1
|
Xu H, Zhu J, Lin X, Chen C, Tao J. A Comprehensive Review of Traditional Chinese Medicine in the Management of Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:435-473. [PMID: 40066486 DOI: 10.1142/s0192415x2550017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disorder characterized by symptoms such as abdominal pain, diarrhea, hematochezia, and urgency during defecation. While the primary site of involvement is the colon, UC can extend to encompass the entire rectum and colon. The causes and development mechanisms of UC are still not well understood; nonetheless, it is currently held that factors including environmental influences, genetic predispositions, intestinal mucosal integrity, gut microbiota composition, and immune dysregulation contribute to its development. Dysregulated immune responses are pivotal in the pathophysiology of UC, and these aberrant responses are considered key contributors to the disease onset. In patients with UC, immune cells become hyperactive and erroneously target normal intestinal tissue, resulting in inflammatory cascades and damage to the intestinal mucosa. The therapeutic strategies currently employed for UC include immunosuppressive agents such as aminosalicylates and corticosteroids. However, these treatments often prove costly and carry significant adverse effects - imposing a considerable burden on patients. Traditional Chinese Medicine (TCM) has attracted worldwide attention because of its multi-target approach, minimal side effects, cost-effectiveness, and favorable efficacy profiles. In this review, the ways in which TCM modulates inflammatory responses in the treatment of ulcerative colitis have been outlined. Research into TCM modalities for modulating inflammatory pathways in the treatment of UC, which has yielded promising advancements, including individual herbs, herbal formulations, and their derivatives, has been summarized. TCM has been utilized to treat UC and the immune system plays a key role in regulating intestinal homeostasis. It is imperative to facilitate large-scale evidence-based medical research and promote the clinical application of TCM in the management of UC.
Collapse
Affiliation(s)
- Huate Xu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Jinhui Zhu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Xiangyun Lin
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Chao Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Jinhua Tao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
2
|
Ni M, Peng W, Wang X, Li J. Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker. J Inflamm Res 2025; 18:1839-1853. [PMID: 39931173 PMCID: PMC11809410 DOI: 10.2147/jir.s504040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose An increasing proportion of the aging population has led to a rapid increase in the number of elderly patients with ulcerative colitis (UC). However, the molecular mechanisms by which aging causes UC remain unclear. In this study, we explored the role of aging-related genes (ARGs) in UC pathogenesis and diagnosis prediction. Methods Gene expression data were obtained from four independent datasets (GSE75214, GSE87466, GSE94648, and GSE169568) in the GEO database, and ARGs were derived from multiple public databases. After identifying UC-related ARGs, consistent clustering was performed to screen aging-related molecular subtypes, followed by the exploration of differences in the immune microenvironment and pathways between distinct subtypes. Next, core module genes were screened using WGCNA and then the hub genes were characterized using LASSO and random forest methods. Besides, the associations between hub genes, immune cells, and key pathways were explored. Finally, the expression levels of key genes were determined in a dextran sulfate sodium (DSS)-induced UC mouse model by qRT-PCR. Results UC samples were classified into two subtypes (1 and 2), which displayed significant differences in the immune landscape and JAK/STAT signaling pathways. A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. In addition, these hub genes were closely associated with the infiltration of specific immune cells (such as neutrophils, memory B cells, and M2 macrophages) as well as with the JAK/STAT pathway. Later, experimental validation confirmed that ETS1 expression was markedly increased in a mouse model of UC. Conclusion Overall, aging, immune dysregulation, and UC process are closely associated. The identified feature genes, particularly ETS1, could serve as novel diagnostic biomarkers for UC. These findings have the potential to enhance the understanding of the age-related mechanisms of UC.
Collapse
Affiliation(s)
- Man Ni
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| |
Collapse
|
3
|
Bhalla A, Shahi A, Maity M, Safa F, Srividya V, Clementina R, Anugu GR, Younas S. Inflammatory Bowel Disease in Children: Current Diagnosis and Treatment Strategies. Cureus 2025; 17:e78462. [PMID: 40051947 PMCID: PMC11883196 DOI: 10.7759/cureus.78462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Pediatric inflammatory bowel disease (PIBD), including Crohn's disease and ulcerative colitis, has emerged as a significant global health challenge with rising incidence rates. Unlike adult inflammatory bowel disease, PIBD presents complexities, including growth impairment, nutritional deficiencies, and psychosocial challenges that necessitate tailored management strategies. This article reviews current diagnostic and emerging treatment strategies to highlight the evolution from traditional therapies such as aminosalicylates, corticosteroids, and immunomodulators to advanced biologic agents like infliximab and adalimumab. Emerging biological therapies, including vedolizumab and ustekinumab, show promise, while novel small molecule therapies such as Janus kinase (JAK) inhibitors are under investigation for potential use in the pediatric population. Supportive treatments, including exclusive enteral nutrition, modified diets, and probiotics, play a critical role in comprehensive disease management. Stem cell therapy and fecal microbiota transplant represent innovative approaches still under clinical evaluation. The review underscores the significance of holistic care, incorporating mind-body interventions and psychosocial support to improve patient quality of life. Key challenges persist, such as infection risks associated with long-term biological therapy use, gaps in pediatric-specific guidelines, and the limited inclusion of children in clinical trials. Future recommendations emphasize the importance of structured transition programs bridging pediatric and adult care, regular updates to clinical guidelines, and the integration of precision medicine to personalize treatment plans. Continued research and collaboration are essential for advancing the understanding and management of PIBD, ensuring that pediatric patients benefit from the most effective, evidence-based care available.
