1
|
Powrózek T, Otieno MO, Maffeo D, Frullanti E, Martinez-Useros J. Blood circulating miRNAs as pancreatic cancer biomarkers: An evidence from pooled analysis and bioinformatics study. Int J Biol Macromol 2025; 308:142469. [PMID: 40180095 DOI: 10.1016/j.ijbiomac.2025.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, characterized by a poor prognosis. Currently, there are no screening programs for the early detection of PC, and existing diagnostic methods are primarily limited to high-risk individuals. Biomarkers such as CA19-9 have not significantly improved early diagnosis, making the identification of new potential biomarkers crucial for routine clinical practice. Among the candidate biomarkers, miRNAs have been most extensively studied due to their role in regulating gene expression (either as oncomiRs or tumor suppressor miRNAs) and their potential for minimally invasive analysis through liquid biopsy techniques. This review aims to summarize the current literature on blood-circulating miRNAs and their diagnostic value in PC detection, considering the context of CA19-9 and benign pancreatic diseases. The data from the collected studies were curated through both statistical and bioinformatics analyses to identify the most promising miRNAs with optimal diagnostic accuracy for PC detection and to assess their role in the molecular processes leading to tumor development.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
| | - Michael Ochieng' Otieno
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
2
|
Juthani R, Manne A. Blood-based biomarkers in pancreatic ductal adenocarcinoma: developments over the last decade and what holds for the future- a review. Front Oncol 2025; 15:1555963. [PMID: 40330826 PMCID: PMC12052548 DOI: 10.3389/fonc.2025.1555963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) accounts for a significant burden of global cancer deaths worldwide. The dismal outcomes associated with PDAC can be overcome by detecting the disease early and developing tools that predict response to treatment, allowing the selection of the most optimal treatment. Over the last couple of years, significant progress has been made in the development of novel biomarkers that aid in diagnosis, prognosis, treatment selection, and monitoring response. Blood-based biomarkers offer an alternative to tissue-based diagnosis and offer immense potential in managing PDAC. In this review, we have discussed the advances in blood-based biomarkers in PDAC, such as DNA (mutations and methylations), RNA, protein biomarkers and circulating tumor cells (CTC) over the last decade and also elucidated all aspects of practical implementation of these biomarkers in clinical practice. We have also discussed implementing multiomics utilizing more than one biomarker and targeted therapies that have been developed using these biomarkers.
Collapse
Affiliation(s)
- Ronit Juthani
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
3
|
Rahimian S, Mirkazemi K, Kamalinejad A, Doroudian M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol 2025; 207:104594. [PMID: 39732301 DOI: 10.1016/j.critrevonc.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments. In this study, we investigated how MSCs exhibit tropism towards tumors, influence the microenvironment through paracrine effects, and serve as potential drug delivery vehicles. We also examined their role in progression and therapeutic resistance in pancreatic cancer therapy. The cytotoxic effects of certain compounds on tumor cells, the use of genetically modified MSCs as drug carriers, and the potential of exosomal biomarkers like miRNAs and riRNAs for diagnosis and monitoring of pancreatic cancer were analyzed. Overall, MSC-based therapies, coupled with insights into tumor-stromal interactions, offer new avenues for improving outcomes in pancreatic cancer treatment. Additionally, the use of MSC-based therapies in clinical trials is discussed. While MSCs show promising potential for pancreatic cancer monitoring, diagnosis, and treatment, results so far have been limited.
Collapse
Affiliation(s)
- Sana Rahimian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimia Mirkazemi
- Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Armita Kamalinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
4
|
Tost J, Ak-Aksoy S, Campa D, Corradi C, Farinella R, Ibáñez-Costa A, Dubrot J, Earl J, Melian EB, Kataki A, Kolnikova G, Madjarov G, Chaushevska M, Strnadel J, Tanić M, Tomas M, Dubovan P, Urbanova M, Buocikova V, Smolkova B. Leveraging epigenetic alterations in pancreatic ductal adenocarcinoma for clinical applications. Semin Cancer Biol 2025; 109:101-124. [PMID: 39863139 DOI: 10.1016/j.semcancer.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alterations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease. Specific modifications in DNA methylation, histone marks, and non-coding RNAs are emerging as robust predictors of disease progression and patient survival, offering the potential for more precise prognostic tools compared to conventional clinical staging. Moreover, the detection of epigenetic alterations in blood and other non-invasive samples holds promise for earlier diagnosis and improved management of PDAC. This review comprehensively summarises current epigenetic research in PDAC and identifies persisting challenges. These include the complex nature of epigenetic profiles, tumour heterogeneity, limited access to early-stage samples, and the need for highly sensitive liquid biopsy technologies. Addressing these challenges requires the standardisation of methodologies, integration of multi-omics data, and leveraging advanced computational tools such as machine learning and artificial intelligence. While resource-intensive, these efforts are essential for unravelling the functional consequences of epigenetic changes and translating this knowledge into clinical applications. By overcoming these hurdles, epigenetic research has the potential to revolutionise the management of PDAC and improve patient outcomes.
Collapse
Affiliation(s)
- Jorg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris - Saclay, Evry, France.
| | - Secil Ak-Aksoy
- Bursa Uludag University Faculty of Medicine, Medical Microbiology, Bursa 16059, Turkey.
| | - Daniele Campa
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Chiara Corradi
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Riccardo Farinella
- Department of Biology, University of Pisa, via Derna 1, Pisa 56126, Italy.
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Edificio IMIBIC, Avenida Men´endez Pidal s/n, Cordoba 14004, Spain.
| | - Juan Dubrot
- Solid Tumors Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| | - Julie Earl
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Institute for Health Research (IRYCIS), Ctra Colmenar Viejo Km 9.100, CIBERONC, Madrid 28034, Spain.
| | - Emma Barreto Melian
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Institute for Health Research (IRYCIS), Ctra Colmenar Viejo Km 9.100, CIBERONC, Madrid 28034, Spain
| | - Agapi Kataki
- A' Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vas. Sofias 114, Athens 11527, Greece.
| | - Georgina Kolnikova
- Department of Pathology, National Cancer Institute in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Gjorgji Madjarov
- Ss. Cyril and Methodius University - Faculty of Computer Science and Engineering, Rudjer Boshkovikj 16, Skopje 1000, Macedonia.
| | - Marija Chaushevska
- Ss. Cyril and Methodius University - Faculty of Computer Science and Engineering, Rudjer Boshkovikj 16, Skopje 1000, Macedonia; gMendel ApS, Fruebjergvej 3, Copenhagen 2100, Denmark.
