1
|
Singh AK, Koley T, Vats D, Singh A, Samath EA, Batra A, Dey S. Novel inhibitor against Rac1 for therapeutic approach in prevention of breast cancer progression. Sci Rep 2024; 14:25083. [PMID: 39443601 PMCID: PMC11500341 DOI: 10.1038/s41598-024-75351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Metastatic breast-cancer is one of the major causes of death, due to remaining dormant cancer cells for several years. Rac1 is upregulated with cancer and stay elevated throughout the metastatic pathway to regulate the formation of lamellipodia and filopodia. This work developed peptide FGDWS as novel inhibitor targeting Rac1-Tiam1 binding site by in-silico as it was found to be the strongest interacting peptide with Rac1 at the Tiam binding site. The binding and inhibition study of peptide with Rac1 was performed by Surface plasmon resonance and MTT assay, respectively. Cell-migration, apoptotic assay and western-blot in breast-cancer cells were performed with FGDWS and in combination with Doxorubicin (Dox). Tumor regression experiment was done with mice model. The strong binding of FGDWS with Rac1 and reduction of cell-viability were observed in breast-cancer cell-lines. The cell-migration was suppressed, and higher regression were obtained in synergy group. The apoptotic effect of FGDWS alone and with Dox were detected by annexin-V via activating caspase3/7. The tumor size was reduced by the treatment of FGDWS and more reduced in combinatorial effect. The combinatorial effect of FGDWS-Dox may enhance the treatment efficacy without side-effects.
Collapse
Affiliation(s)
- Abhinay Kunar Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Deepak Vats
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ethayathulla Abdul Samath
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
2
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
3
|
Biber JC, Sullivan A, Brazzo JA, Heo Y, Tumenbayar BI, Krajnik A, Poppenberg KE, Tutino VM, Heo SJ, Kolega J, Lee K, Bae Y. Survivin as a mediator of stiffness-induced cell cycle progression and proliferation of vascular smooth muscle cells. APL Bioeng 2023; 7:046108. [PMID: 37915752 PMCID: PMC10618027 DOI: 10.1063/5.0150532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Stiffened arteries are a pathology of atherosclerosis, hypertension, and coronary artery disease and a key risk factor for cardiovascular disease events. The increased stiffness of arteries triggers a phenotypic switch, hypermigration, and hyperproliferation of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia and accelerated neointima formation. However, the mechanism underlying this trigger remains unknown. Our analyses of whole-transcriptome microarray data from mouse VSMCs cultured on stiff hydrogels simulating arterial pathology identified 623 genes that were significantly and differentially expressed (360 upregulated and 263 downregulated) relative to expression in VSMCs cultured on soft hydrogels. Functional enrichment and gene network analyses revealed that these stiffness-sensitive genes are linked to cell cycle progression and proliferation. Importantly, we found that survivin, an inhibitor of apoptosis protein, mediates stiffness-dependent cell cycle progression and proliferation as determined by gene network and pathway analyses, RT-qPCR, immunoblotting, and cell proliferation assays. Furthermore, we found that inhibition of cell cycle progression did not reduce survivin expression, suggesting that survivin functions as an upstream regulator of cell cycle progression and proliferation in response to ECM stiffness. Mechanistically, we found that the stiffness signal is mechanotransduced via the FAK-E2F1 signaling axis to regulate survivin expression, establishing a regulatory pathway for how the stiffness of the cellular microenvironment affects VSMC behaviors. Overall, our findings indicate that survivin is necessary for VSMC cycling and proliferation and plays a role in regulating stiffness-responsive phenotypes.
Collapse
Affiliation(s)
- John C. Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Andra Sullivan
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | | | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | | | | | - Su-Jin Heo
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Kolega
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yongho Bae
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Ding J, Su Y, Liu Y, Xu Y, Yang D, Wang X, Hao S, Zhou H, Li H. The role of CSTF2 in cancer: from technology to clinical application. Cell Cycle 2023; 22:2622-2636. [PMID: 38166492 PMCID: PMC10936678 DOI: 10.1080/15384101.2023.2299624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
A protein called cleavage-stimulating factor subunit 2 (CSTF2, additionally called CSTF-64) binds RNA and is needed for the cleavage and polyadenylation of mRNA. CSTF2 is an important component subunit of the cleavage stimulating factor (CSTF), which is located on the X chromosome and encodes 557 amino acids. There is compelling evidence linking elevated CSTF2 expression to the pathological advancement of cancer and on its impact on the clinical aspects of the disease. The progression of cancers, including hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, and pancreatic cancer, is correlated with the upregulation of CSTF2 expression. This review provides a fresh perspective on the investigation of the associations between CSTF2 and various malignancies and highlights current studies on the regulation of CSTF2. In particular, the mechanism of action and potential clinical applications of CSTF2 in cancer suggest that CSTF2 can serve as a new biomarker and individualized treatment target for a variety of cancer types.