Collapse
Affiliation(s)
- Akshita Bhalla
- Internal Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| | - Anushka Shahi
- Internal Medicine, Sri Aurobindo Institute of Medical Sciences, Indore, IND
| | - Madhurima Maity
- Critical Care Medicine, Sir H.N Reliance Foundation Hospital, Mumbai, IND
| | - Fnu Safa
- Internal Medicine, Osmania Medical College, Hyderabad, IND
| | | | | | | | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
4
|
Oliyaei N, Zekri S, Iraji A, Oliyaei A, Tanideh R, Mussin NM, Tamadon A, Tanideh N. Health benefits of algae and marine-derived bioactive metabolites for modulating ulcerative colitis symptoms. J Funct Foods 2025; 125:106690. [DOI: 10.1016/j.jff.2025.106690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
|
5
|
Chun JM, Park JH, Moon BC, Baek SJ. Transcriptomic insights into the anti-inflammatory mechanisms of Protaetia brevitarsis seulensis larvae in IL-1β-driven chondrosarcoma cells. Biomed Pharmacother 2025; 183:117866. [PMID: 39862704 DOI: 10.1016/j.biopha.2025.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Osteoarthritis (OA) is a complex, degenerative, multi-factorial joint disease. Because of the difficulty in treating OA, developing new targeting strategies that can be used to understand its molecular mechanisms is critical. Protaetia brevitarsis seulensis larvae offer much therapeutic value; however, the presence of various active compounds and the multi-factorial risk factors for OA render the precise mechanisms of action unclear. A systematic transcriptome analysis was used to investigate the key mechanisms of action of P. brevitarsis seulensis larvae aqueous extract (PBSL) and its compounds on OA. Major mechanisms and transcription factors of PBSL were analyzed by profiling gene expression changes in interleukin (IL)-1β-induced human chondrosarcoma cell (SW1353) treated with PBSL. An in vitro assay was performed to validate the efficacy of the novel mechanism and targets of PBSL. PBSL exerted anti-inflammatory effects on SW1353 cells by regulating many molecular pathways. The IL-6/JAK/STAT3 pathway was significantly downregulated by PBSL, and STAT3 was identified as a major transcription factor regulating PBSL-induced target gene expression. Of the six PBSL compounds, the major compound was regulated by the IL-6/JAK/STAT3 pathway. This study provided potential novel mechanisms and transcription factors for PBSL and its active compounds against OA and indicated that inhibiting the IL-6/JAK/STAT3 pathway is a therapeutic target for treating OA.
Collapse
Affiliation(s)
- Jin Mi Chun
- Digital Health Research Division, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korean Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korean Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Su-Jin Baek
- Korean Medicine Data Division, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
6
|
Ismail EN, Zakuan N, Othman Z, Vidyadaran S, Mohammad H, Ishak R. Polyphenols mitigating inflammatory mechanisms in inflammatory bowel disease (IBD): focus on the NF-ƙB and JAK/STAT pathways. Inflammopharmacology 2025; 33:759-765. [PMID: 39636381 PMCID: PMC11842400 DOI: 10.1007/s10787-024-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
The term "inflammatory bowel disease" (IBD) refers to a group of chronic inflammatory gastrointestinal disorders, which include ulcerative colitis and Crohn's disease. The necessity for alternative therapeutic approaches is underscored by the fact that although present medicines are successful, they frequently result in considerable adverse effects. Naturally occurring substances included in fruits and vegetables called polyphenols have been shown to have the capacity to control important inflammatory pathways including NF-κB and JAK/STAT, which are essential for the pathophysiology of IBD. The processes by which polyphenols, such as curcumin, EGCG, resveratrol, and quercetin, reduce inflammation are examined in this article. Polyphenols may have therapeutic advantages by blocking the synthesis of cytokines and the activation of immune cells by targeting these pathways. Preclinical study indicates a reduction in intestinal inflammation, which is encouraging. However, more clinical research is needed to determine the clinical relevance of polyphenols in the therapy of IBD, especially with regard to their long-term safety and bioavailability.
