1
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Rubtsova MP, Dontsova OA. Upregulation of long noncoding RNAs LINC00941 and ABHD11-AS1 is associated with intrahepatic cholangiocarcinoma. Sci Prog 2025; 108:368504251330019. [PMID: 40151866 DOI: 10.1177/00368504251330019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
ObjectiveMany long noncoding RNAs (lncRNAs) are associated with liver cancers, mainly hepatocellular carcinoma (HCC) and to a smaller extent intrahepatic cholangiocarcinoma (CCA). Most of such lncRNAs show similar dysregulation patterns when the two types of tumors are compared, suggesting that these aberrations are characteristic features of these liver tumor types. In the present study, we aimed to identify some candidate lncRNAs that are associated specifically with CCA.MethodsAccording to The Cancer Genome Atlas data, we chose LINC00941, ABHD11-AS1, and CASC8 as promising biomarkers dysregulated in CCA but unaffected in HCC. We first verified their upregulation in an existing transcriptomic dataset for CCA patients. Next, we estimated expression levels of these three lncRNAs by reverse-transcription quantitative PCR in a group of paired (tumorous/adjacent) postsurgery tissue samples from 110 patients with various liver lesions: CCA, HCC, combined HCC-CCA, or benign liver tumors.ResultsSignificant upregulation of LINC00941 and ABHD11-AS1 was noted in most of the investigated CCA samples, whereas in HCC samples, increased expression of these two lncRNAs was observed only in some types of cases (mainly characterized by an advanced tumor stage). In contrast, CASC8 manifested extremely low expression and no diagnostic potential in all the tested liver samples. Analyzing expression correlations of lncRNAs with candidate genes, we obtained strong evidence for LINC00941-mediated upregulation of CAPRIN2 in CCA.ConclusionsFor the first time, we show the upregulation of LINC00941 and ABHD11-AS1 in CCA and report their good potential as diagnostic biomarkers for this type of liver tumor.
Collapse
Affiliation(s)
- Olga Y Burenina
- Center of Molecular and Cellular Biology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia L Lazarevich
- Biology Department, Lomonosov Moscow State University, Moscow, Russia
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Inna F Kustova
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Daria A Shavochkina
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Ekaterina A Moroz
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Nikolay E Kudashkin
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Yuriy I Patyutko
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Dontsova
- Center of Molecular and Cellular Biology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative Proteomic Analysis of Huh7 Cells Transfected with Sub-Saharan African Hepatitis B Virus (Sub)genotypes Reveals Potential Oncogenic Factors. Viruses 2024; 16:1052. [PMID: 39066215 PMCID: PMC11281506 DOI: 10.3390/v16071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In sub-Saharan Africa (SSA), the (sub)genotypes A1, D3, and E of the hepatitis B virus (HBV) prevail. Individuals infected with subgenotype A1 have a 4.5-fold increased risk of HCC compared to those infected with other (sub)genotypes. The effect of (sub)genotypes on protein expression and host signalling has not been studied. Mass spectrometry was used to analyse the proteome of Huh7 cells transfected with replication-competent clones. Proteomic analysis revealed significantly differentially expressed proteins between SSA (sub)genotypes. Different (sub)genotypes have the propensity to dysregulate specific host signalling pathways. Subgenotype A1 resulted in dysregulation within the Ras pathway. Ras-associated protein, RhoC, was significantly upregulated in cells transfected with subgenotype A1 compared to those transfected with other (sub)genotypes, on both a proteomic (>1.5-fold) and mRNA level (p < 0.05). Two of the main cellular signalling pathways involving RHOC, MAPK and PI3K/Akt/mTOR, regulate cell growth, motility, and survival. Downstream signalling products of these pathways have been shown to increase MMP2 and MMP9 expression. An extracellular MMP2 and MMP9 ELISA revealed a non-significant increase in MMP2 and MMP9 in the cells transfected with A1 compared to the other (sub)genotypes (p < 0.05). The upregulated Ras-associated proteins have been implicated as oncoproteins in various cancers and could contribute to the increased hepatocarcinogenic potential of A1.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2000, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| |
Collapse
|
3
|
Esmaeili F, Abolhasani M, Zabihi-Mahmoudabadi H, Seyyed Ebrahimi SS, Emamgholipour S, Paknejad M. Exosomes isolated from metabolically unhealthy normal weight and overweight phenotypes deteriorate the ER/PR positive breast cancer behavior. J Diabetes Metab Disord 2024; 23:533-544. [PMID: 38932828 PMCID: PMC11196455 DOI: 10.1007/s40200-023-01295-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 06/28/2024]
Abstract
Purpose Obesity has been linked to a higher risk of postmenopausal breast cancer Yet, research indicates an opposite correlation between obesity and premenopausal breast cancer risk. Various obesity phenotypes based on metabolic health could play a significant part. This study aims to assess how plasma exosomes taken from women with varying obesity phenotypes impact MCF-7 cell migration, matrix metalloproteinase-2 activity, and apoptosis. Methods The characterization of isolated exosomes and their internalization into MCF-7 cells was evaluated. The treatment of MCF-7 cells with exosomes isolated from different groups was done. Migration, the activity of MMP-2, mRNA expression of Bax and Bcl-2, protein expression of p-53 and Thr55 p-p53, and apoptosis were assessed. Results Isolated exosomes from unhealthy obese individuals increase MCF-7 cell migration. Regarding MMP activities, unhealthy normal weight and overweight and healthy obese groups isolated exosomes increase the MMP-2 activity than the treated group with exosomes isolated from counterpart groups. Furthermore, unhealthy normal weight and overweight and healthy obese obtained exosomes decrease apoptosis compared to counterpart groups. Conclusion Altogether, plasma exosomes derived from both unhealthy individuals with normal weight and overweight status, as well as those with unhealthy obesity, negatively impacted the behavior of estrogen/progesterone receptor-positive breast cancer cells. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01295-1.