Collapse
Affiliation(s)
- Jiaxiang Ding
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Youru Liu
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Yuanyuan Xu
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xuefeng Wang
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Shuli Hao
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Huan Zhou
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Li
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
5
|
Koo TY, Lai H, Nomura DK, Chung CYS. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics. Nat Commun 2023; 14:3564. [PMID: 37322008 PMCID: PMC10272157 DOI: 10.1038/s41467-023-39268-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Cysteine has been exploited as the binding site of covalent drugs. Its high sensitivity to oxidation is also important for regulating cellular processes. To identify new ligandable cysteines which can be hotspots for therapy and to better study cysteine oxidations, we develop cysteine-reactive probes, N-acryloylindole-alkynes (NAIAs), which have superior cysteine reactivity owing to delocalization of π electrons of the acrylamide warhead over the whole indole scaffold. This allows NAIAs to probe functional cysteines more effectively than conventional iodoacetamide-alkyne, and to image oxidized thiols by confocal fluorescence microscopy. In mass spectrometry experiments, NAIAs successfully capture new oxidized cysteines, as well as a new pool of ligandable cysteines and proteins. Competitive activity-based protein profiling experiments further demonstrate the ability of NAIA to discover lead compounds targeting these cysteines and proteins. We show the development of NAIAs with activated acrylamide for advancing proteome-wide profiling and imaging ligandable cysteines and oxidized thiols.
Collapse
Affiliation(s)
- Tin-Yan Koo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hinyuk Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Clive Yik-Sham Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, P. R. China.
| |
Collapse
|
6
|
Wu H, Liu S, Chen S, Hua Y, Li X, Zeng Q, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. A Selective Reduction of Osteosarcoma by Mitochondrial Apoptosis Using Hydroxyapatite Nanoparticles. Int J Nanomedicine 2022; 17:3691-3710. [PMID: 36046839 PMCID: PMC9423115 DOI: 10.2147/ijn.s375950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background In recent years, using hydroxyapatite nanoparticles (HANPs) for tumor therapy attracted increasing attention because HANPs were found to selectively suppress the growth of tumor cells but exhibit ignorable toxicity to normal cells. Purpose This study aimed to investigate the capacities of HANPs with different morphologies and particle sizes against two kinds of osteosarcoma (OS) cells, human OS 143B cells and rat OS UMR106 cells. Methods Six kinds of HANPs with different morphologies and particle sizes were prepared by wet chemical method. Then, the antitumor effect of these nanoparticles was characterized by means of in vitro cell experiments and in vivo tumor-bearing mice model. The underlying antitumor mechanism involving mitochondrial apoptosis was also investigated by analysis of intracellular calcium, expression of apoptosis-related genes, reactive oxygen species (ROS), and the endocytosis efficiency of the particles in tumor cells. Results Both in vitro cell experiments and in vivo mice model evaluation revealed the anti-OS performance of HANPs depended on the concentration, morphology, and particle size of the nanoparticles, as well as the OS cell lines. Among the six HANPs, rod-like HANPs (R-HANPs) showed the best inhibitory activity on 143B cells, while needle-like HANPs (N-HANPs) inhibited the growth of UMR106 cells most efficiently. We further demonstrated that HANPs induced mitochondrial apoptosis by selectively raising intracellular Ca2+ and the gene expression levels of mitochondrial apoptosis-related molecules, and depolarizing mitochondrial membrane potential in tumor cells but not in MC3T3-E1, a mouse pre-osteoblast line. Additionally, the anti-OS activity of HANPs also linked with the endocytosis efficiency of the particles in the tumor cells, and their ability to drive oxidative damage and immunogenic cell death (ICD). Conclusion The current study provides an effective strategy for OS therapy where the effectiveness was associated with the particle morphology and cell line.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuchen Hua
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| |
Collapse
|
7
|
Up-Regulation of RACGAP1 Promotes Progressions of Hepatocellular Carcinoma Regulated by GABPA via PI3K/AKT Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3034150. [PMID: 35958019 PMCID: PMC9363186 DOI: 10.1155/2022/3034150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the dominating tumors causing death due to lack of timely discovery and valid treatment. Abnormal increase of Rac GTPase activating protein 1 (RACGAP1) has been verified to be an oncogene in plenty tumors. The profound mechanism of RACGAP1 was rarely reported in HCC. In this study, we explored the function and mechanism of RACGAP1 in HCC through multiple analysis and experiments. RACGAP1 expression was up-regulated in HCC samples and the high expression of RACGAP1 was an independent prognostic risk factor for HCC patients. Meanwhile, RACGAP1 promoted developments of HCC both in vitro and in vivo. We verified that RACGAP1 promoted proliferation of HCC via PI3K/AKT/CDK2 and PI3K/AKT/GSK3β/Cyclin D1 signaling pathway. RACGAP1 accelerated the invasion and metastasis of HCC via phosphorylation of GSK3β and nuclear translocation of β-catenin. Furthermore, by luciferase reporter assay and Chromatin immunoprecipitation (ChIP) assay, we confirmed Recombinant GA Binding Protein Transcription Factor Alpha (GABPA) regulated the transcription of RACGAP1. All these findings revealed that RACGAP1 promotes the progression of HCC through a novel mechanism, which might be a new therapeutic target for HCC patients.
