune responses. CC chemokine receptor 4 (CCR4) is implicated as a preferential marker for T helper 2 cells, and the cells selectively respond to CC chemokine ligand 17 (CCL17) and CCL22. We searched for compounds having a profile as a CCR4 antagonist from an in-house library and have previously reported that 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154) was capable of significantly inhibiting the binding of [(125) I]CCL17 to human CCR4-expressing CHO cells. From further synthesis of its derivatives, we newly focused on 3-(isobutyrylamino)-N-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}benzamide (RS-1269), which showed potency comparable to RS-1154 in inhibiting CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 5.5 nM in vitro. We then investigated the pharmacological effects of RS-1269 on ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice. The ear thickness was significantly decreased by oral administration of RS-1269 at the dose of 30 mg/kg. Treatment with lipopolysaccharide significantly increased the serum level of tumour necrosis factor-α. Compared with an anti-CCL17 antibody, RS-1269 significantly inhibited the production at the dose of 100 mg/kg. These results raise the possibility that RS-1269 or one of its derivatives has potential to serve as a prototype compound to develop therapeutic agents for atopic dermatitis and inflammatory diseases.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|