Collapse
Affiliation(s)
- Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Cardiac primary prevention research center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiovascular diseases research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zabihi-Mahmoudabadi
- Department of General Surgery, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Sadat Seyyed Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Esmaeili F, Abolhasani M, Zabihi-Mahmoudabadi H, Seyyed Ebrahimi SS, Emamgholipour S, Paknejad M. Metabolically healthy/unhealthy obesity and breast cancer: A possible role of plasma-derived extracellular vesicles on the cancerous behavior of triple-negative breast cancer. Biochem Biophys Res Commun 2024; 690:149242. [PMID: 37992524 DOI: 10.1016/j.bbrc.2023.149242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Obesity has known detrimental effects on breast cancer (BC) development and progression. However, it's essential to consider the obesity phenotype based on metabolic health. This study aims to evaluate the impact of circulating extracellular vesicles (EVs) from women with metabolically healthy or unhealthy normal weight, overweight, and obesity on MDA-MB-231 cell migration, invasion, and apoptosis. METHODS Plasma EVs were isolated from different obesity phenotypes in women. EVs were characterized and EVs uptake by MDA-MB-231 cells was assessed. MDA-MB-231 cell lines were treated with EVs obtained from various studied groups, and migration, invasion, MMP-2 and MMP-9 activity, Bax and Bcl-2 mRNA expression, p-53 and Thr55 p-p53 protein expression, and apoptosis were assessed. RESULTS EVs from obese individuals, regardless of phenotype, increased invasion and MMP-2 activity compared to healthy normal-weight EVs. Normal-weight EVs led to higher invasion under unhealthy conditions. BC cell migration was enhanced by EVs from healthy obese individuals compared to healthy normal-weight EVs. EVs from unhealthy obese women exhibited significantly lower p53/p-p53 levels and reduced apoptosis compared to healthy obese groups. CONCLUSION It appears that EVs from both normal-weight women with unhealthy conditions and those with obesity or overweight, irrespective of metabolic status, worsened the cancerous behavior of TNBC cells. Therefore, considering metabolic health, in addition to BMI, is crucial for understanding obesity-related disorders.
Collapse
Affiliation(s)
- Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Cardiac Primary Prevention Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiovascular Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zabihi-Mahmoudabadi
- Department of General Surgery, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Sadat Seyyed Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
MG132 Induces Progerin Clearance and Improves Disease Phenotypes in HGPS-like Patients’ Cells. Cells 2022; 11:cells11040610. [PMID: 35203262 PMCID: PMC8870437 DOI: 10.3390/cells11040610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Progeroid syndromes (PS), including Hutchinson-Gilford Progeria Syndrome (HGPS), are premature and accelerated aging diseases, characterized by clinical features mimicking physiological aging. Most classical HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type lamins. This mutation activates a cryptic splice site, leading to the production of a truncated prelamin A, called prelamin A ∆50 or progerin, that accumulates in HGPS cell nuclei and is a hallmark of the disease. Some patients with PS carry other LMNA mutations and are named “HGPS-like” patients. They produce progerin and/or other truncated prelamin A isoforms (∆35 and ∆90). We previously found that MG132, a proteasome inhibitor, induced progerin clearance in classical HGPS through autophagy activation and splicing regulation. Here, we show that MG132 induces aberrant prelamin A clearance and improves cellular phenotypes in HGPS-like patients’ cells other than those previously described in classical HGPS. These results provide preclinical proof of principle for the use of a promising class of molecules toward a potential therapy for children with HGPS-like or classical HGPS.