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia.
| | - Miljana Tanić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Serbia; UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| | - Miroslav Tomas
- Department of Surgical Oncology, National Cancer Institute in Bratislava and Slovak Medical University in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Peter Dubovan
- Department of Surgical Oncology, National Cancer Institute in Bratislava and Slovak Medical University in Bratislava, Klenova 1, Bratislava 83310, Slovakia.
| | - Maria Urbanova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Verona Buocikova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| | - Bozena Smolkova
- Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava 84505, Slovakia.
| |
Collapse
|
5
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
6
|
Dong F, Zhou J, Wu Y, Gao Z, Li W, Song Z. MicroRNAs in pancreatic cancer drug resistance: mechanisms and therapeutic potential. Front Cell Dev Biol 2025; 12:1499111. [PMID: 39882259 PMCID: PMC11774998 DOI: 10.3389/fcell.2024.1499111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to its intrinsic resistance to conventional therapies. MicroRNAs (miRNAs), key regulators of gene expression, have been identified as crucial modulators of drug resistance mechanisms in this cancer type. This review synthesizes recent advancements in our understanding of how miRNAs influence treatment efficacy in PC. We have thoroughly summarized and discussed the complex role of miRNA in mediating drug resistance in PC treatment. By highlighting specific miRNAs that are implicated in drug resistance pathways, we provide insights into their functional mechanisms and interactions with key molecular targets. We also explore the potential of miRNA-based strategies as novel therapeutic approaches and diagnostic tools to overcome resistance and improve patient outcomes. Despite promising developments, challenges such as specificity, stability, and effective delivery of miRNA-based therapeutics remain. This review aims to offer a critical perspective on current research and propose future directions for leveraging miRNA-based interventions in the fight against PC.
Collapse
Affiliation(s)
- Fangying Dong
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yijie Wu
- Department of general practice, Taozhuang Branch of the First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weiwei Li
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Wnuk J, Hudy D, Strzelczyk JK, Michalecki Ł, Dybek K, Gisterek-Grocholska I. Serum hsa-miR-22-3p, hsa-miR-885-5p, Lipase-to-Amylase Ratio, C-Reactive Protein, CA19-9, and Neutrophil-to-Lymphocyte Ratio as Prognostic Factors in Advanced Pancreatic Ductal Adenocarcinoma. Curr Issues Mol Biol 2025; 47:27. [PMID: 39852142 PMCID: PMC11763715 DOI: 10.3390/cimb47010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-related death worldwide. The low survival rate may be due to late diagnosis and asymptomatic early-stage disease. Most patients are diagnosed at an advanced stage of the disease. The search for novel prognostic factors is still needed. Two miRNAs, miR-22-3p and miR-885-5p, which show increased expression in PC, were selected for this study. The aim of this study was to evaluate the utility of these miRNAs in the prognosis of PC. Other prognostic factors such as lipase-to-amylase ratio (LAR), neutrophil-to-lymphocyte ratio (NLR), and carbohydrate antigen 19-9 (CA19-9) were also evaluated in this study. This study was conducted in 50 patients previously diagnosed with pancreatic ductal adenocarcinoma in clinical stage (CS) III and IV. All patients underwent a complete medical history, physical examination, and routine laboratory tests including a complete blood count, C-reactive protein (CRP), CA19-9, lipase, and amylase. Two additional blood samples were taken from each patient to separate plasma and serum. Isolation of miRNA was performed using TRI reagent with cel-miR-39-3p as a spike-in control. Reverse transcription of miRNA was performed using a TaqMan Advanced miRNA cDNA Synthesis Kit. The relative expression levels of miR-22-3p and miR-885-5p were measured using RT-qPCR. Serum hsa-miR-22-3p was detected in 22 cases (44%), while hsa-miR-885-5p was detected in 33 cases (66%). There were no statistically significant differences in serum or plasma miRNA expression levels between patient groups based on clinical stage, gender, or BMI. There were no statistically significant differences in LAR between patients with different CS. For NLR, CRP and CA19-9 thresholds were determined using ROC analysis (6.63, 24.7 mg/L and 4691 U/mL, respectively). Cox's F test for overall survival showed statistically significant differences between groups (p = 0.002 for NLR, p = 0.007 for CRP and p = 0.007 for CA19-9). Utility as prognostic biomarkers was confirmed in univariate and multivariate analysis for CA19-9, CRP, and NLR. The selected miRNAs and LAR were not confirmed as reliable prognostic markers in PC.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland; (J.W.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (D.H.); (J.K.S.)
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (D.H.); (J.K.S.)
| | - Łukasz Michalecki
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland; (J.W.)
| | - Kamil Dybek
- Central Laboratory, University Clinical Center, Medical University of Silesia in Katowice, 14 Medyków St., 40-752 Katowice, Poland
| | - Iwona Gisterek-Grocholska
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland; (J.W.)
| |
Collapse
|
8
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
9
|
Corrêa CAP, Andrade AF, Veronez LC, da Silva KR, Baroni M, Suazo VK, de Paula Gomes Queiroz R, Lira RCP, Chagas PS, Brandalise SR, Yunes JA, Molina CAF, Antonini SRR, Valera ET, Tone LG, Scrideli CA. Analysis of miR-483-3p and miR-630 expression profile in pediatric adrenocortical tumors and the effect of their modulation on adrenal tumorigenesis in vitro. Mol Cell Endocrinol 2024; 594:112371. [PMID: 39278396 DOI: 10.1016/j.mce.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Pediatric adrenocortical tumors (ACT) are rare aggressive neoplasms with heterogeneous prognosis. MicroRNA (miRNA) signatures have been associated with cancer diagnosis, treatment response, and outcomes of several types of cancer. However, the role played by miRNAs in pediatric ACT has been poorly explored. In this study, we have evaluated the expression of miR-483-3p and miR-630 in 67 pediatric ACT and 19 non-neoplastic adrenal samples, the effects of the modulations of these miRNAs, and their relationship with the TGF-β pathway in the H295R and H295A cell lines. Deregulation of both miRNAs was related to survival and disease advanced stages and hence to patients' prognosis. Moreover, modified miR-483-3p and miR-630 in vitro expression decreased cell viability and colony formation capacity, changed how some genes of the TGF-β pathway, such as TGFBR1, TGFBR2, and SMAD7, are expressed, and altered Smad3, pSmad3, Smad 2/3, N-cadherin, and Vimentin protein expression. Besides that, when inhibition of the TGF-β pathway was combined with miR-630 overexpression or miR-483-3p silencing, cell viability and colony formation capacity decreased, and protein expression in the TGF-β pathway changed. Together, the data indicate that both miRNAs participate in the TGF-β pathway and are therefore potential markers for predicting the prognosis of patients with pediatric ACT.