Collapse
|
8
|
An X, Wang T, Zhang W, Yu H, Chunhua Zhao R, Guo Y, Wang C, Qin L, Guo C. Chondroprotective Effects of Combination Therapy of Acupotomy and Human Adipose Mesenchymal Stem Cells in Knee Osteoarthritis Rabbits via the GSK3β-Cyclin D1-CDK4/CDK6 Signaling Pathway. Aging Dis 2020; 11:1116-1132. [PMID: 33014527 PMCID: PMC7505269 DOI: 10.14336/ad.2019.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are highly chondrogenic and can be used to treat knee osteoarthritis (KOA) by alleviating cartilage defects. Acupotomy, a biomechanical therapy guided by traditional Chinese medicine theory, alleviates cartilage degradation and is widely used in the clinic to treat KOA by correcting abnormal mechanics. However, whether combining acupotomy with ASCs will reverse cartilage degeneration by promoting chondrocyte proliferation in KOA rabbits is unknown. The present study aimed to investigate the effects of combination therapy of acupotomy and ASCs on chondrocyte proliferation and to determine the underlying mechanism in rabbits with KOA induced by knee joint immobilization for 6 weeks. After KOA modeling, five groups of rabbits (acupotomy, ASCs, acupotomy + ASCs, model and control groups) received the indicated intervention for 4 weeks. The combination therapy significantly restored the KOA-induced decrease in passive range of motion (PROM) in the knee joint and reduced the elevated serum level of cartilage oligomeric matrix protein (COMP), a marker for cartilage degeneration. Furthermore, magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) images showed that the combination therapy inhibited cartilage injury. The combination therapy also significantly blocked increases in the mRNA and protein expression of glycogen synthase kinase-3β (GSK3β) and decreases in the mRNA and protein expression of cyclin D1/CDK4 and cyclin D1/CDK6 in cartilage. These findings indicated that the combination therapy mitigated knee joint immobility, promoted chondrocyte proliferation and alleviated cartilage degeneration in KOA rabbits, and these effects may be mediated by specifically regulating the GSK3β-cyclin D1-CDK4/CDK6 pathway.
Collapse
Affiliation(s)
- Xingyan An
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Yu
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Robert Chunhua Zhao
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yan Guo
- 3Acupuncture and Moxibustion Department, Beijing Traditional Chinese Medicine Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunjiu Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Luxue Qin
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Guo
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P. Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020259. [PMID: 31973201 PMCID: PMC7072214 DOI: 10.3390/cancers12020259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Eleanor A. Woodward
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Nathan J. Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
10
|
Wu F, Xing T, Gao X, Liu F. miR‑501‑3p promotes colorectal cancer progression via activation of Wnt/β‑catenin signaling. Int J Oncol 2019; 55:671-683. [PMID: 31364752 PMCID: PMC6685591 DOI: 10.3892/ijo.2019.4852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling is observed in >90% of colorectal cancer cases. microRNAs (miRNAs) regulate the expression of key genes in Wnt/β-catenin signaling. As a result, abnormal expression of miRNAs regulates the activation of Wnt/β-catenin signaling in several types of cancer. In the current study, it was demonstrated that miR-501-3p was overexpressed in colorectal tumor tissues compared to the adjacent normal tissues. Downregulation of miR-501-3p inhibited cell proliferation and sphere formation, while it induced cell cycle arrest at the G1 phase in colorectal cancer cells. Bioinformatics analysis results predicted that adenomatous polyposis coli (APC), a negative regulator of Wnt/β-catenin signaling, was a potential target gene of miR-501-3p. Inhibition of miR-501-3p increased APC expression in colorectal cancer cells. Additionally, β-catenin was destabilized following miR-501-3p inhibition; immunofluorescence analysis revealed that β-catenin translocated from nucleus to cytoplasm. In addition, cyclin D1 and c-Myc, two well-characterized target genes of Wnt/β-catenin signaling, were downregulated following miR-501-3p inhibition. Transfection of APC small interfering RNA re-activated β-catenin and stimulated the expression of cyclin D1 and c-Myc. Furthermore, silencing of APC reversed the miR-501-3p inhibitor-induced cell cycle disruption, and the inhibition of cell proliferation and sphere formation in colorectal cancer cells. In conclusion, the present study identified miR-501-3p as a novel regulator of Wnt/β-catenin signaling in colorectal cancer cells via targeting APC, suggesting that miR-501-3p may act as a novel oncogenic miRNA in colorectal cancer.