Collapse
|
6
|
Chen S, Shen Z, Gao L, Yu S, Zhang P, Han Z, Kang M. TPM3 mediates epithelial-mesenchymal transition in esophageal cancer via MMP2/MMP9. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1338. [PMID: 34532475 PMCID: PMC8422148 DOI: 10.21037/atm-21-4043] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Background Esophageal cancer (EC) is a malignant tumor with high mortality. Correlations have been found between the expression level of tropomyosin 3 (TPM3) and the depth of tumor invasion, lymph node metastasis, and the 5-year survival rate. However, the specific mechanisms underlying EC remain unclear. Methods Stably transfected TPM3-overexpresing and TPM3-knockdown esophageal squamous cell carcinoma (ESCC) cell lines (ECa109 and EC9706) were constructed, and the association between TPM3 and the proliferation, invasion, and migration of ESCC was investigated using molecular biology methods. The associations between TPM3 and matrix metalloproteinase (MMP)2/9 or epithelial-mesenchymal transition (EMT)-related proteins were verified, and the potential tumor-promoting mechanism was explored by Gelatin Zymography Experiment. Results TPM3 was found to promote the proliferation, migration, and metastatic potential of ESCC in vivo and in vitro, and stimulate the expression of MMP2/9 and certain EMT markers other than E-cadherin. The replenishment of MMP2/9 restored the malignant behavior of ESCC caused by TPM3. A gelatinase assay showed that the expression of TPM3 was related to the activity of MMP9. Conclusions TPM3 promoted proliferation, migration, and metastatic potential in EC cells. Additionally, TPM3 promoted the EMT process. This function may be achieved via the regulation the expression of MMP2/9.
Collapse
Affiliation(s)
- Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Siddhartha R, Garg M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol Appl Pharmacol 2021; 426:115593. [PMID: 34038713 DOI: 10.1016/j.taap.2021.115593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are the group of enzymes that belong to the family of zinc dependent endopeptidases. These proteases degrade collagen and other important proteins in extracellular matrix (ECM) and regulate cytoskeletal proteins, growth factors, chemokines and cytokines, thereby play significant role during organogenesis and normal tissue turnover. Recent studies highlight the tumorigenic functions of MMPs by modulating tumor microenvironment. Dysregulated MMPs/TIMPs cause an imbalance in crucial cell signals, and lead to serious pathological conditions related to inflammation, uncontrolled cell growth, ECM degradation, increased cell migration, cell death resistance, replicative immortality and the establishment of metastatic niche at secondary sites. Recently established correlation between the higher expression of active MMPs and cancer aggressiveness makes them probable target candidate of cancer diagnosis, prognosis and therapy. The present review focuses on the tumourigenic functions of MMPs and recent advancements in the development of MMP inhibitors of therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Rohit Siddhartha
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| |
Collapse
|
8
|
Hamadneh L, Bahader M, Abuarqoub R, AlWahsh M, Alhusban A, Hikmat S. PI3K/AKT and MAPK1 molecular changes preceding matrix metallopeptidases overexpression during tamoxifen-resistance development are correlated to poor prognosis in breast cancer patients. Breast Cancer 2021; 28:1358-1366. [PMID: 34370280 DOI: 10.1007/s12282-021-01277-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Metastasis and drug resistance remain a persistent key clinical obstacle to the success of breast cancer treatments. Recent years have seen an increased focus on understanding the factors that influence metastasis and drug resistance. METHODS In this study, the changes in MMPs gene expression were investigated together with their regulatory pathways-PI3K, MAPK and NFKβ pathways-during the process of developing tamoxifen resistance in MCF7 cell line. Gene correlation maps and Kaplan-Meier survival plots among all breast cancer patients and patients treated with tamoxifen were evaluated. RESULTS MMPs gene expression was found to be up regulated in MCF7 cell line treated with tamoxifen during the development of tamoxifen resistance using two approaches. Up-regulation of gene expression of AKT1 and MAPK1 started in cells treated with 10 μM tamoxifen that was followed with up-regulation of other genes in these pathways and MMPs in cells treated with 35 μM tamoxifen. MMPs and genes from PI3K, MAPK and NFKβ pathways showed highly significant increase of expression at 50 μM or when cells were treated sequentially six times with 35 μM. Furthermore, increased genes expression was associated with aggressive pattern, clear morphological changes, higher growth rate, increased migration and adhesion potential and tamoxifen insensitivity. Breast cancer distant metastasis-free survival, and survival among tamoxifen treated patients had high expression levels of MAPK1, AKT1, TIMP2, MMP1, and MMP9 showed poor prognosis. CONCLUSION Early changes of MAPK1, AKT1 gene expression upon tamoxifen treatment could possibly be used as an early marker of resistance and future poor prognosis.