Collapse
Affiliation(s)
| | | | - Luciana Chain Veronez
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Mirella Baroni
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Veridiana Kill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Régia Caroline Peixoto Lira
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Division of General Pathology, Federal University of Triângulo Mineiro, Campus I, Uberaba, MG, 38025-200, Brazil
| | - Pablo Shimaoka Chagas
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Elvis Terci Valera
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Brazil.
| |
Collapse
|
10
|
Kim HG, Cho Y, Lee JS, Oh ET, Park HJ. Identification of miR-6794-3p as a suppressor in pancreatic cancer metastasis. Int J Biol Sci 2024; 20:5272-5292. [PMID: 39430246 PMCID: PMC11488588 DOI: 10.7150/ijbs.98490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Metastasis is a major cause of treatment failure in patients with pancreatic cancer, highlighting the urgent need for effective therapeutic strategies. Here, we focused on identifying novel miRNAs with key roles in metastasis of pancreatic cancer. Microarray analysis of miRNA expression in metastatic and non-metastatic pancreatic cancer samples revealed significantly lower expression of miR-6794-3p in the metastatic tumor group. Gain- and loss-of-function approaches using the pancreatic cancer cell lines MIA-PaCa-2 and HPAF-II expressing low and high levels of miR-6794-3p, respectively, indicated a role of miR-6794-3p in suppression of cell invasion, migration, and EMT signaling. Importantly, our results showed that miR-6794-3p exerts its effects by inhibiting expression of the chromatin remodeling factor, RBBP4. The resulting suppression of RBBP4 induced an increase in the levels of GRHL2 involved in regulating invasion, migration, and EMT signaling in metastatic pancreatic cancer cells. Consistent with these findings, low miR-6794-3p expression levels correlate with poor pancreatic cancer patient survival. Additional preclinical experiments on nude mice clearly demonstrated inhibitory effects of miR-6794-3p on pancreatic cancer cell metastasis. The collective results highlight the functional significance of miR-6794-3p as a suppressor of metastasis and support its predictive utility as a prognostic biomarker and therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ha Gyeong Kim
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yunmi Cho
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intracellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Heon Joo Park
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Research Center for Controlling Intracellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Mottini C, Auciello FR, Manni I, Pilarsky C, Caputo D, Caracciolo G, Rossetta A, Di Gennaro E, Budillon A, Blandino G, Roca MS, Piaggio G. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J Exp Clin Cancer Res 2024; 43:198. [PMID: 39020414 PMCID: PMC11256648 DOI: 10.1186/s13046-024-03117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Romana Auciello
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | | | - Giulio Caracciolo
- Dipartimento Di Medicina Molecolare Sapienza, Università Di Roma, Rome, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giovanni Blandino
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maria Serena Roca
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
12
|
Ma C, Xu Z, Hao K, Fan L, Du W, Gao Z, Wang C, Zhang Z, Li N, Li Q, Gao Q, Yu C. Rapid isolation method for extracellular vesicles based on Fe 3O 4@ZrO 2. Front Bioeng Biotechnol 2024; 12:1399689. [PMID: 39045537 PMCID: PMC11263208 DOI: 10.3389/fbioe.2024.1399689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Extracellular vesicles (EVs) are pivotal in intercellular communication, disease mechanisms. Despite numerous methods for EVs isolation, challenges persist in yield, purity, reproducibility, cost, time, and automation. We introduce a EVs isolation technique using Fe3O4@ZrO2 beads, leveraging ZrO2-phosphate interaction. The results indicated that EVs were efficiently separated from large volumes of samples in 30 minutes without preconcentration. Our method demonstrated capture efficiency (74%-78%) compared to ultracentrifugation, purity (97%), and reproducibility (0.3%-0.5%), with excellent linearity (R2 > 0.99). EVs from urine samples showed altered expression of miRNAs. The logistic regression model achieved an AUC of 0.961, sensitivity of 0.92, and specificity of 0.94. With potential for automation, this magnetic bead-based method holds promise for clinical applications, offering an efficient and reliable tool for EVs research and clinical studies.
Collapse
Affiliation(s)
- Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhihui Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lingling Fan
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Zhang
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ningxia Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
14
|
Chen C, Demirkhanyan L, Gondi CS. The Multifaceted Role of miR-21 in Pancreatic Cancers. Cells 2024; 13:948. [PMID: 38891080 PMCID: PMC11172074 DOI: 10.3390/cells13110948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
With the lack of specific signs and symptoms, pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at late metastatic stages, resulting in poor survival outcomes. Among various biomarkers, microRNA-21 (miR-21), a small non-coding RNA, is highly expressed in PDAC. By inhibiting regulatory proteins at the 3' untranslated regions (UTR), miR-21 holds significant roles in PDAC cell proliferation, epithelial-mesenchymal transition, angiogenesis, as well as cancer invasion, metastasis, and resistance therapy. We conducted a systematic search across major databases for articles on miR-21 and pancreatic cancer mainly published within the last decade, focusing on their diagnostic, prognostic, therapeutic, and biological roles. This rigorous approach ensured a comprehensive review of miR-21's multifaceted role in pancreatic cancers. In this review, we explore the current understandings and future directions regarding the regulation, diagnostic, prognostic, and therapeutic potential of targeting miR-21 in PDAC. This exhaustive review discusses the involvement of miR-21 in proliferation, epithelial-mesenchymal transition (EMT), apoptosis modulation, angiogenesis, and its role in therapy resistance. Also discussed in the review is the interplay between various molecular pathways that contribute to tumor progression, with specific reference to pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Clare Chen
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine, Surgery, and Health Science Education and Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Health Care Engineering Systems Center, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Jafari S, Motedayyen H, Javadi P, Jamali K, Moradi Hasan-Abad A, Atapour A, Sarab GA. The roles of lncRNAs and miRNAs in pancreatic cancer: a focus on cancer development and progression and their roles as potential biomarkers. Front Oncol 2024; 14:1355064. [PMID: 38559560 PMCID: PMC10978783 DOI: 10.3389/fonc.2024.1355064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Jamali
- Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
16
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
17
|
Jayashree P, Kalpita M, Judith T, Singh AS, Ashwin K. Role of MicroRNA in Hypoxic Tumours and their Potential as Biomarkers for Early Detection of Cancer. Curr Mol Med 2024; 24:525-536. [PMID: 38310548 DOI: 10.2174/0115665240268661231128094831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 02/06/2024]
Abstract
Hypoxia is a pathophysiological condition characterized by oxygen deficiency in tissues, which negatively affects normal biological functions. It is a typical microenvironment character of almost all solid tumours. Noncoding RNA are small functional RNA molecules that regulate gene expression at chromatin and posttranscriptional levels. Micro-RNAs (miRNAs) are a type of noncoding RNA and are ~12-22 nucleotides long that are crucial in regulating gene expression by partnering with the mRNAs of protein-coding genes. It is widely reported that miRs play an important role in various key processes and pathways during tumour formation, as well as advancement in hypoxic tumors by influencing the HIF pathway. The role of miRNAs in hypoxic tumours, namely in pancreatic, kidney, breast, lung and colorectal, are described. These miRNAs have immense potential as diagnostic and prognostic biomarkers for early cancer detection.
Collapse
Affiliation(s)
- Pawar Jayashree
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Mulye Kalpita
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Talker Judith
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Ahirwar Sonu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, (M.P.), India
| | - Kotnis Ashwin
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, (M.P.), India
| |
Collapse
|
18
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
19
|
Lian M, Mortoglou M, Uysal-Onganer P. Impact of Hypoxia-Induced miR-210 on Pancreatic Cancer. Curr Issues Mol Biol 2023; 45:9778-9792. [PMID: 38132457 PMCID: PMC10742176 DOI: 10.3390/cimb45120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Pancreatic cancer (PC) poses significant clinical challenges, with late-stage diagnosis and limited therapeutic options contributing to its dismal prognosis. A hallmark feature of PC is the presence of a profoundly hypoxic tumour microenvironment, resulting from various factors such as fibrotic stroma, rapid tumour cell proliferation, and poor vascularization. Hypoxia plays a crucial role in promoting aggressive cancer behaviour, therapeutic resistance, and immunosuppression. Previous studies have explored the molecular mechanisms behind hypoxia-induced changes in PC, focusing on the role of hypoxia-inducible factors (HIFs). Among the myriad of molecules affected by hypoxia, microRNA-210 (miR-210) emerges as a central player. It is highly responsive to hypoxia and regulated by HIF-dependent and HIF-independent pathways. miR-210 influences critical cellular processes, including angiogenesis, metastasis, and apoptosis, all of which contribute to PC progression and resistance to treatment. Understanding these pathways provides insights into potential therapeutic targets. Furthermore, investigating the role of miR-210 and its regulation in hypoxia sheds light on the potential development of early diagnostic strategies, which are urgently needed to improve outcomes for PC patients. This review delves into the complexities of PC and introduces the roles of hypoxia and miR-210 in the progression of PC.