Collapse
Affiliation(s)
- Fangxiong Wu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710077, P.R. China
| | - Tongchao Xing
- General Surgery, The Fourth People's Hospital of Shaanxi Province, Xi'an, Shaanxi 710000, P.R. China
| | - Xiaopeng Gao
- Second Department of General Surgery, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Fengrui Liu
- Emergency Department, First Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
11
|
Lin JX, Xie XS, Weng XF, Qiu SL, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM, Zheng CH. Overexpression of IC53d promotes the proliferation of gastric cancer cells by activating the AKT/GSK3β/cyclin D1 signaling pathway. Oncol Rep 2019; 41:2739-2752. [PMID: 30864700 PMCID: PMC6448126 DOI: 10.3892/or.2019.7042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Cyclin‑dependent kinase 5 regulatory subunit‑associated protein 3 (CDK5RAP3 or C53) is involved in the development of various types of tumor, and alternative splicing of C53 results in numerous transcription variants that encode different isoforms. The present study aimed to clone human C53 isoform d (IC53d) and explore its role in the proliferation of gastric cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of IC53d in 80 primary gastric adenocarcinoma tissues and adjacent normal tissues. In addition, the association between IC53d and clinicopathological parameters was determined. Gastric cancer cell lines stably overexpressing IC53d were established to observe its effects on cell proliferation, invasion and migration, and on in vivo tumorigenicity, and the mechanism of action was explored. The results of the presen study demonstrated that IC53d was upregulated in gastric cancer tissues and was associated with tumor T‑stage. Furthermore, overexpression of IC53d promoted the proliferation, colony formation and G1/S phase transition of gastric cancer cells, leading to enhancement of tumorigenesis in vitro and in vivo. Overexpression of IC53d also promoted phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β), which increased the expression of cyclin D1. In addition, high cyclin D1 expression was associated with a significantly worse prognosis for patients compared with in patients with low cyclin D1 expression. These results indicated that IC53d may promote the phosphorylation of AKT and GSK3β, which in turn may increase cyclin D1 expression, enhancing G1/S phase transition, accelerating cell cycle progression, promoting the proliferation of gastric cancer cells, and inducing a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
12
|
Ji AL, Li T, Zu G, Feng DC, Li Y, Wang GZ, Yao JH, Tian XF. Ubiquitin-specific protease 22 enhances intestinal cell proliferation and tissue regeneration after intestinal ischemia reperfusion injury. World J Gastroenterol 2019; 25:824-836. [PMID: 30809082 PMCID: PMC6385013 DOI: 10.3748/wjg.v25.i7.824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal ischemia reperfusion (I/R) injury is a serious but common pathophysiological process of many diseases, resulting in a high mortality rate in clinical practice. Ubiquitin-specific protease 22 (USP22) acts as regulator of cell cycle progression, proliferation, and tumor invasion. Depleted USP22 expression has been reported to contribute to arrested cell cycle and disrupted generation of differentiated cell types in crypts and villi. However, the role of USP22 in intestinal damage recovery has not been investigated. Therefore, elucidation of the underlying mechanism of USP22 in intestinal I/R injury may help to improve the tissue repair and patient prognosis in clinical practice.
AIM To investigate the role of USP22 in intestinal cell proliferation and regeneration after intestinal I/R injury.
METHODS An animal model of intestinal I/R injury was generated in male Sprague-Dawley rats by occlusion of the superior mesenteric artery followed by reperfusion. Chiu’s scoring system was used to grade the damage to the intestinal mucosa. An in vitro model was developed by incubating rat intestinal epithelial IEC-6 cells in hypoxia/reoxygenation conditions in order to simulate I/R in vivo. siRNA and overexpression plasmid were used to regulate the expression of USP22. USP22, Cyclin D1, and proliferating cell nuclear antigen (PCNA) expression levels were measured by Western blot analysis and immunohistochemistry staining. Cell survival (viability) and cell cycle were evaluated using the Cell Counting Kit-8 and flow cytometry, respectively.