Collapse
Affiliation(s)
- Lama Hamadneh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Mohamad Bahader
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Rama Abuarqoub
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Mohammad AlWahsh
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - e.v, Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
- Institute of Pathology and Medical Research Center (ZMF), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ala Alhusban
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Suhair Hikmat
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
9
|
Zhang B, Yao J, Lian X, Liu B, Wang Y, Wang H, Wang J, Zhang M, Zhao Y, Zhu Y, Liu R, Gao Y. Role of RHOC in evaluating an adverse prognosis in patients with glioma and its potential prognostic value. Mol Clin Oncol 2021; 15:171. [PMID: 34276990 PMCID: PMC8278397 DOI: 10.3892/mco.2021.2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
In recent years, major discoveries have indicated that Ras homology family member C (RHOC) is involved in the occurrence and pathological progression of a number of malignant tumours; nevertheless, the role served by RHOC in glioma remains unclear. The present study aimed to gain further insight into the biological function and expression of RHOC in human glioma based on the Chinese Glioma Genome Atlas (CGGA). The current study analysed ~1,000 glioma samples from the CGGA. First, RHOC expression was analysed according to the clinical features associated with the prognosis of glioma, such as clinical stage, histological type and age. Second, the Kaplan-Meier method was used, revealing that the survival rate of patients with glioma with high RHOC expression was significantly lower than that of patients with low RHOC expression. Receiver operating characteristic curve analysis indicated that RHOC had moderate diagnostic value for patients with glioma. Gene set enrichment analysis indirectly indicated that RHOC mainly participated in the pathological mechanism of glioma through p53, extracellular matrix receptor interaction and focal adhesion. Finally, the aforementioned results were further verified using The Cancer Genome Atlas data and reverse transcription-quantitative PCR technology. To the best of our knowledge, the present study was the first comprehensive in-depth analysis of RHOC, revealing the potential value of RHOC as a novel oncogene in glioma. The current study provided a novel potential biomarker for the diagnosis and prognosis of glioma, and re-examined the pathological mechanism of glioma from a new perspective.
Collapse
Affiliation(s)
- Bo Zhang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoyu Lian
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binfeng Liu
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yanbiao Wang
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hongbo Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jialin Wang
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Mengjun Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Yaoye Zhao
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yongjie Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Runze Liu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
10
|
Lee HJ, Kim YH, Choi DW, Cho KA, Park JW, Shin SJ, Jo I, Woo SY, Ryu KH. Tonsil-derived mesenchymal stem cells enhance allogeneic bone marrow engraftment via collagen IV degradation. Stem Cell Res Ther 2021; 12:329. [PMID: 34090520 PMCID: PMC8180137 DOI: 10.1186/s13287-021-02414-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.
Collapse
Affiliation(s)
- Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Da-Won Choi
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Inho Jo
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea.,Department of Molecular Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
11
|
Knockdown of RhoC Inhibits Oral Squamous Cell Carcinoma Cell Invasion and Metastasis via Regulation of HMGA2. JOURNAL OF ONCOLOGY 2021; 2021:6644077. [PMID: 33519932 PMCID: PMC7817318 DOI: 10.1155/2021/6644077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/27/2022]
Abstract
Ras homolog family member C (RhoC) is an important component of intracellular signal transduction and its overexpression has been reported to be involved in regulating tumor proliferation, invasion, and metastasis in various malignant tumors. However, its role and underlying mechanism in oral squamous cell carcinoma (OSCC) still remain obscure. In our study, RhoC expression, its relation with clinical stages, and survival rate in OSCC were analyzed using datasets from The Cancer Genome Atlas (TCGA). Next, a RhoC knockdown cell model was established in vitro, and the effects of RhoC knockdown in OSCC cells were detected by the MTT assay, colony formation assay, transwell invasion assay, scratch assay, and F-actin phalloidin staining. An in vivo tongue-xenografted nude mouse model was established to measure the effects of knockdown of RhoC on tumor cell growth and lymph node metastasis. A mechanism study was conducted by real-time PCR and immunocytochemistry. The results of TCGA analysis showed that RhoC was overexpressed in OSCC tumor tissues. In vitro assays indicated that knockdown of RhoC did not have much effect on OSCC cell growth but significantly suppressed cell colony formation, invasion, and migration abilities, and F-actin polymerization was also reduced. The tongue-xenografted in vivo model demonstrated that knockdown of RhoC suppressed OSCC cell growth and inhibited metastasis to the superficial cervical lymph nodes. Further mechanism studies showed that knockdown of RhoC downregulated HMGA2 expression, and HMGA2 expression was highly correlated with RhoC expression in OSCC tumor tissues via the analysis of TCGA datasets. Overall, our study showed that knockdown of RhoC inhibited OSCC cells invasion and migration in vitro and OSCC cell growth and lymph node metastasis in vivo. Moreover, the potential mechanisms involved in these activities may be related to the regulation of HMGA2 expression. The RhoC gene could serve as a promising therapeutic target for OSCCs in the future.