Collapse
Affiliation(s)
| | | | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (M.L.); (M.M.)
| |
Collapse
|
20
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
21
|
Khan IA, Saraya A. Circulating MicroRNAs as Noninvasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer: A Review. J Gastrointest Cancer 2023; 54:720-730. [PMID: 36322366 DOI: 10.1007/s12029-022-00877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal human cancers. Currently, most PC cases are diagnosed at an already advanced stage. Early detection of PC is critical to improving survival rates. Therefore, there is an urgent need to identify biomarkers for the early detection of PC. Recently, circulating miRNAs in whole blood and other body fluids have been reported as promising biomarkers for the early detection of various cancers, including PC. Furthermore, due to minimal invasiveness and technical availability, circulating miRNAs hold promise for further wide usage. As a potential novel molecular marker, circulating miRNAs not only represent promising noninvasive diagnostic and prognostic tools but could also improve the evaluation of tumor classification, metastasis, and curative effect. The purpose of this review is to outline the available information regarding circulating miRNAs as biomarkers for the early detection of PC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
22
|
Sarkar R, Xu Z, Perera CJ, Apte MV. Emerging role of pancreatic stellate cell-derived extracellular vesicles in pancreatic cancer. Semin Cancer Biol 2023; 93:114-122. [PMID: 37225047 DOI: 10.1016/j.semcancer.2023.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
Collapse
Affiliation(s)
- Rohit Sarkar
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| | - Minoti V Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| |
Collapse
|
23
|
Zou X, Huang Z, Guan C, Shi W, Gao J, Wang J, Cui Y, Wang M, Xu Y, Zhong X. Exosomal miRNAs in the microenvironment of pancreatic cancer. Clin Chim Acta 2023; 544:117360. [PMID: 37086943 DOI: 10.1016/j.cca.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pancreatic cancer (PC) is highly aggressive having an extremely poor prognosis. The tumor microenvironment (TME) of PC is complex and heterogeneous. Various cellular components in the microenvironment are capable of secreting different active substances that are involved in promoting tumor development. Their release may occur via exosomes, the most abundant extracellular vesicles (EVs), that can carry numerous factors as well as act as a mean of intercellular communication. Emerging evidence suggests that miRNAs are involved in the regulation and control of many pathological and physiological processes. They can also be transported by exosomes from donor cells to recipient cells, thereby regulating the TME. Exosomal miRNAs show promise for use as future targets for PC diagnosis and prognosis, which may reveal new treatment strategies for PC. In this paper, we review the important role of exosomal miRNAs in mediating cellular communication in the TME of PC as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Central hospital of Baoji, Baoji, Shaanxi 721000, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Yi Xu
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
24
|
Amaral MJ, Oliveira RC, Donato P, Tralhão JG. Pancreatic Cancer Biomarkers: Oncogenic Mutations, Tissue and Liquid Biopsies, and Radiomics-A Review. Dig Dis Sci 2023:10.1007/s10620-023-07904-6. [PMID: 36988759 DOI: 10.1007/s10620-023-07904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Pancreatic cancer is one of the most fatal malignancies, as approximately 80% of patients are at advanced stages by the time of diagnosis. The main reason for the poor overall survival is late diagnosis that is partially due to the lack of tools for early-stage detection. In addition, there are several challenges in evaluating response to treatment and predicting prognosis. In this article, we do a review of the most common pancreatic cancer biomarkers with emphasis in new and promising approaches. Liquid biopsies seem to have important clinical applications in early detection, screening, prognosis, and longitudinal monitoring of on-treatment patients. Together with biomarkers in imaging, can represent valuable alternative non-invasive tools in order to achieve a more effective management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Maria João Amaral
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Rui Caetano Oliveira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Donato
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Radiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Biophysics Institute, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Wnuk J, Strzelczyk JK, Gisterek I. Clinical Value of Circulating miRNA in Diagnosis, Prognosis, Screening and Monitoring Therapy of Pancreatic Ductal Adenocarcinoma-A Review of the Literature. Int J Mol Sci 2023; 24:ijms24065113. [PMID: 36982210 PMCID: PMC10049684 DOI: 10.3390/ijms24065113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic cancer (PC) is considered to be the seventh most common cause of cancer-related deaths. The number of deaths caused by PC is estimated to increase in the future. An early diagnosis of PC is crucial for improving treatment outcomes. The most common histopathological subtype of PC is pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miRNAs)-which are endogenous non-coding RNAs involved in the posttranscriptional regulation of multiple gene expression-constitute useful diagnostic and prognostic biomarkers in various neoplasms, including PDAC. Circulating miRNAs detected in a patient's serum or plasma are drawing more and more attention. Hence, this review aims at evaluating the clinical value of circulating miRNA in the screening, diagnosis, prognosis and monitoring of pancreatic ductal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Iwona Gisterek
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| |
Collapse
|
26
|
Makler A, Asghar W. Exosomal miRNA Biomarker Panel for Pancreatic Ductal Adenocarcinoma Detection in Patient Plasma: A Pilot Study. Int J Mol Sci 2023; 24:ijms24065081. [PMID: 36982154 PMCID: PMC10049393 DOI: 10.3390/ijms24065081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming one of the leading causes of cancer-related deaths in the United States, and with its high mortality rate, there is a pressing need to develop sensitive and robust methods for detection. Exosomal biomarker panels provide a promising avenue for PDAC screening since exosomes are highly stable and easily harvested from body fluids. PDAC-associated miRNAs packaged within these exosomes could be used as diagnostic markers. We analyzed a series of 18 candidate miRNAs via RT-qPCR to identify the differentially expressed miRNAs (p < 0.05, t-test) between plasma exosomes harvested from PDAC patients and control patients. From this analysis, we propose a four-marker panel consisting of miR-93-5p, miR-339-3p, miR-425-5p, and miR-425-3p with an area under the curve (AUC) of the receiver operator characteristic curve (ROC) of 0.885 with a sensitivity of 80% and a specificity of 94.7%, which is comparable to the CA19-9 standard PDAC marker diagnostic.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence:
| |
Collapse
|
27
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
28
|
Karimnia V, Stanley ME, Fitzgerald CT, Rizvi I, Slack FJ, Celli JP. Photodynamic Stromal Depletion Enhances Therapeutic Nanoparticle Delivery in 3D Pancreatic Ductal Adenocarcinoma Tumor Models. Photochem Photobiol 2023; 99:120-131. [PMID: 35699307 PMCID: PMC10082669 DOI: 10.1111/php.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human malignancies. PDAC is characterized by dense fibrous stroma which obstructs drug delivery and plays complex tumor-promoting roles. Photodynamic therapy (PDT) is a light-based modality which has been demonstrated to be clinically feasible and effective for tumors of the pancreas. Here, we use in vitro heterocellular 3D co-culture models in conjunction with imaging, bulk rheology and microrheology to investigate photodegradation of non-cellular components of PDAC stroma (photodynamic stromal depletion, PSD). By measuring the rheology of extracellular matrix (ECM) before and after PDT we find that softening of ECM is concomitant with increased transport of nanoparticles (NPs). At the same time, as shown by us previously, photodestruction of stromal fibroblasts leads to enhanced tumor response to PDT. Here we specifically evaluate the capability of PSD to enhance RNA nanomedicine delivery, using a NP carrying an inhibitor of miR-21-5P, a PDAC oncomiR. We confirm improved delivery of this therapeutic NP after PSD by observation of increased expression of PDCD4, a protein target of miR-21-5P. Collectively, these results in 3D tumor models suggest that PSD could be developed to enhance delivery of other cancer therapeutics and improve tumor response to treatment.