RESULTS USP22 expression was positively correlated with the expression levels of PCNA and Cyclin D1 both in vivo and in vitro, which confirmed that USP22 was involved in cell proliferation and intestinal regeneration after intestinal I/R injury. Decreased levels of Cyclin D1 and cell cycle arrest were observed in the USP22 knockdown group (P < 0.05), while opposite results were observed in the USP22 overexpression group (P < 0.05). In addition, increased expression of USP22 was related to improved intestinal pathology or IEC-6 cell viability after I/R or hypoxia/reoxygenation. These results suggested that USP22 may exert a protective effect on intestinal I/R injury by regulating cell proliferation and facilitating tissue regeneration.
CONCLUSION USP22 is correlated with promoting intestinal cell proliferation and accelerating intestinal tissue regeneration after intestinal I/R injury and may serve as a potential target for therapeutic development for tissue repair during intestinal I/R injury.
Collapse
Affiliation(s)
- An-Long Ji
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Tong Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Guo Zu
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Dong-Cheng Feng
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Yang Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Guang-Zhi Wang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Ji-Hong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xiao-Feng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
13
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
14
|
Durand-Onaylı V, Haslauer T, Härzschel A, Hartmann TN. Rac GTPases in Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19124041. [PMID: 30558116 PMCID: PMC6321480 DOI: 10.3390/ijms19124041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily of the Rho family GTPases includes key regulators of the cytoskeleton, with essential functions in both normal and transformed leukocytes. Rac proteins function downstream of receptor tyrosine kinases, chemokine receptors, and integrins, orchestrating a multitude of signals arising from the microenvironment. As such, it is not surprising that deregulation of Rac expression and activation plays a role in the development and progression of hematological malignancies. In this review, we will give an overview of the specific contribution of the deregulation of Rac GTPases in hematologic malignancies.
Collapse
Affiliation(s)
- Valerie Durand-Onaylı
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Theresa Haslauer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Andrea Härzschel
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
15
|
Csoboz B, Gombos I, Tatrai E, Tovari J, Kiss AL, Horvath I, Vigh L. Chemotherapy induced PRL3 expression promotes cancer growth via plasma membrane remodeling and specific alterations of caveolae-associated signaling. Cell Commun Signal 2018; 16:51. [PMID: 30157875 PMCID: PMC6116440 DOI: 10.1186/s12964-018-0264-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The outcome of cancer therapy is greatly defined by the ability of a tumor cell to evade treatment and re-establish its bulk mass after medical interventions. Consequently, there is an urgent need for the characterization of molecules affecting tumor reoccurrence. The phosphatase of regenerating liver 3 (PRL3) protein was recently emerged among the targets that could affect such a phenomenon. METHODS The expression induction of PRL3 in melanoma cells treated with chemotherapeutic agents was assessed by western blotting. The effect of PRL3 expression on cancer growth was investigated both in vitro and in vivo. The association of PRL3 with the caveolae structures of the plasma membrane was analyzed by detergent free raft purification. The effect of PRL3 expression on the membrane organization was assayed by electron microscopy and by membrane biophysical measurements. Purification of the plasma membrane fraction and co-immunoprecipitation were used to evaluate the altered protein composition of the plasma membrane upon PRL3 expression. RESULTS Here, we identified PRL3 as a genotoxic stress-induced oncogene whose expression is significantly increased by the presence of classical antitumor therapeutics. Furthermore, we successfully connected the presence of this oncogene with increased tumor growth, which implies that tumor cells can utilize PRL3 effects as a survival strategy. We further demonstrated the molecular mechanism that is connected with the pro-growth action of PRL3, which is closely associated with its localization to the caveolae-type lipid raft compartment of the plasma membrane. In our study, PRL3 was associated with distinct changes in the plasma membrane structure and in the caveolar proteome, such as the dephosphorylation of integrin β1 at Thr788/Thr789 and the increased partitioning of Rac1 to the plasma membrane. These alterations at the plasma membrane were further associated with the elevation of cyclin D1 in the nucleus. CONCLUSIONS This study identifies PRL3 as an oncogene upregulated in cancer cells upon exposure to anticancer therapeutics. Furthermore, this work contributes to the existing knowledge on PRL3 function by characterizing its association with the caveolae-like domains of the plasma membrane and their resident proteins.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary.