Collapse
Affiliation(s)
- Elysha Nur Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Noraina Zakuan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulkefley Othman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hussin Mohammad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Reezal Ishak
- Universiti Kuala Lumpur - Institute of Medical Science Technology (UniKL MESTECH), Kajang, Selangor, Malaysia.
| |
Collapse
|
7
|
Lin J, Yuan M, Shi HY, Liu Q, Du S, Zhang MX, Li QQ, Yang ZB, Lin P. Phellinus linteus (Agaricomycetes) Polysaccharides Ameliorate Inflammatory Injury in H2O2-Induced Caco-2 Cells and DSS-Induced Ulcerative Colitis Mice. Int J Med Mushrooms 2025; 27:17-32. [PMID: 40094337 DOI: 10.1615/intjmedmushrooms.2025058082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Phellinus linteus (Agaricomycetes) is a valuable medicinal mushroom traditionally used as a food supplement and medicinal ingredient. Polysaccharides of Ph. linteus (PLP) possess strong anti-inflammatory effects and gut microbiota modulating properties. However, the mechanism of its efficacy in ulcerative colitis (UC) remains unclear. This study utilized 1mM H2O2 to induce an in vitro model of UC in Caco-2 cells. Additionally, a 3% solution of dextran sulfate sodium salt (DSS) was employed to establish an in vivo UC model in mice. After treating the cells with PLP at various concentrations, there was a significant reduction in the mRNA expression of TNF-α and IL-6, and the nuclear factor-κB (NF-κB) signaling pathway was also inhibited. Concurrently, symptoms such as colon shortening, weight loss, and a decrease in disease activity index (DAI) scores were significantly improved in UC mice. Additionally, the treatment led to downregulated expression of TNF-α and IFN-γ mRNA in colon tissues. PLP had shown potential in reducing inflammation and oxidative stress in Caco-2 cells, demonstrating therapeutic effects in treating UC-like inflammation by inhibiting the NF-κ signaling pathway and activating the nuclear factor erythroid derived 2-like 2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway. These findings suggest that PLP has great potential for further investigation and development in UC treatment.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Meng Yuan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong-Yu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Qiang Liu
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Shuai Du
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Mei-Xia Zhang
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Qu-Quan Li
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Zhen-Bang Yang
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Huang X, Lin R, Liu H, Dai M, Guo J, Hui W, Liu W, Haerken M, Zheng R, Yushanjiang T, Gao F. Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway. Inflammation 2024; 47:2108-2128. [PMID: 38760646 DOI: 10.1007/s10753-024-02028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK‑242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)‑induced colitis in vivo. TAK‑242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Huan Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Mengying Dai
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiejie Guo
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Milamuguli Haerken
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ruixue Zheng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tangnuer Yushanjiang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
9
|
Kang ZP, Xiao QP, Huang JQ, Wang MX, Huang J, Wei SY, Cheng N, Wang HY, Liu DY, Zhong YB, Zhao HM. Curcumin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Mol Nutr Food Res 2024; 68:e2300598. [PMID: 39380356 DOI: 10.1002/mnfr.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/01/2024] [Indexed: 10/10/2024]
Abstract
SCOPE Curcumin (Cur), with diverse pharmacological properties, shows anti-obesity, immunomodulatory, and anti-inflammatory effects. Its role in ulcerative colitis complicated by obesity remains unclear. METHODS AND RESULTS Here, colitis is induced in obese mice using dextran sulfate sodium (DSS), followed by administration of Cur at a dosage of 100 mg kg-1 for 14 days. Cur effectively alleviates DSS-induced colitis in obese mice, accompanied by an increase in body weight and survival rate, reduction in disease activity index, elongation of the colon, decrease in colonic weight, and improvements in ulcer formation and inflammatory cell infiltration in colonic tissues. Additionally, Cur effectively improves lipid metabolism and the composition of the gut microbiota, and enhances mucosal integrity and boosts anti-oxidative stress capacity in obese mice with colitis. Importantly, Cur is effective in improving the homeostasis of memory T cells in obese mice with colitis. Furthermore, Cur regulates inflammatory cytokines expression and inhibits activation of the JAK2/STAT signaling pathway in colonic tissues of obese mice with colitis. CONCLUSIONS Cur alleviates colitis in obese mice through a comprehensive mechanism that improves lipid metabolism, modulates gut microbiota composition, enhances mucosal integrity and anti-oxidative stress, balances memory T cell populations, regulates inflammatory cytokines, and suppresses the JAK2/STAT signaling pathway.