Collapse
Affiliation(s)
- Vida Karimnia
- Department of Physics, University of Massachusetts at Boston, Boston, MA
| | - M Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Christian T Fitzgerald
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Frank J Slack
- Department of Pathology, BIDMC Cancer Center/Harvard Medical School, Boston, MA
| | - Jonathan P Celli
- Department of Physics, University of Massachusetts at Boston, Boston, MA
| |
Collapse
|
29
|
Abstract
Peripheral blood is a source for liquid biopsy, which can meet the requirements of pretreatment disease typing to determine precise targeted therapy and monitoring of posttreatment minimal residual disease monitoring. Compared with ctDNA and CTC, exosomes have a higher concentration, good biostability, biocompatibility, low immunogenicity, and low toxicity in peripheral blood. Tumors generally secrete a large amounts of exosomes, which have potential pathophysiological roles in tumor progression. With the continuous improvement of liquid biopsy technology, many researchers have found that exosomes are the key for tumor PD-L1 to exert its role, which may be the mechanism that leads to PD-L1 and/or PD-1 inhibitor therapy resistance. Namely, tumor-derived exosomes may mediate systemic immunosuppression against PD-1 or PD-L1 inhibitor therapy, endogenous tumor cell-derived exosomal PD-L1, and tumor microenvironment-derived exosomes. Induction of PD-L1 by exosomes may be a crucial mechanisms of exosome-mediated antitumor immune tolerance. This article reviews the relationship between the detection of peripheral blood exosomal PD-L1 and tumor progression and the mechanism of exosomal PD-L1 in tumor immunotherapy.
Collapse
Affiliation(s)
- Rui Wang
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Yanjia Yang
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Jiajun Huang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Yandan Yao
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Qian Y, Gong Y, Luo G, Liu Y, Wang R, Zou X, Deng S, Lin X, Chen Y, Wang X, Yu X, Cheng H, Liu C. Carbohydrate antigen 125 supplements carbohydrate antigen 19-9 for the prediction of invasive intraductal papillary mucinous neoplasms of the pancreas. World J Surg Oncol 2022; 20:310. [PMID: 36155113 PMCID: PMC9511782 DOI: 10.1186/s12957-022-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are characterized by their abundant mucin production and malignant potential. IPMNs of the pancreas are mainly managed according to their radiographic indications, but this approach lacks accuracy with regard to IPMN grading. Therefore, serological biomarkers such as CA19-9 and CA125 (MUC16) should be employed to assist in predicting the invasiveness of IPMNs. METHODS We investigated the preoperative serum levels of CA19-9, CA125 and CEA in 381 surgical patients with a definite pathological diagnosis of IPMN from July 2010 to December 2019 at the Shanghai Cancer Center. We calculated the Youden indices of each point on the receiver operating characteristic (ROC) curves to identify the most appropriate cut-off values of CA19-9, CA125 and CEA for recognizing malignant IPMNs. Serological biomarker differences were correlated with clinicopathological features of IPMNs, and diagnostic indices of different scenarios were calculated to find the optimum strategy. RESULTS The malignant group had higher serum levels of CA19-9, CA125 and CEA. According to the ROC curves, the cut-off values of CA19-9, CA125 and CEA were readjusted to 38.3 U/ml, 13.4 U/ml and 5.3 μg/L. CA19-9 elevation was significantly associated with vascular invasion and perineural infiltration. CA125 showed good efficacy in predicting invasive IPMN in the CA19-9-negative subgroup. CONCLUSIONS Serological biomarkers are useful and sensitive indicators for recognizing invasive IPMNs. CA19-9 is the most important diagnostic index among all routinely measured serum biomarkers for differentiating malignant from benign IPMNs. CA19-9 should be combined with CA125 to enable more accurate predictions of IPMN malignancy.
Collapse
Affiliation(s)
- Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Kt RD, Karthick D, Saravanaraj KS, Jaganathan MK, Ghorai S, Hemdev SP. The Roles of MicroRNA in Pancreatic Cancer Progression. Cancer Invest 2022; 40:700-709. [PMID: 35333689 DOI: 10.1080/07357907.2022.2057526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a poor patient survival rate in comparison with other cancer types, even after targeted therapy, chemotherapy, and immunotherapy. Therefore, a great deal needs to be done to gain a better understanding of the biology and identification of prognostic and predictive markers for the development of superior therapies. The microRNAs (miRNAs) belong to small non-coding RNAs that regulate post-transcriptional gene expression. Several shreds of evidence indicate that miRNAs play an important role in the pathogenesis of pancreatic cancer. Here we review the recent developments in miRNAs and their target role in the development, metastasis, migration, and invasion.
Collapse
Affiliation(s)
- Ramya Devi Kt
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthick
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Kirtikesav Salem Saravanaraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Uttar Dinajpur, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Metabolic Pathways as a Novel Landscape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153799. [PMID: 35954462 PMCID: PMC9367608 DOI: 10.3390/cancers14153799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.