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary
| | - Eniko Tatrai
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, 1094, Hungary
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, 1094, Hungary
| | - Anna L Kiss
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Budapest, 1094, Hungary
| | - Ibolya Horvath
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
16
|
Chen X, Zhang JX, Luo JH, Wu S, Yuan GJ, Ma NF, Feng Y, Cai MY, Chen RX, Lu J, Jiang LJ, Chen JW, Jin XH, Liu HL, Chen W, Guan XY, Kang TB, Zhou FJ, Xie D. CSTF2-induced shortening of the RAC1 3'UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res 2018; 78:5848-5862. [PMID: 30143523 DOI: 10.1158/0008-5472.can-18-0822] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Xin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Gang-Jun Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning-Fang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Yong Feng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ri-Xin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Lu
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Liu
- CapitalBio Genomics Co., Ltd, Dongguan, Guangdong, China
| | - Wei Chen
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tie-Bang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
17
|
Hagiwara N, Watanabe M, Iizuka-Ohashi M, Yokota I, Toriyama S, Sukeno M, Tomosugi M, Sowa Y, Hongo F, Mikami K, Soh J, Fujito A, Miyashita H, Morioka Y, Miki T, Ukimura O, Sakai T. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Lett 2018; 431:182-189. [PMID: 29778569 DOI: 10.1016/j.canlet.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is the most common malignancy of kidney and remains largely intractable once it recurs after resection. mTOR inhibitors have been one of the mainstays used against recurrent RCC; however, there has been a major problem of the resistance to mTOR inhibitors, and thus new combination treatments with mTOR inhibitors are required. We here retrospectively showed that regular use of antilipidemic drug statins could provide a longer progression free survival (PFS) in RCC patients prescribed with an mTOR inhibitor everolimus than without statins (median PFS, 7.5 months vs. 3.2 months, respectively; hazard ratio, 0.52; 95% CI, 0.22-1.11). In order to give a rationale for this finding, we used RCC cell lines and showed the combinatorial effects of an mTOR inhibitor with statins induced a robust activation of retinoblastoma protein, whose mechanisms were involved in statins-mediated hindrance of KRAS or Rac1 protein prenylation. Finally, statins treatment also enhanced the efficacy of an mTOR inhibitor in RCC xenograft models. Thus, we provide molecular and (pre)clinical data showing that statins use could be a drug repositioning for RCC patients to enhance the efficacy of mTOR inhibitors.
Collapse
Affiliation(s)
- Nobuhisa Hagiwara
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Motoki Watanabe
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Mahiro Iizuka-Ohashi
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Japan
| | - Isao Yokota
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Japan
| | - Seijiro Toriyama
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Mamiko Sukeno
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuhiro Tomosugi
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshihiro Sowa
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Fumiya Hongo
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Kazuya Mikami
- Department of Urology, Japanese Red Cross Kyoto Daiichi Hospital, Honmachi, Higashiyama-ku, Kyoto, 605-0981, Japan
| | - Jintetsu Soh
- Department of Urology, Japanese Red Cross Kyoto Daini Hospital, Kamannza-marutamachi, Kamigyo-ku, Kyoto, 602-8026, Japan
| | - Akira Fujito
- Department of Urology, Saiseikai Suita Hospital, Kawazonocho, Suita, Osaka, 564-0013, Japan
| | - Hiroaki Miyashita
- Department of Urology, Omihachiman City Hospital, Tsuchida-cho, Omihachiman, Shiga, 523-0082, Japan
| | - Yukako Morioka
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Tsuneharu Miki
- Department of Urology, Saiseikai Shigaken Hospital, Ohashi, Ritto, Shiga, 520-3046, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Toshiyuki Sakai
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
18
|
Cheng H, Wang W, Wang G, Wang A, Du L, Lou W. Silencing Ras-Related C3 Botulinum Toxin Substrate 1 Inhibits Growth and Migration of Hypopharyngeal Squamous Cell Carcinoma via the P38 Mitogen-Activated Protein Kinase Signaling Pathway. Med Sci Monit 2018; 24:768-781. [PMID: 29410394 PMCID: PMC5812251 DOI: 10.12659/msm.907468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ras-related C3 botulinum toxin substrate 1 (Rac1) is implicated in a variety of cellular functions and is related to tumor growth and metastasis. This study aimed to explore the role of Rac1 in hypopharyngeal squamous cell carcinoma (HSCC). MATERIAL AND METHODS The Rac1 expression in HSCC tissues was determined by quantitative real-time polymerase chain reaction and Western blot analysis. The level of Rac1 in HSCC cells was downregulated by a Rac1-specific shRNA. Then, the growth and metastasis of HSCC cells were assessed in vitro by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, Hoechst staining, and Transwell assay. Moreover, cells transfected with Rac1 shRNA or negative control were injected subcutaneously into the right axilla of mice, and then the effects of Rac1 silencing on the growth of HSCC were also explored in vivo. Additionally, activation of the P38 mitogen-activated protein kinase (MAPK) signaling pathway was assessed by Western blot. RESULTS Rac1 was highly expressed in HSCC tissues. Silencing Rac1 inhibited the proliferation and cell cycle progress of HSCC cells, and induced their apoptosis. Rac1 silencing also suppressed the migration and invasion of HSCC cells. In vivo study showed that silencing Rac1 suppressed the growth of tumor bodies. Moreover, the P38 MAPK signaling pathway was implicated in the tumor-suppressing effect of Rac1 silencing in vitro and in vivo. CONCLUSIONS Silencing Rac1 suppressed the growth and migration of HSCC through the P38 MAPK signaling pathway. Due to its contribution in HSCC, Rac1 has the potential to become a promising antitumor therapeutic target for HSCC.