Collapse
Affiliation(s)
- Zeng-Ping Kang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Qiu-Ping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Jia-Qi Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Meng-Xue Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Jie Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Si-Yi Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Nian Cheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Hai-Yan Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - You-Bao Zhong
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| |
Collapse
|
10
|
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev 2024; 79:1-15. [PMID: 39179485 DOI: 10.1016/j.cytogfr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
Collapse
Affiliation(s)
- Zihan Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, 02472, MA, United States
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637
| | - Mingming Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| |
Collapse
|
11
|
Caballero-Mateos AM, Cañadas-de la Fuente GA. Game changer: How Janus kinase inhibitors are reshaping the landscape of ulcerative colitis management. World J Gastroenterol 2024; 30:3942-3953. [PMID: 39351053 PMCID: PMC11438661 DOI: 10.3748/wjg.v30.i35.3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Recent advancements in the treatment landscape of ulcerative colitis (UC) have ushered in a new era of possibilities, particularly with the introduction of Janus kinase (JAK)-signal transducer and activator of transcription inhibitors. These novel agents offer a paradigm shift in UC management by targeting key signaling pathways involved in inflammatory processes. With approved JAK inhibitors (JAKis), such as tofacitinib, filgotinib, and upadacitinib, clinicians now have powerful tools to modulate immune responses and gene expression, potentially revolutionizing the treatment algorithm for UC. Clinical trials have demonstrated the efficacy of JAKis in inducing and maintaining remission, presenting viable options for patients who have failed conventional therapies. Real-world data support the use of JAKis not only as first-line treatments but also in subsequent lines of therapy, particularly in patients with aggressive disease phenotypes or refractory to biologic agents. The rapid onset of action and potency of JAKis have broadened the possibilities in the management strategies of UC, offering timely relief for patients with active disease and facilitating personalized treatment approaches. Despite safety concerns, including cardiovascular risks and infections, ongoing research and post-marketing surveillance will continue to refine our understanding of the risk-benefit profile of JAKis in UC management.
Collapse
|
12
|
Wen J, Yang Y, Li L, Xie J, Yang J, Zhang F, Duan L, Hao J, Tong Y, He Y. Magnoflorine alleviates dextran sulfate sodium-induced ulcerative colitis via inhibiting JAK2/STAT3 signaling pathway. Phytother Res 2024; 38:4592-4613. [PMID: 39079890 DOI: 10.1002/ptr.8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 10/25/2024]
Abstract
Magnoflorine (Mag), a natural alkaloid component originating from the Ranunculaceae Juss. Family, has a various of pharmacological activities. This study aimed to investigate the therapeutic effects and potential mechanism of Mag on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) based on comprehensive approaches. Therapeutic effects of Mag on 3% DSS-induced UC mice were analyzed. UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway of Mag on DSS-induced UC. Furthermore, the predicted mRNA and protein levels of JAK2/STAT3 signaling pathway in colon tissue were verified and assessed by qRT-PCR and Western Blotting, respectively. Therapeutic effects of Mag on UC mice were presented in down-regulation serum biochemical indices, alleviating histological damage of colon tissue. Serum untargeted metabolomics analysis showed that the potential mechanism of Mag on UC is mainly associated with the regulation of six biomarkers and 11 pathways, which may be responsible for the therapeutic efficacy of UC. The "component-metabolites-targets" interactive network indicated that Mag exerts its anti-UC effect by regulating PTGS1 and PTGS2, thereby regulating arachidonic acid. Moreover, the results of qRT-PCR showed that Mag could substantially decrease the relative mRNA expression level of Hub genes. In addition, it was found that Mag could inhibit the relative mRNA and protein expression of JAK2/STAT3 signaling pathway. The present results highlighted the role of Mag ameliorated colon injury in DSS-induced UC mice by inhibiting the JAK2/STAT3 signaling pathway. These results suggest that Mag may be an effective agent for the treatment of UC.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jiachen Xie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Junjie Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Fangling Zhang
- School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liting Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Junjie Hao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuling Tong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Yuxin He
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| |
Collapse
|
13
|
Li QQ, Yan JH, Zhou ZE, Geng X, Xiong JH. Enhanced anti-inflammatory activity of chlorogenic acid via folic acid-TPGS-modified liposomes encapsulation: characterization and In vivo evaluation on colitis mice. Front Pharmacol 2024; 15:1437773. [PMID: 39246657 PMCID: PMC11377334 DOI: 10.3389/fphar.2024.1437773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Chlorogenic acid (CGA) has been identified to possess salient anti-inflammatory, antioxidant, and anticancer attributes. However, its application is limited by its instability and low bioavailability. Liposomes have been considered effective pharmaceutical delivery vehicles due to their ability to continuously release loaded drugs, improve drug stability, and display good biocompatibility. They can be easily modified by other small molecules to acquire additional biological functions. In this study, we developed and characterized folic acid-TPGS-modified chlorogenic acid liposome (FTCLP) and evaluated its anti-inflammatory activity. Methods The successful encapsulation of CGA within FTCLP was confirmed through examination using electron microscopy, fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The in vitro release characteristics of FTCLP were evaluated using the dialysis bag membrane method. Meanwhile, a dextran sulfate sodium (DSS) -induced colitis model was employed to investigate the anti-inflammatory effect of FTCLP and its mechanism. Results The FTCLP exhibited an encapsulation efficiency (EE) of 84.85 ± 1.20% and a drug loading (DL) of 11.67 ± 0.04%. The particle size of FTCLP was determined to be 150.63 ± 0.71 nm, with a polydispersity index (PDI) of 0.198 ± 0.02 and a zeta potential of 2.61 ± 0.38 mV. The in vitro release profile followed the Higuchi model, indicating sustained-release characteristics. The in vivo study demonstrated that FTCLP treatment was effective in improving the symptoms of DSS-induced inflammatory response, as evidenced by mitigation of weight loss, reduction in the disease activity index (DAI) score, restoration of colon length, and attenuation of colon tissue damage. Furthermore, the levels of pro-inflammatory cytokines, including interferon-gamma (INF-γ), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), were markedly diminished in both the serum and colon tissue. FTCLP was also observed to suppress the expression of INF-γ, IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) p65, while concomitantly upregulating the expression of Janus kinase (JAK) and signal transducer and activator of transcription 3 (STAT3). Besides, the administration of FTCLP was found to result in an increase in the abundance of Lactobacillaceae and Peptostreptococcaceae, while decreasing the abundance of Bacteroidaceae, Rikenellaceae, and Helicobacteraceae. Conclusion Following encapsulation of CGA within liposomes, FTCLP revealed favorable stability and sustained release properties, and enhanced the anti-inflammatory effects by modulating multiple inflammation-related biomarkers. FTCLP has the potential to be a safe and effective drug for targeted therapy of colitis.