Collapse
|
34
|
Effect of Photodynamic Therapy on the microRNA Level in Breast Cancer Tissues of Female Wistar Rats. Bull Exp Biol Med 2022; 173:444-447. [DOI: 10.1007/s10517-022-05584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/27/2022]
|
35
|
Specific Antibodies to the Fragments of Meningococcal IgA1 Protease during the Formation of Immunity to Bacterial Infections. Bull Exp Biol Med 2022; 173:429-432. [DOI: 10.1007/s10517-022-05580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 10/14/2022]
|
36
|
Kim S, Kim GH, Park SJ, Kwon CH, I H, Lee MW, Lee BE. Exosomal MicroRNA Analyses in Esophageal Squamous Cell Carcinoma Cell Lines. J Clin Med 2022; 11:4426. [PMID: 35956043 PMCID: PMC9369365 DOI: 10.3390/jcm11154426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomal miRNAs have been studied in various cancers as minimally invasive biomarkers. This study aimed to investigate the potential of exosomal microRNAs (miRNAs) as biomarkers for esophageal squamous cell carcinoma (ESCC). Exosomes were isolated from cultures of esophageal epithelial cell and ESCC cell lines using ExoDisc, and exosomal miRNAs were detected via miRNA sequencing. Of the differentially expressed 14 miRNAs, the top 2 up-regulated miRNAs (miR-205-5p and miR-429) and top 2 down-regulated miRNAs (miR-375-3p and miR-483-3p) were selected as ESCC target miRNAs. Four selected exosomal miRNAs were validated in the plasma of 20 healthy controls (HCs) and 40 ESCC patients via quantitative reverse transcription-polymerase chain reaction. The expression of plasma exosomal miR-205-5p and miR-429 significantly increased, while that of plasma exosomal miR-375-3p was significantly reduced in ESCC patients compared to that in HCs. At cut-off values of 5.04, 2.564, and 0.136, the sensitivity and specificity for the diagnosis of ESCC were 72.5% and 70.0% for miR-205-5p, 60.0% and 60.0% for miR-429, and 65.0% and 65.0% for miR-375-3p, respectively. Based on the exosomal miRNAs identified in ESCC cell lines, our study demonstrated that plasma exosomal miR-205-5p, miR-429, and miR-375-3p could serve as potential biomarkers for ESCC diagnosis.
Collapse
Affiliation(s)
- Sora Kim
- Department of Convergence Medical Sciences, Graduate School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan 49241, Korea; (M.W.L.); (B.E.L.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.J.P.); (C.H.K.)
| | - Su Jin Park
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.J.P.); (C.H.K.)
| | - Chae Hwa Kwon
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.J.P.); (C.H.K.)
| | - Hoseok I
- Department of Thoracic Surgery, Pusan National University College of Medicine, Busan 49241, Korea;
| | - Moon Won Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan 49241, Korea; (M.W.L.); (B.E.L.)
| | - Bong Eun Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan 49241, Korea; (M.W.L.); (B.E.L.)
| |
Collapse
|
37
|
Marin AM, Mattar SB, Amatuzzi RF, Chammas R, Uno M, Zanette DL, Aoki MN. Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients. Biomolecules 2022; 12:769. [PMID: 35740894 PMCID: PMC9221134 DOI: 10.3390/biom12060769] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer represents one of the leading causes of oncological death worldwide. A combination of pancreatic cancer aggressiveness and late diagnosis are key factors leading to a low survival rate and treatment inefficiency, and early diagnosis is pursued as a critical factor for pancreatic cancer. In this context, plasma microRNAs are emerging as promising players due to their non-invasive and practical usage in oncological diagnosis and prognosis. Recent studies have showed some miRNAs associated with pancreatic cancer subtypes, or with stages of the disease. Here we demonstrate plasma exosome-derived microRNA expression in pancreatic cancer patients and healthy individuals from Brazilian patients. Using plasma of 65 pancreatic cancer patients and 78 healthy controls, plasma exosomes were isolated and miRNAs miR-27b, miR-125b-3p, miR-122-5p, miR-21-5p, miR-221-3p, miR-19b, and miR-205-5p were quantified by RT-qPCR. We found that miR-125b-3p, miR-122-5p, and miR-205-5p were statistically overexpressed in the plasma exosomes of pancreatic cancer patients compared to healthy controls. Moreover, miR-205-5p was significantly overexpressed in European descendants, in patients with tumor progression and in those who died from the disease, and diagnostic ability by ROC curve was 0.86. Therefore, we demonstrate that these three microRNAs are potential plasma exosome-derived non-invasive biomarkers for the diagnosis and prognosis of Brazilian pancreatic cancer, demonstrating the importance of different populations and epidemiological bias.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| | - Sibelle Botogosque Mattar
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| | - Rafaela Ferreira Amatuzzi
- Laboratory of Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil;
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (R.C.); (M.U.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (R.C.); (M.U.)
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| |
Collapse
|
38
|
Naidu Surla G, Kumar LK, Gowdar Vedamurthy V, Singh D, Onteru SK. Salivary TIMP1 and predicted mir-141, possible transcript biomarkers for estrus in the buffalo (Bubalus bubalis). Reprod Biol 2022; 22:100641. [PMID: 35525172 DOI: 10.1016/j.repbio.2022.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
Successful reproductive management of buffaloes depends primarily upon timely estrus identification. However, 50% of the estrus events are undetected in buffaloes with the available estrus identification methods, leading to huge financial loss to buffalo farmers. Hence, there is an urgent need to develop an alternative and accurate estrus identification method, particularly on the basis of biomarkers in non-invasive fluids. Thus, the present study aimed to identify RNA based estrus biomarkers in cell free saliva in Bubalus bubalis, so that they can be used for future field applicable RT-LAMP colour reactions. RNA-Seq analysis of cell free salivary RNA showed 49 differentially abundant mRNAs between the estrus and diestrus stages. Among five mature miRNAs predicted from the RNA-Seq data, four were found differentially altered at the estrus stage than the diestrus stage. Validation study by direct salivary transcript analysis (DSTA) on 6 selected mRNAs (PPARGC1a, TIMP1, PEBP4, CSPG5, PRHR and ATOH7) and 5 miRNAs (bta-miR-92b, bta-miR-302d, bta-miR-141, bta-miR-27a and bta-let-7a-5p) showed significantly higher levels of TIMP1 (3.46 fold; P < 0.5) and bta-mir-141 (1.33 fold; P < 0.5) in cell-free saliva at the estrus stage compared to the diestrus stage. Hence, TIMP1 and miR-141 appear to be the possible transcript biomarkers for estrus in the cell free saliva of the buffalo. However, further validation studies are required in a large population of buffaloes to determine their estrus biomarker potential before considering them for RT-LAMP colour reaction.
Collapse
Affiliation(s)
- Gangu Naidu Surla
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Veerappa Gowdar Vedamurthy
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India.
| |
Collapse
|
39
|
Merz V, Mangiameli D, Zecchetto C, Quinzii A, Pietrobono S, Messina C, Casalino S, Gaule M, Pesoni C, Vitale P, Trentin C, Frisinghelli M, Caffo O, Melisi D. Predictive Biomarkers for a Personalized Approach in Resectable Pancreatic Cancer. Front Surg 2022; 9:866173. [PMID: 35599791 PMCID: PMC9114435 DOI: 10.3389/fsurg.2022.866173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
The mainstay treatment for patients with immediate resectable pancreatic cancer remains upfront surgery, which represents the only potentially curative strategy. Nevertheless, the majority of patients surgically resected for pancreatic cancer experiences disease relapse, even when a combination adjuvant therapy is offered. Therefore, aiming at improving disease free survival and overall survival of these patients, there is an increasing interest in evaluating the activity and efficacy of neoadjuvant and perioperative treatments. In this view, it is of utmost importance to find biomarkers able to select patients who may benefit from a preoperative therapy rather than upfront surgical resection. Defined genomic alterations and a dynamic inflammatory microenvironment are the major culprits for disease recurrence and resistance to chemotherapeutic treatments in pancreatic cancer patients. Signal transduction pathways or tumor immune microenvironment could predict early recurrence and response to chemotherapy. In the last decade, distinct molecular subtypes of pancreatic cancer have been described, laying the bases to a tailored therapeutic approach, started firstly in the treatment of advanced disease. Patients with homologous repair deficiency, in particular with mutant germline BRCA genes, represent the first subgroup demonstrating to benefit from specific therapies. A fraction of patients with pancreatic cancer could take advantage of genome sequencing with the aim of identifying possible targetable mutations. These genomic driven strategies could be even more relevant in a potentially curative setting. In this review, we outline putative predictive markers that could help in the next future in tailoring the best therapeutic strategy for pancreatic cancer patients with a potentially curable disease.