Collapse
|
12
|
Yao LY, Ma J, Zeng XM, Ou-Yang J. MicroRNA-155-5p inhibits the invasion and migration of prostate cancer cells by targeting SPOCK1. Oncol Lett 2020; 20:353. [PMID: 33123264 PMCID: PMC7586282 DOI: 10.3892/ol.2020.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to determine the effect of microRNA (miR)-155-5p on the expression of testican-1 (SPOCK1) and the invasion and migration of prostate cancer cells in vitro. Bioinformatics analysis and molecular biology assays revealed that SPOCK1 may be a direct target gene of miR-155-5p. In addition, a negative correlation was identified between SPCOK1 and miR-155-5p expression in prostate tumor tissues and cell lines. miR-155-5p mimic transfection inhibited SPOCK1 expression in PC3 cells and decreased cell migration and invasion abilities, while the expression of vimentin, N-cadherin, E-cadherin, β-catenin, matrix metalloproteinase (MMP)3 and MMP9 was upregulated. In summary, SPOCK1 was found to be a target gene of miR155-5p in prostate cancer, and miR-155-5p acts as a tumor-suppressor gene and may inhibit SPOCK1-mediated prostate cancer progression.
Collapse
Affiliation(s)
- Lin-Ya Yao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ma
- Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Xue-Ming Zeng
- Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ou-Yang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
13
|
Zhu M, Gong Z, Wu Q, Shi X, Su Q, Zhang Y. Sanguinarine suppresses migration and metastasis in colorectal carcinoma associated with the inversion of EMT through the Wnt/β-catenin signaling. Clin Transl Med 2020; 10:1-12. [PMID: 32508048 PMCID: PMC7239267 DOI: 10.1002/ctm2.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Unresectable lung or liver organ metastases of colorectal carcinoma (CRC) remain a major obstacle in clinical therapeutics. Epithelial to mesenchymal transition (EMT), a major cause of highly frequent metastasis in tumor, can be promoted by the Wnt/β-catenin pathway that is aberrantly activated in approximately 90% of CRC. This research aimed to elucidate the antimetastatic potential of sanguinarine (SG) in CRC and the underlying molecular mechanism. METHODS The in vitro anticancer effect of SG was determined via cell viability experiment and colony formation assay. Xenograft model of nude mice was used to confirm the antitumor effect of SG in vivo. The antimetastatic potential of SG was investigated by the metastasis model of nude mice, hematoxylin and eosin (H&E) staining, migration assay, and wound-healing analysis. Immunoblotting analysis, immunofluorescence staining, and immunohistochemistry assay were conducted to elucidate the molecular mechanism. RESULTS In this study, we reported that SG has a selective inhibitory effect on LoVo cells with metastatic characteristics. Furthermore, our results showed attenuation in the migration and metastatic ability of SG-treated LoVo cells and also decreased metastatic nodules of liver and lung in mice metastasis model. This was also confirmed at the molecular level via H&E staining. Further study revealed that SG had negative impacts on the Wnt/β-catenin pathway and EMT markers in LoVo cells both in vitro and in vivo. CONCLUSIONS Taken together, the antimetastatic potential of SG attributed to the suppression of the Wnt/β-catenin signaling, which further prevented EMT progression. SG may be of value in a potential therapy for the management of metastasis CRC.
Collapse
Affiliation(s)
- Man Zhu
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Zhengyan Gong
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Qing Wu
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Xianpeng Shi
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Qi Su
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Yanmin Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP.R. China
| |
Collapse
|
14
|
Thomas P, Pranatharthi A, Ross C, Srivastava S. RhoC: a fascinating journey from a cytoskeletal organizer to a Cancer stem cell therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:328. [PMID: 31340863 PMCID: PMC6651989 DOI: 10.1186/s13046-019-1327-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Tumor heterogeneity results in differential response to therapy due to the existence of plastic tumor cells, called cancer stem cells (CSCs), which exhibit the property of resistance to therapy, invasion and metastasis. These cells have a distinct, signaling network active at every stage of progression. It is difficult to envisage that the CSCs will have a unique set of signaling pathways regulating every stage of disease progression. Rather, it would be easier to believe that a single pivotal pathway having significant contribution at every stage, which can further turn on a battery of signaling mechanisms specific to that stage, would be instrumental in regulating the signaling network, enabling easy transition from one state to another. In this context, we discuss the role of RhoC which has contributed to several phenotypes during tumor progression. RhoC (Ras homolog gene family member C) has been widely reported to regulate actin organization. It has been shown to impact the motility of cancer cells, resultantly affecting invasion and metastasis, and has contributed to carcinoma progression of the breast, pancreas, lung, ovaries and cervix, among several others. The most interesting finding has been its indispensable role in metastasis. Also, it has the ability to modulate various other phenotypes like angiogenesis, motility, invasion, metastasis, and anoikis resistance. These observations suggest that RhoC imparts the plasticity required by tumor cells to exhibit such diverse functions based on microenvironmental cues. This was further confirmed by recent reports which show that it regulates cancer stem cells in breast, ovary and head and neck cancers. Studies also suggest that the inhibition of RhoC results in abolition of advanced tumor phenotypes. Our review throws light on how RhoC, which is capable of modulating various phenotypes may be the apt core signaling candidate regulating disease progression. Additionally, mice studies show that RhoC is not essential for embryogenesis, giving scope for its development as a possible therapeutic target. This review thus stresses on the need to understand the protein and its functioning in greater detail to enable its development as a stem cell marker and a possible therapeutic target.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India.,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Annapurna Pranatharthi
- Rajiv Gandhi University of Health Sciences (RGUHS), Bangalore, 560041, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil Ross
- Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India.