Collapse
Affiliation(s)
- Qing-Qing Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jia-Hui Yan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhi-E Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiang Geng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jian-Hua Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Key Lab for Agricultural Product Processing and Quality Control of Nanchang City, Nanchang, China
| |
Collapse
|
14
|
Sinha A, Roy S. Prospective therapeutic targets and recent advancements in the treatment of inflammatory bowel disease. Immunopharmacol Immunotoxicol 2024:1-14. [PMID: 39013809 DOI: 10.1080/08923973.2024.2381756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/14/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Inflammatory Bowel Disease (IBD) poses a persistent challenge in the realm of gastroenterology, necessitating continual exploration of innovative treatment strategies. The limited efficacy and potential side effects associated with existing therapeutic modalities underscore the urgent need for novel approaches in IBD management. This study aims to examine potential therapeutic targets and recent advancements in understanding the disease's intricate pathogenesis, with a spotlight on the gut microbiome, immune dysregulation, and genetic predispositions. METHODS A comprehensive review was conducted to delve into the pressing demand for new avenues in IBD treatment. The study examined potential therapeutic targets such as phosphodiesterase 4 (PDE4) inhibitors, immune system modulators, Tyrosine kinase receptors (TYK), Toll-like receptors (TLRs), modulation of the gut microbiota, stem cell therapy, fibrosis management, interleukins (ILs) regulation, and oxidative stress mitigation. Additionally, advances in precision medicine, biologics, small molecule inhibitors, and microbiome modulation techniques were explored. RESULTS The investigation unveiled promising therapeutic targets and provided insights into recent breakthroughs that herald a transformative era in the therapeutic landscape for IBD. Advances in precision medicine, biologics, small molecule inhibitors, and the exploration of microbiome modulation techniques stood out as pivotal milestones in the field of gastroenterology. CONCLUSIONS The findings offer renewed hope for enhanced efficacy, reduced side effects, and improved patient outcomes in the treatment of IBD. These innovative approaches necessitate continual exploration and underscore the urgent need for novel strategies in IBD management, potentially revolutionizing the realm of gastroenterology.
Collapse
Affiliation(s)
- Akshit Sinha
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| | - Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
15
|
Lethen I, Lechner-Grimm K, Gabel M, Knauss A, Atreya R, Neurath MF, Weigmann B. Tofacitinib Affects M1-like and M2-like Polarization and Tissue Factor Expression in Macrophages of Healthy Donors and IBD Patients. Inflamm Bowel Dis 2024; 30:1151-1163. [PMID: 38142236 DOI: 10.1093/ibd/izad290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Tofacitinib, as inhibitor of Janus kinases (JAK), interrupts the transmission of numerous pro-inflammatory cytokines involved in the pathogenesis of inflammatory bowel diseases (IBD). Therefore, tofacitinib provides a potent option to treat ulcerative colitis (UC). Besides the anti-inflammatory potential, inhibition of widespread JAKs carries the risk of side effects. Macrophages are involved in the form of different subtypes in inflammation, wound healing, and even coagulation. This study aimed to explore the balanced use of tofacitinib in M1-like as well as M2-like macrophages of healthy donors and patients with IBD. METHODS Monocytes of healthy donors and patients with chronic courses of IBD were obtained from blood samples. Macrophage colony-stimulating factor (M-CSF)-derived macrophages were treated with tofacitinib (1 µM, 5 µM, 10 µM) and polarized with either lipopolysaccharide and interferon (IFN)-γ towards M1-like-phenotype or with interleukin (IL)-4 towards M2-like-phenotype. ELISA and flow cytometry were used to evaluate cytokine levels and surface molecules. RESULTS Tofacitinib had a modulating effect on M1-like macrophages whereby the effect on pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12, IL-23) was less pronounced than the induction of anti-inflammatory IL-10. However, during M2-like polarization tofacitinib impaired the development of the corresponding phenotype becoming evident through decreased IL-10 levels and CD206 expression in treated macrophages. In both phenotypes, tofacitinib strongly downregulated the expression of immunostimulatory molecules (CD80, CD86, CD83, CD40). Furthermore, a dose-dependent correlation between treatment with tofacitinib and expressed tissue factor was noticed. CONCLUSIONS Tofacitinib influences both polarizations (M1/M2) and the expression of tissue factor in a dose-dependent manner.