Collapse
Affiliation(s)
- Valeria Merz
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alberto Quinzii
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | | | - Simona Casalino
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marina Gaule
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Camilla Pesoni
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Chiara Trentin
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | | | - Orazio Caffo
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
40
|
Yao Q, Ke HJ, Yang Q, Liao GY, Liu P. Study on the Mechanism of MicroRNA551b-5p in Severe Acute Pancreatitis Capillary Leakage Syndrome. DISEASE MARKERS 2022; 2022:6373757. [PMID: 35256892 PMCID: PMC8898106 DOI: 10.1155/2022/6373757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Objective This study focused on investigating the effects of microRNA551b-5p (miR-551b-5p) on severe acute pancreatitis. Methods Initially, quantitative real-time polymerase chain reaction (qPCR) is employed to determine the expression of miR-551b-5p in differentiated human umbilical vein endothelial cells (HUVECs). Further, the effects of aberrantly expressed miR-551b-5p in HUVECs Transwell assay. The expressions of proteins associated with severe acute pancreatitis capillary leakage syndrome are determined by Western blot, FITC-phalloidin, and immunofluorescence stainings. Finally, the correlative factor and the target genes of miR-551b-5p, as well as their contributions, are assessed. Results We observed that overexpression of miR-551b-5p distinctly promoted the expression of EGFR, AKT3, and AQP5, while it suppressed the expression of JAM3, AQP1, and occludin. Functionally, the cytoskeleton of the miR-551b-5p overexpression was relatively loose with apparent vacuoles, and overexpression of miR-551b-5p increased the permeability of HUVECs. Conclusion miR-551b-5p overexpression promoted changes in vascular endothelial permeability via upregulation of the EGFR/AKT3 pathway and downregulation of occludin and JAM3.
Collapse
Affiliation(s)
- Qian Yao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua-Jing Ke
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gen-You Liao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Pi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Toden S, Goel A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br J Cancer 2022; 126:351-360. [PMID: 35013579 PMCID: PMC8810986 DOI: 10.1038/s41416-021-01672-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although non-coding RNAs have long been considered as non-functional "junk" RNAs, accumulating evidence in the past decade indicates that they play a critical role in pathogenesis of various cancers. In addition to their biological significance, the recognition that their expression levels are frequently dysregulated in multiple cancers have fueled the interest for exploiting their clinical potential as cancer biomarkers. In particular, microRNAs (miRNAs), a subclass of small non-coding RNAs that epigenetically modulate gene-transcription, have become one of the most well-studied substrates for the development of liquid biopsy biomarkers for cancer patients. The emergence of high-throughput sequencing technologies has enabled comprehensive molecular characterisation of various non-coding RNA expression profiles in multiple cancers. Furthermore, technological advances for quantifying lowly expressed RNAs in the circulation have facilitated robust identification of previously unrecognised and undetectable biomarkers in cancer patients. Here we summarise the latest progress on the utilisation of non-coding RNAs as non-invasive cancer biomarkers. We evaluated the suitability of multiple non-coding RNA types as blood-based cancer biomarkers and examined the impact of recent technological breakthroughs on the development of non-invasive molecular biomarkers in cancer.
Collapse
Affiliation(s)
- Shusuke Toden
- Molecular Stethoscope Inc., South San Francisco, CA 94080 USA
| | - Ajay Goel
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016 USA ,grid.410425.60000 0004 0421 8357City of Hope Comprehensive Cancer Center, Duarte, CA 91010 USA
| |
Collapse
|
42
|
Rusu-Nastase EG, Lupan AM, Marinescu CI, Neculachi CA, Preda MB, Burlacu A. MiR-29a Increase in Aging May Function as a Compensatory Mechanism Against Cardiac Fibrosis Through SERPINH1 Downregulation. Front Cardiovasc Med 2022; 8:810241. [PMID: 35118144 PMCID: PMC8804242 DOI: 10.3389/fcvm.2021.810241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Deregulation of microRNA (miRNA) profile has been reportedly linked to the aging process, which is a dominant risk factor for many pathologies. Among the miRNAs with documented roles in aging-related cardiac diseases, miR-18a, -21a, -22, and -29a were mainly associated with hypertrophy and/or fibrosis; however, their relationship to aging was not fully addressed before. The purpose of this paper was to evaluate the variations in the expression levels of these miRNAs in the aging process. To this aim, multiple organs were harvested from young (2–3-months-old), old (16–18-months-old), and very old (24–25-months-old) mice, and the abundance of the miRNAs was evaluated by quantitative real-time (RT)-PCR. Our studies demonstrated that miR-21a, miR-22, and miR-29a were upregulated in the aged heart. Among them, miR-29a was highly expressed in many other organs, i.e., the brain, the skeletal muscle, the pancreas, and the kidney, and its expression was further upregulated during the natural aging process. Western blot, immunofluorescence, and xCELLigence analyses concurrently indicated that overexpression of miR-29a in the muscle cells decreased the collagen levels as well as cell migration and proliferation. Computational prediction analysis and overexpression studies identified SERPINH1, a specific chaperone of procollagens, as a potential miR-29a target. Corroborating to this, significantly downregulated SERPINH1 levels were found in the skeletal muscle, the heart, the brain, the kidney, and the pancreas harvested from very old animals, thereby indicating the role of the miR-29a-SERPINH1 axis in the aging process. In vitro analysis of miR-29a effects on fibroblast and cardiac muscle cells pointed toward a protective role of miR-29a on aging-related fibrosis, by reducing cell migration and proliferation. In conclusion, our study indicates an adaptive increase of miR-29 in the natural aging process and suggests its role as a transcriptional repressor of SERPINH1, with a potential therapeutic value against adverse matrix remodeling and aging-associated tissue fibrosis.