| |
Collapse
|
15
|
Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R, She JX. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 2019; 19:581. [PMID: 31200666 PMCID: PMC6567474 DOI: 10.1186/s12885-019-5768-0] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
Implication By understanding Matrix Metalloprotease (MMP) dysregulation from a pan-cancer perspective, this study sheds light on the diagnostic potentials of MMPs across multiple neoplasms. Background MMPs are intriguing genes related to cancer disease progression, functional promotion of angiogenesis, invasion, metastasis, and avoidance of immune surveillance. Many studies have noted these genes are frequently upregulated in cancer. However, expression patterns of all MMPs and their diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. Methods The Cancer Genome Atlas (TCGA) data were used to evaluate diagnostic and prognostic potential of 24 MMPs in fifteen different cancer types. Gene expression measured by RNA-seq was analyzed by differential expression, hierarchical clustering, and ROC analysis for individual genes and in combination. Results MMP1, MMP9, MMP10, MMP11, and MMP13 were almost universally upregulated across all cancers, with significant (p < 0.05) fold change (FC > 2) in ten of fifteen cancers. MMP3, MMP7, MMP12 and MMP14) are significantly up-regulated in at least 10 cancer types. Interestingly, MMP2, MMP7, MMP23B, MMP27 and MMP28) are significantly down-regulated in seven to nine cancer types. Multiple MMPs possess AUC’s > 0.9 in more than one cancer. However, survival analyses suggest that the prognostic value of MMPs is limited to clear cell renal carcinoma. Conclusions Most MMPs have consistently increased gene expression across cancers, while several MMPs have consistently decreased expression in several cancer types. Many MMPs have diagnostic value individually or in combination, while the prognostic value of MMPs is restricted to one subtype of kidney cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-5768-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Gobin
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kayla Bagwell
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - John Wagner
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - David Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sharmila Sandirasegarane
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Nathan Smith
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert Schleifer
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 2019; 117:109086. [PMID: 31200254 DOI: 10.1016/j.biopha.2019.109086] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the last century, natural compounds have achieved remarkable achievements in the treatment of tumors through chemotherapy. This inspired scientists to continuously explore anticancer agents from natural compounds. Kaempferol is an ordinary natural compound, the most common flavonoid, which is widely existed in vegetables and fruits. It has been reported to have various anticancer activities, including breast cancer, prostate cancer, bladder cancer, cervical cancer, colon cancer, liver cancer, lung cancer, ovarian cancer, leukemia, etc. Meanwhile, we found that there were more reports on breast cancer among these cancers although there are limited clinical studies that have addressed the benefits of kaempferol as an anti-cancer agent for breast cancer treatment. Then we realize that although kaempferol has been reported to have anti-breast cancer effect many times, it is still far from becoming a real anti-breast cancer agent. Therefore, in this review, we talk about the options for improving the anti-breast cancer effect of kaempferol, including various techniques and methods to improve the bioavailability of kaempferol, the idea of combining other compounds to produce synergistic effects, and the possibility of developing kaempferol into a targeted drug delivery system.
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yuting Yang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Faculty of pharmacy, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yating An
- Department of pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 North road, Hongqiao District, Tianjin, 300120, China.
| | - Gang Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Laboratory of Zhuang Medicine Prescriptions Basis and application Research, Guangxi University of Chinese medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning, 530001, China.
| |
Collapse
|
17
|
Zeng YF, Xiao YS, Liu Y, Luo XJ, Wen LD, Liu Q, Chen M. Formin-like 3 regulates RhoC/FAK pathway and actin assembly to promote cell invasion in colorectal carcinoma. World J Gastroenterol 2018; 24:3884-3897. [PMID: 30228782 PMCID: PMC6141330 DOI: 10.3748/wjg.v24.i34.3884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To clarify the underlying mechanism of formin-like 3 (FMNL3) in the promotion of colorectal carcinoma (CRC) cell invasion.