Collapse
Affiliation(s)
- Isabelle Lethen
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Kristina Lechner-Grimm
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany
| | - Michael Gabel
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Annkathrin Knauss
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Raja Atreya
- Medical Clinic 1, University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Sabui S, Anthonymuthu S, Ramamoorthy K, Skupsky J, Jennings TSK, Rahmatpanah F, Fleckenstein JM, Said HM. Effect of knocking out mouse Slc44a4 on colonic uptake of the microbiota-generated thiamine pyrophosphate and colon physiology. Am J Physiol Gastrointest Liver Physiol 2024; 327:G36-G46. [PMID: 38713615 PMCID: PMC11376973 DOI: 10.1152/ajpgi.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Humans and mammals obtain vitamin B1 from dietary and gut microbiota sources. A considerable amount of the microbiota-generated vitamin exists in the form of thiamine pyrophosphate (TPP), and colonocytes are capable of absorbing TPP via a specific carrier-mediated process that involves the colonic TPP transporter (cTPPT encoded by SLC44A4). Little is known about the relative contribution of the SLC44A4 transporter toward total colonic carrier-mediated TPP uptake and its role in colon physiology. To address these issues, we generated an Slc44a4 knockout (KO) mouse model (by Cre-Lox recombination) and found a near-complete inhibition in colonic carrier-mediated [3H]TPP uptake in the Slc44a4 KO compared with wild-type (WT) littermates. We also observed a significant reduction in KO mice's body weight and a shortening of their colon compared with WT. Using RNAseq and Ingenuity pathway analysis (IPA) approaches, we found that knocking out the colonic Slc44a4 led to changes in the level of expression of many genes, including upregulation in those associated with intestinal inflammation and colitis. Finally, we found that the Slc44a4 KO mice were more susceptible to the effect of the colitogenic dextran sodium sulfate (DSS) compared with WT animals, a finding that lends support to the recent prediction by multiple genome-wide association studies (GWAS) that SLC44A4 is a possible colitis susceptibility gene. In summary, the results of these investigations show that Slc44a4 is the predominant or only transporter involved in the colonic uptake of TPP, that the transporter is important for colon physiology, and that its deletion increases susceptibility to inflammation.NEW & NOTEWORTHY This study shows that Slc44a4 is the predominant or only transport system involved in the uptake of the gut microbiota-generated thiamine pyrophosphate (TPP) in the colon and that its deletion affects colon physiology and increases its susceptibility to inflammation.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
| | - Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Kalidas Ramamoorthy
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Jonathan Skupsky
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| | - Tara Sinta Kartika Jennings
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| |
Collapse
|
17
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
18
|
Kojima K, Watanabe K, Kawai M, Yagi S, Kaku K, Ikenouchi M, Sato T, Kamikozuru K, Yokoyama Y, Takagawa T, Shimizu M, Shinzaki S. Real-world efficacy and safety of tofacitinib treatment in Asian patients with ulcerative colitis. World J Gastroenterol 2024; 30:1871-1886. [PMID: 38659488 PMCID: PMC11036499 DOI: 10.3748/wjg.v30.i13.1871] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
BACKGROUND Real-world data on tofacitinib (TOF) covering a period of more than 1 year for a sufficient number of Asian patients with ulcerative colitis (UC) are scarce. AIM To investigate the long-term efficacy and safety of TOF treatment for UC, including clinical issues. METHODS We performed a retrospective single-center observational analysis of 111 UC patients administered TOF at Hyogo Medical University as a tertiary inflammatory bowel disease center. All consecutive UC patients who received TOF between May 2018 and February 2020 were enrolled. Patients were followed up until August 2020. The primary outcome was the clinical response rate at week 8. Secondary outcomes included clinical remission at week 8, cumulative persistence rate of TOF administration, colectomy-free survival, relapse after tapering of TOF and predictors of clinical response at week 8 and week 48. RESULTS The clinical response and remission rates were 66.3% and 50.5% at week 8, and 47.1% and 43.5% at week 48, respectively. The overall cumulative clinical remission rate was 61.7% at week 48 and history of anti-tumor necrosis factor-alpha (TNF-α) agents use had no influence (P = 0.25). The cumulative TOF persistence rate at week 48 was significantly lower in patients without clinical remission than in those with remission at week 8 (30.9% vs 88.1%; P < 0.001). Baseline partial Mayo Score was significantly lower in responders vs non-responders at week 8 (odds ratio: 0.61, 95% confidence interval: 0.45-0.82, P = 0.001). Relapse occurred in 45.7% of patients after TOF tapering, and 85.7% of patients responded within 4 wk after re-increase. All 6 patients with herpes zoster (HZ) developed the infection after achieving remission by TOF. CONCLUSION TOF was more effective in UC patients with mild activity at baseline and its efficacy was not affected by previous treatment with anti-TNF-α agents. Most relapsed patients responded again after re-increase of TOF and nearly half relapsed after tapering off TOF. Special attention is needed for tapering and HZ.