Collapse
|
43
|
Chen J, Yao D, Chen W, Li Z, Guo Y, Zhu F, Hu X. Serum exosomal miR-451a acts as a candidate marker for pancreatic cancer. Int J Biol Markers 2022; 37:74-80. [PMID: 35001683 DOI: 10.1177/17246008211070018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this study was to explore the diagnostic efficiency of serum exosomal miR-451a as a novel biomarker for pancreatic cancer. METHODS Serum samples were collected prior to treatment. First, we analyzed microRNA (miRNA) profiles in serum exosomes from eight pancreatic cancer patients and eight healthy volunteers. We then validated the usefulness of the selected exosomal miRNAs as biomarkers in another 191 pancreatic cancer patients, 95 pancreatic benign disease (PB) patients, and 90 healthy controls. RESULTS The expression of miR-451a in serum-derived exosomes from pancreatic cancer patients was significantly upregulated compared with those from PB patients and healthy individuals. Serum exosomal miR-451a showed excellent diagnostic power in identifying pancreatic cancer patients. In addition, exosomal miR-451a showed a significant association with clinical stage and distant metastasis in pancreatic cancer, and the expression level of serum exosomal miR-451a was sensitive to therapy and relapse. CONCLUSIONS Serum exosomal miR-451a might serve as a novel diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jia Chen
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Co-first author
| | - Dongting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Co-first author
| | - Weiqin Chen
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhen Li
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuanyuan Guo
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming 650000, China
| | - Fan Zhu
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming 650000, China
| | - Xiaobo Hu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
44
|
Zhang W, Xing J, Liu T, Zhang J, Dai Z, Zhang H, Wang D, Tang D. Small extracellular vesicles: from mediating cancer cell metastasis to therapeutic value in pancreatic cancer. Cell Commun Signal 2022; 20:1. [PMID: 34980146 PMCID: PMC8722298 DOI: 10.1186/s12964-021-00806-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor and, is extremely difficult to diagnose and treat. Metastasis is one of the critical steps in the development of cancer and uses cell to cell communication to mediate changes in the microenvironment. Small extracellular vesicles (sEVs)-carry proteins, nucleic acids and other bioactive substances, and are important medium for communication between cells. There are two primary steps in sVEs-mediated metastasis: communication between pancreatic cancer cells and their surrounding microenvironment; and the communication between primary tumor cells and distant organ cells in distant organs that promotes angiogenesis, reshaping extracellular matrix, forming immunosuppressive environment and other ways to form appropriate pre-metastasis niche. Here, we explore the mechanism of localization and metastasis of pancreatic cancer and use sEVs as early biomarkers for the detection and treatment of pancreatic cancer. Video Abstract.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Zhujiang Dai
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001 China
| |
Collapse
|
45
|
LI X, ZHANG X, MA H, LIU Y, CHENG S, WANG H, SUN J. Upregulation of serum exosomal miR-21 was associated with poor prognosis of acute myeloid leukemia patients. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xingang LI
- The Third People's Hospital of Zhengzhou, China
| | | | - Hongxia MA
- The Third People's Hospital of Zhengzhou, China
| | - Yang LIU
- The Third People's Hospital of Zhengzhou, China
| | | | - Huili WANG
- The Third People's Hospital of Zhengzhou, China
| | - Jing SUN
- The Third People's Hospital of Zhengzhou, China
| |
Collapse
|
46
|
Xia T, Chen XY, Zhang YN. MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem 2021; 476:4191-4203. [PMID: 34324119 DOI: 10.1007/s11010-021-04233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive nature and late identification of pancreatic cancer, combined with the restrictions of existing chemotherapeutics, present the mandatory need for the advancement of novel treatment systems. Ongoing reports have shown an important role of microRNAs (miRNAs) in the initiation, migration, and metastasis of malignancies. Besides, abnormal transcriptional levels of miRNAs have regularly been related with etiopathogenesis of pancreatic malignancy, underlining the conceivable utilization of miRNAs in the management of pancreatic disease patients. In this review article, we give a concise outline of molecular pathways involved in etiopathogenesis of pancreatic cancer patients as well as miRNA implications in pancreatic cancer patients. Ensuing sections describe the involvement of miRNAs in the diagnosis, prognosis, and therapy of pancreatic cancer patients. The involvement of miRNAs in the chemoresistance of pancreatic cancers was also discussed. End area portrays the substance of survey with future headings.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal-Pancreatic Surgery, General Surgery, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, 317200, Zhejiang Province, People's Republic of China.
| |
Collapse
|
47
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
48
|
Liu M, Deng H, Zhao Y, Li C, Liu H. Impact of microRNA -21 -5p on the growth of thyroid cancer cells via targeting the recombinant sclerostin domain containing protein 1. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1054-1062. [PMID: 34911834 PMCID: PMC10930239 DOI: 10.11817/j.issn.1672-7347.2021.200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To explore the molecular mechanism for thyroid cancer metastasis via analyzing the role of microRNA (miR)-21-5p and its target gene recombinant sclerostin domain containing protein 1 (SOSTDC1) in thyroid cancer. METHODS The target miR-21-5p was screened through bioinformatics analysis and cell verification, and the thyroid cancer cell lines was transfected with miR-21-5p inhibitor. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, flow cytometry, and cell scratch test were used to detect the proliferation, apoptosis and migration of thyroid cancer cells in the miR-21-5p inhibitor group and the inhibitor control group, respectively. The luciferase report experiment was used to verify the relationship between miR-21-5p and SOSTDC1, Western blotting was used to detect the expression levels and phosphorylation levels of SOSTDC1,phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), extracellular regulated protein kinases (ERK) in thyroid cancer cells. RESULTS MiR-21-5p was significantly increased in thyroid cancer cells,which was negatively correlated with SOSTDC1 (r=-0.24, P<0.01). The proliferation and migration of thyroid cancer cells in the miR-21-5p inhibitor group was significantly lower than that in the inhibitor control group (both P<0.01), and the apoptosis rate in the miR-21-5p inhibitor group was significantly higher than that in the inhibitor control group (P<0.01).The luciferase report experiment showed that miR-21-5p could target and regulate the expression level of SOSTDC1, and the expression of PI3K in the miR-21-5p inhibitor group was significantly lower than that in the inhibitor control group (P<0.01). There were no significant changes in Akt and ERK1/2 levels, but the phosphorylation levels of Akt and ERK1/2 in the miR-21-5p inhibitor group were significantly lower than those in the inhibitor control group (both P<0.01). CONCLUSIONS MiR-21-5p in thyroid cancer cells can target the expression of SOSTDC1 and affect the activities of PI3K/Akt and MAPK/ERK, thereby inhibiting the apoptosis of thyroid cancer cells and promoting cell proliferation and migration.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Haoyu Deng
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Can Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hua Liu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
49
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
50
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. However, it should be kept in mind that there are other pancreatic cancers that are classified by their cellular lineage: acinar cell carcinomas (acinar differentiation), neuroendocrine neoplasms (arising from the islets), solid-pseudopapillary neoplasms (showing no discernible cell lineage), and pancreatoblastomas (characterized by multiphenotypic differentiation, including acinar endocrine and ductal). This article focuses on the molecular and pathology alterations in PDAC.
Collapse
Affiliation(s)
- Joseph F Kearney
- Surgery, University of North Carolina at Chapel Hill, 101 Manning Drive, 1150 Physicians Office Building, 21-245 Lineberger CB# 7213, Chapel Hill, NC 27599-7213, USA
| | - Volkan Adsay
- Department of Pathology, Koc University School of Medicine and KUTTAM Research Center, Koc University Hospital, Davutpasa Caddesi, Topkapi, Istanbul 34010, Turkey
| | - Jen Jen Yeh
- Surgery and Pharmacology, University of North Carolina at Chapel Hill, 101 Manning Drive, 1150 Physicians Office Building, 21-245 Lineberger CB# 7213, Chapel Hill, NC 27599-7213, USA.
| |
Collapse
|