METHODS The in vitro biological function analyses of FMNL3 were performed by gain- and loss-of function approaches. Changes in the F-actin cytoskeleton were detected by the technologies of phalloidin-TRITC labeling and confocal microscopy. The signaling pathway mediated by FMNL3 was explored by western blot, gelatin zymograph assay, co-immunoprecipitation (co-IP), immunofluorescence co-localization, and glutathione S-transferase (GST) pull-down assay.
RESULTS The in vitro experimental results showed that FMNL3 significantly promoted the proliferation, invasion, and migration of CRC cells (P < 0.05 and P < 0.01). Moreover, FMNL3 regulated the remodeling of actin-based protrusions such as filopodia and lamellipodia in a RhoC-dependent manner. The western blot and gelatin zymograph assay results indicated that FMNL3 was involved in the RhoC/ focal adhesion kinase (FAK) pathway and acted as an effector of RhoC to activate the downstream signaling of p-FAK as well as p-MAPK and p-AKT. This resulted in the increased expression of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and vascular endothelial growth factor (VEGF), and the subsequent promotion of CRC cell invasion. The results of TAE226, U0126 or Ly294002 treatment confirmed an essential role of FMNL3 in activation of the RhoC/FAK pathway and the subsequent promotion of CRC invasion. Co-IP, co-localization and GST pull-down assays showed the direct interaction of FMNL3 with RhoC in vivo and in vitro.
CONCLUSION FMNL3 regulates the RhoC/FAK signaling pathway and RhoC-dependent remodeling of actin-based protrusions to promote CRC invasion.
Collapse
Affiliation(s)
- Yuan-Feng Zeng
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Yi-Sheng Xiao
- Teaching and Researching Section of Morphology, College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yong Liu
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Jiang Luo
- Department of General Surgery, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Li-Dan Wen
- Clinical Medical Sciences Institute, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Qian Liu
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Min Chen
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
18
|
The role of long non-coding RNA AFAP1-AS1 in human malignant tumors. Pathol Res Pract 2018; 214:1524-1531. [PMID: 30173945 DOI: 10.1016/j.prp.2018.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) are a type Table of endogenous RNA longer than 200 nucleotides in length, and this kind of RNAs lack or possess limited ability of coding proteins. A large number of studies have demonstrated that lncRNAs could take part in massive biological processes, such as transcriptional activation and interference, cellular differentiation, proliferation, migration, invasion and apoptosis. The abnormal expression of lncRNAs has been clarified to play extremely important roles in various diseases, especially in human cancers. LncRNA actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) is a newly recognized cancer-related lncRNA deriving from the antisense strand of DNA at the AFAP1 coding gene locus. A slew of new studies suggest that AFAP1-AS1 is involved in many kinds of malignant tumors. Moreover, in recent years, the dysregulated expression of AFAP1-AS1 has been confirmed to be associated with oncogenesis and tumor progression. Evidence has increasingly shown that AFAP1-AS1 could probably serve as a novel potential molecular biomarker in tumor diagnosis and therapeutic target in tumor treatment. In this review, we sum up present stage new hottest research issues in respect of the biological functions and molecular mechanisms of AFAP1-AS1 in occurrence and progression of human tumors. MATERIALS AND METHODS In this review, we summarize the recent researches about the expression and molecular biological mechanisms of lncRNA AFAP1-AS1 in tumor development. Existing relevant studies are acquired and analyzed by searching Pubmed, BioMedNet, GEO database and Academic Search Elit systematically. RESULTS Long non-coding RNA AFAP1-AS1 is an important tumor-associated lncRNA and its aberrant expression has been found in many malignancies so far, including pancreatic ductal adenocarcinoma, cholangiocarcinoma, gallbladder cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, esophageal cancer, nasopharyngeal carcinoma, lung cancer, ovarian cancer, breast cancer, retinoblastoma, laryngeal cancer, tongue squamous cell carcinoma and thyroid cancer. In addition, the dysregulated expression of AFAP1-AS1 is related to carcinogensis, overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and tumor progression containing lymph node metastasis, distant metastasis, histological grade, tumor size and tumor stage. CONCLUSIONS A series of studies provide detailed information to understand lncRNA AFAP1-AS1 role in various human cancers. LncRNA AFAP1-AS1 is an oncogene in tumors that have been studied so far, and it may act as a useful tumor biomarker and therapeutic target.