Collapse
Affiliation(s)
- Kentaro Kojima
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kenji Watanabe
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Department of Internal Medicine for Inflammatory Bowel Disease, The University of Toyama, Toyama 930-0194, Japan
| | - Mikio Kawai
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Soichi Yagi
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Koji Kaku
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Maiko Ikenouchi
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Toshiyuki Sato
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Koji Kamikozuru
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Yoko Yokoyama
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Tetsuya Takagawa
- Center for Clinical Research and Education, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| |
Collapse
|
19
|
Costaguta GA, Girard C, Groleau V, Grzywacz K, Dirks MH, Deslandres C. The Role of Tofacitinib in the Treatment of Acute Severe Colitis in Children. J Can Assoc Gastroenterol 2024; 7:196-203. [PMID: 38596797 PMCID: PMC10999772 DOI: 10.1093/jcag/gwad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Objectives Acute severe colitis (ASC) occurs in up to 15 percent of children with ulcerative colitis, with a high index of morbidity and mortality. Treatment includes high-dose steroids, infliximab, and salvage therapies. Unfortunately, up to 20 percent of patients may need an urgent colectomy due to treatment failure. We report our experience using tofacitinib for the treatment of six patients. Methods A retrospective review of our medical electronic records was conducted. We included every patient with ASC and treatment failure, in whom tofacitinib was used as a salvage therapy. Response, complications, and disease course were noted. Results Six patients were included with Pediatric Ulcerative Colitis Activity Index (PUCAI) scores ranging from 65 to 85 on admission, and 35 to 85 before tofacitinib was started (P 0.07). Median response time was 72 h. A median decrease of 40 points in PUCAI was noted (P 0.00001). Mean length of stay was 18 days with discharge 9 days after tofacitinib introduction. Haemoglobin, albumin, fecal calprotectin, and CRP improved after tofacitinib (P 0.02, P 0.02, P 0.025, and P 0.01, respectively). The mean follow-up was 8.5 months, four patients achieved complete remission and only one had a recrudescence of symptoms (P 0.01). One patient had a systemic Epstein-Barr virus infection prior to tofacitinib therapy, which resolved with rituximab treatment. No other complications were noted. Conclusions Tofacitinib response is rapid and impressive in children suffering from ASC, and the safety profile appears comparable to or better than other available treatments. In the future, tofacitinib should be integrated into pediatric protocols.
Collapse
Affiliation(s)
- Guillermo Alejandro Costaguta
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, 3175 Chem de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Quebec, Canada
| | - Chloé Girard
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, 3175 Chem de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Quebec, Canada
| | - Véronique Groleau
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, 3175 Chem de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Quebec, Canada
- Department of Pediatrics of the Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Kelly Grzywacz
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, 3175 Chem de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Quebec, Canada
- Department of Pediatrics of the Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Martha Heather Dirks
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, 3175 Chem de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Quebec, Canada
- Department of Pediatrics of the Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Colette Deslandres
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, 3175 Chem de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Quebec, Canada
- Department of Pediatrics of the Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Khedkar S, Khan MA. An in vitro study elucidating the synergistic effects of aqueous cinnamon extract and an anti-TNF-α biotherapeutic: implications for a complementary and alternative therapy for non-responders. BMC Complement Med Ther 2024; 24:131. [PMID: 38521924 PMCID: PMC10960381 DOI: 10.1186/s12906-024-04438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) is a critical pro-inflammatory cytokine, and its abnormal production is associated with several immune mediated inflammatory diseases (IMID). Biological anti-TNF-α therapy includes treatment with monoclonal antibodies such as infliximab which have proven successful and are well-tolerated in most patients. Unfortunately, some patients may not respond to therapy (primary non-responders) or may lose sensitivity to the biological agent over time (early and late secondary non-responders). Natural products can reduce inflammation and act synergistically with small molecules or biologics, although evidence remains limited. This study aimed to investigate whether complementary and alternative medicine (CAM) could play a role in infliximab non-responders. Reportedly, cinnamon can help manage