Collapse
Affiliation(s)
- Huijuan Cheng
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Weiwei Wang
- Department of Otolaryngology, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Guangke Wang
- Department of Otolaryngology, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Anran Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Linfang Du
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Weihua Lou
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
19
|
Chen Y, Rao X, Huang K, Jiang X, Wang H, Teng L. FH535 Inhibits Proliferation and Motility of Colon Cancer Cells by Targeting Wnt/β-catenin Signaling Pathway. J Cancer 2017; 8:3142-3153. [PMID: 29158786 PMCID: PMC5665030 DOI: 10.7150/jca.19273] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Aberrant Wnt/β-catenin pathway activation is frequently observed in human colorectal cancer (CRC) and has become a promising target for CRC treatment. Our study aimed to evaluate the effect of FH535, a small molecule inhibitor of Wnt/β-catenin pathway, on two colon cancer cell lines, HT29 and SW480. We found FH535 significantly inhibited colon cancer cell proliferation in vitro and induced cell cycle arrest. Moreover, FH535 inhibited colon cancer xenograft growth in vivo. Wound-healing assay and Transwell assay revealed that FH535 notably suppressed migration and invasion of SW480 cells. FH535 also repressed expression of cancer stem cell markers, CD24, CD44 and CD133 in HT29 cells. Real time-quantitative PCR and Western blotting revealed that targeting Wnt/β-catenin pathway using FH535 effectively downregulated target genes including cyclin D1 and survivin at mRNA and protein level, which contributed to the FH535-induced inhibitory effect on colon cancer cell proliferation. As mechanisms for suppressing cancer cell motility, FH535 downregulated expression of matrix metalloproteinase-7 and -9, Snail and vimentin. RNA sequencing revealed that FH535 prominently altered multiple biological pathways associated with DNA replication, cell cycle and metabolism. Our study highlights the anti-cancer effect of FH535 on colon cancer and presents its potential in colon cancer treatment.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Cell Biology and Program in Molecular Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xianping Rao
- Department of Cell Biology and Program in Molecular Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xiaoxia Jiang
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
20
|
Totty ML, Morrell BC, Spicer LJ. Fibroblast growth factor 9 (FGF9) regulation of cyclin D1 and cyclin-dependent kinase-4 in ovarian granulosa and theca cells of cattle. Mol Cell Endocrinol 2017; 440:25-33. [PMID: 27816766 PMCID: PMC5173412 DOI: 10.1016/j.mce.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
To determine the mechanism by which fibroblast growth factor 9 (FGF9) alters granulosa (GC) and theca (TC) cell proliferation, cell cycle proteins that regulate progression through G1 phase of the cell cycle, cyclin D1 (CCND1) and cyclin-dependent kinase-4 (CDK4; CCND1's catalytic partner), were evaluated. Ovaries were obtained from a local abattoir, GC were harvested from small (1-5 mm) and large (8-22 mm) follicles, and TC were harvested from large follicles. GC and TC were plated in medium containing 10% fetal calf serum followed by various treatments in serum-free medium. Treatment with 30 ng/mL of either FGF9 or IGF1 significantly increased GC numbers and when combined, synergized to further increase GC numbers by threefold. Abundance of CCND1 and CDK4 mRNA in TC and GC were quantified via real-time PCR. Alone and in combination with IGF1, FGF9 significantly increased CCND1 mRNA expression in both GC and TC. Western blotting revealed that CCND1 protein levels were increased by FGF9 in TC after 6 h and 12 h of treatment, but CDK4 protein was not affected. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway inhibitor, U0126, significantly reduced FGF9-induced CCND1 mRNA expression to basal levels. For the first time we show that CCND1 mRNA expression is increased by FGF9 in bovine TC and GC, and that FGF9 likely uses the MAPK pathway to induce CCND1 mRNA production in bovine TC.