Collapse
|
19
|
Hong F, Li Y, Ni H, Li J. Downregulation of ribophorin II suppresses tumor growth, migration, and invasion of nasopharyngeal carcinoma. Onco Targets Ther 2018; 11:3485-3494. [PMID: 29942140 PMCID: PMC6007195 DOI: 10.2147/ott.s158355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background It has been reported that ribophorin II (RPN2) expression is increased in many cancers, but the role of RPN2 in nasopharyngeal carcinoma (NPC) remains unclear. Patients and methods This study found that the expression of RPN2 is increased dramatically in NPC tissues of patients compared with that in the adjacent normal tissues. This study attempted at understanding the effect of siRNA-RPN2 treatment on the migration and invasion of NPC cell lines CNE2 and HNE1. Results RT-PCR and Western blotting showed that RPN2 was highly expressed in CNE2 and HNE1 cells. siRNA-RPN2 treatment significantly inhibited cell viability at 24 and 48 h compared with the control group. Results of the transwell assay showed that, compared to the control groups, migration and invasion of the cells treated with siRNA-RPN2 decreased markedly. In addition, compared to the control groups, caspase-3, caspase-9, and E-cadherin expression levels increased and MMP 2 expression decreased significantly in the siRNA-RPN2-treated group. Phosphorylation of AKT and PI3K was also inhibited after siRNA-RPN2 treatment. Conclusion siRNA-RPN2 can effectively inhibit the invasion and migration of human NPC cells via AKT/PI3K signaling. This can serve as a novel strategy for NPC treatment.
Collapse
Affiliation(s)
- Feilong Hong
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yong Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Haifeng Ni
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Jing Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
20
|
Ma C, Zhao JZ, Lin RT, Zhou L, Chen YN, Yu LJ, Shi TY, Wang M, Liu MM, Liu YR, Zhang T. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma. Oncol Lett 2018; 15:9498-9506. [PMID: 29805672 DOI: 10.3892/ol.2018.8509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ2=3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use of these factors as biomarkers may improve the accuracy of the prediction of cancer metastases and prognosis.
Collapse
Affiliation(s)
- Chao Ma
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Ji-Zhi Zhao
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Run-Tai Lin
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Lian Zhou
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yong-Ning Chen
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Li-Jiang Yu
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Tian-Yin Shi
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Man-Man Liu
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yao-Ran Liu
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
21
|
Chan YC, Hsiao M. Protease-activated nanomaterials for targeted cancer theranostics. Nanomedicine (Lond) 2017; 12:2153-2159. [PMID: 28814163 DOI: 10.2217/nnm-2017-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer metastasis accompanies irreversible proteolysis. Malignant cells that abnormally express extracellular proteases usually lead to a poor outcome during cancer progression. The development of protease-activated drugs is an important goal. Moreover, the specific proteolytic mechanism can be used as a diagnostic strategy. Currently, nanotechnology for use in medication has been extensively developed to exploit the physical and chemical properties of nanoparticles. For example, to improve the efficacy of cancer therapy drugs, targeted delivery has been attempted by combining a targeting ligand with a nanoparticle. Multifunctional nanoparticles have been prepared for cancer therapy and diagnosis because of their advantages such as stable physical properties, drug carrying ability and potential specific targeting ability. In this review, we present reports on protease-activated nanoparticle design for cancer theranostics. We further describe recent protease-activated metalloprotease-based and cathepsin-based nanomaterials used in cancer nanotheranostics. Innovative protease-activated nanomaterials have significant potential for designing personalized treatment.
Collapse
Affiliation(s)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Wang J, Wu Y, Guo J, Fei X, Yu L, Ma S. Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells. Oncotarget 2017; 8:81880-81891. [PMID: 29137230 PMCID: PMC5669856 DOI: 10.18632/oncotarget.18737] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Obesity is involved in tumor progression. However, the corresponding mechanisms remain largely unknown. Here, we report that adipocytes increase the invasive ability of tumor cells by producing exosomes with a high level of MMP3. Compared with 3T3-L1 cells, 3T3-L1 adipocytes are enriched in MMP3 protein and can transfer MMP3 to 3LL lung cancer cells. Then, MMP3 activates MMP9 activity in 3LL cells and promotes invasion in vitro and in vivo via MMP9. Furthermore, MMP3 protein levels in lung tumor tissues from obese patients are increased compared with those of non-obese patients. In addition, MMP3 protein levels are positively correlated with MMP9 activity in tumor tissues. Therefore, our results reveal a novel mechanism in the adipocyte-derived exosome-mediated promotion of lung tumor metastasis, which extends our knowledge regarding obesity and tumor progression.
Collapse
Affiliation(s)
- Jiaoli Wang
- Department of Respiratory Medicine, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - Yilei Wu
- Department of General Surgery, Ruian People's Hospital, Wenzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - Xuefeng Fei
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Yu
- Laboratory of Cancer Epigenetics, Department of Medical Oncology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglin Ma
- Department of Oncology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| |
Collapse
|