Collapse
Affiliation(s)
- M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - B C Morrell
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
21
|
Ishii T, Ueyama T, Shigyo M, Kohta M, Kondoh T, Kuboyama T, Uebi T, Hamada T, Gutmann DH, Aiba A, Kohmura E, Tohda C, Saito N. A Novel Rac1-GSPT1 Signaling Pathway Controls Astrogliosis Following Central Nervous System Injury. J Biol Chem 2016; 292:1240-1250. [PMID: 27941025 DOI: 10.1074/jbc.m116.748871] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/29/2016] [Indexed: 01/31/2023] Open
Abstract
Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1flox/flox). GFAP-Cre;Rac1flox/flox (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G1 to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury.
Collapse
Affiliation(s)
- Taiji Ishii
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan,
| | - Michiko Shigyo
- the Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masaaki Kohta
- the Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeshi Kondoh
- the Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tomoharu Kuboyama
- the Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuya Uebi
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takeshi Hamada
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - David H Gutmann
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Atsu Aiba
- the Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Eiji Kohmura
- the Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Chihiro Tohda
- the Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Naoaki Saito
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan,
| |
Collapse
|
22
|
Li YC, Li CF, Chen LB, Li DD, Yang L, Jin JP, Zhang B. MicroRNA-766 targeting regulation of SOX6 expression promoted cell proliferation of human colorectal cancer. Onco Targets Ther 2015; 8:2981-8. [PMID: 26543373 PMCID: PMC4622090 DOI: 10.2147/ott.s89459] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of cancer-cell biological processes. Previous studies have shown that miR-766 plays an important role in a variety of biological processes in various human cancers. However, the underlying mechanism of miR-766 in colorectal cancer (CRC) cells remains unclear. In this study, we investigated miR-766’s role in CRC cell proliferation. Polymerase chain reaction results showed that miR-766 expression was significantly upregulated in CRC tissues and cells. Ectopic expression of miR-766 promoted cell growth and anchorage-independent growth in CRC cells. Bioinformatic analysis predicted SOX6, a potential target of miR-766, acting as a tumor suppressor. Luciferase reporter assay results demonstrated that miR-766 directly bound to the 3′-untranslated region of SOX6. Overexpression of miR-766 suppressed SOX6 expression, resulting in the downregulation of p21 and upregulation of cyclin D1. In a further experiment, SOX6-silenced SW480 cells transfected with miR-766 promoted cell growth, suggesting that downregulation of SOX6 was required for miR-766-induced CRC cell proliferation. Taken together, these results suggested that miR-766 represents an onco-miRNA and participates in the development of CRC by modulating SOX6 expression.
Collapse
Affiliation(s)
- Yong-Chao Li
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chang-Feng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Li-Bo Chen
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dan-Dan Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Lei Yang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jing-Peng Jin
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
23
|
Tejada-Simon MV. Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem 2015; 133:767-79. [PMID: 25818528 DOI: 10.1111/jnc.13100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/14/2022]
Abstract
The small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in cells. Formation of extensions at the surface of the cell is required for migration and even for cell invasion and metastases. Because an elevated level and hyperactivation of this protein has been associated with metastasis in cancer, direct regulators of Rac1 are currently envisioned as a potential strategy to treat certain cancers. Less research, however, has been done regarding the role of this small GTP-binding protein in brain development, where it has an important role in dendritic spine morphogenesis through the regulation of actin. Alteration of dendritic development and spinogenesis has been often associated with mental disorders. Rac1 is associated with and required for learning and the formation of memories in the brain. Rac1 appears to be dysregulated in certain neurodevelopmental disorders that present all these three alterations: mental retardation, atypical synaptic plasticity and aberrant spine morphology. Thus, to develop novel therapies for rescuing cognitive impairment, a reasonable approach might be to target this protein, Rac1, which plays a pivotal role in directing signals that regulate actin dynamics, which in turn might have an effect in spine cytoarchitecture and synaptic function. It is possible that novel drugs that regulate Rac1 activation and function could modulate actin cytoskeleton and spine dynamics, representing potential candidates to repair intellectual disability in disorders associated with spine abnormalities. Herein, we present a list of the current Rac1 inhibitors that might fulfill this role together with a summary of the latest findings concerning their function as they relate to neuronal studies. While the small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in different type of cells, it appears to be also required for learning and the formation of memories in the brain. Abnormal regulation of this protein has been associated with cognitive disabilities, atypical synaptic plasticity and abnormal morphology of dendritic spines in certain neurodevelopmental disorders. Thus, modulation of Rac1 activity using novel inhibitors might be a strategy to reestablish cognitive function.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.,Department of Biology, University of Houston, Houston, Texas, USA.,Department of Psychology, University of Houston, Houston, Texas, USA.,Biology of Behavior Institute (BoBI), University of Houston, Houston, Texas, USA
| |
Collapse
|