chronic inflammatory conditions owing to its anti-inflammatory properties. METHODS We studied the synergistic effects of cinnamon and infliximab in vitro using a two-step approach. First, we investigated whether cinnamon and infliximab act synergistically. Second, we selected conditions that supported statistically significant synergy with infliximab and studied the mRNA expression of several genes involved in non-response to infliximab. We used aqueous cinnamon extract (aCE) from Cinnamomum cassia, Cinnamomum zeylanicum, and Cinnamomum loureiroi and bioactive trans-cinnamaldehyde (TCA), cinnamic acid (CA), and eugenol to study the synergy between infliximab and aCE/bioactive compounds using bioassays in fibroblast (L929) and monocytic (U937) cell lines, followed by qPCR for molecular-level insights. TCA, C. cassia aCE, and C. zeylanicum aCE demonstrated a dose-dependent synergistic effect with infliximab. Moreover, we saw differential gene expression for adhesion molecules, apoptotic factors, signaling molecules, and matrix remodelers in presence and absence of aCE/bioactives. RESULTS CAM supplementation was most effective with C. cassia aCE, where a synergistic effect was observed for all the tested genes specifically for MMP-1, BcL-xL, Bax and JAK2, followed by TCA, which affected most of the tested genes except TLR-2, MMP1, MMP3, TIMP-1, and BAX, and C. zeylanicum aCE, which did not affect ICAM-1, VCAM-1, TLR-2, TLR-4, MMP1, MMP3, TIMP-1, and STAT3. CONCLUSION In conclusion, cinnamon acted synergistically with infliximab to mitigate inflammation when used as an extract. Purified bioactive TCA also showed synergistic activity. Thus, aCE, or cinnamon bioactive may be used as a CAM to improve patients' quality of life.
Collapse
Affiliation(s)
- Shubrata Khedkar
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Minhaj Ahmad Khan
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| |
Collapse
|
21
|
Dignass A, Esters P, Flauaus C. Upadacitinib in Crohn's disease. Expert Opin Pharmacother 2024; 25:359-370. [PMID: 38512115 DOI: 10.1080/14656566.2024.2333964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION The small molecule and oral selective and reversible Janus kinase (JAK) inhibitor upadacitinib has been approved for the treatment of moderate to severe active Crohn's disease (CD) in adult patients since April 2023 by EMA/FDA. AREAS COVERED The approval is based on the two induction studies a maintenance study showing that upadacitinib induction and maintenance therapy was superior to placebo. The approval of upadacitinib in CD expands the therapeutic armamentarium for the management of inflammatory bowel diseases (IBD). Upadacitinib is the first and only JAK inhibitor approved in patients with CD and provides a novel mechanism of action and the first advanced oral treatment option for patients with CD. Upadacitinib is approved for the treatment of other immunologically mediated disorders, including ulcerative colitis, rheumatoid arthritis, psoriasis arthritis, axial spondylarthritis, ankylosing spondylitis, and atopic dermatitis. Treatment of atopic dermatitis has been approved from the age of 12 years. EXPERT OPINION Upadacitinib may cause relevant changes of our current treatment algorithms for Crohn's disease. Further real-world studies and head-to-head comparisons are needed to position upadacitinib in our current treatment algorithms for CD.
Collapse
Affiliation(s)
- Axel Dignass
- Department of Medicine I, Agaplesion Markus Hospital, Frankfurt/Main, Germany
| | - Philip Esters
- Department of Medicine I, Agaplesion Markus Hospital, Frankfurt/Main, Germany
| | - Cathrin Flauaus
- AbbVie Deutschland GmbH & Co. KG, Medical Immunology, Wiesbaden, Germany
| |
Collapse
|
22
|
Zhang Y, Jiang G. Application of JAK inhibitors in paradoxical reaction through immune-related dermatoses. Front Immunol 2024; 15:1341632. [PMID: 38444845 PMCID: PMC10912518 DOI: 10.3389/fimmu.2024.1341632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Biologics play a positive and effective role in the treatment of immune-related dermatoses. However, many other immune-related diseases have also manifested along with biologics treatment. Paradoxical reaction through immune-related dermatoses refer to the new onset or exacerbation of other immune-mediated dermatoses (mainly psoriasis and atopic dermatitis) after biologics treatment of inflammatory dermatoses (mainly psoriasis and atopic dermatitis), such as new atopic dermatitis (AD) in psoriasis (PsO) treatment and new PsO in AD treatment. A common genetic background and Inflammatory pathway are possible pathogenesis. Faced with paradoxical reactions, the choice of therapy needs to be directed toward therapies effective for both diseases, such as Janus kinase (JAK) inhibitors. The Janus kinase and signal transducer and activator of transcription (JAK-STAT) pathway plays an important role in the inflammatory pathway, and has been widely used in the treatment of AD and PsO in recent years. This article focuses on JAK inhibitors such as tofacitinib, baricitinib, ruxolitinib, Abrocitinib, upadacitinib, and deucravacitinib, to explore the possible application in treatment of paradoxical reactions. Common side effects, baseline risk factors and safety use of JAK inhibitors were discussed.
Collapse
Affiliation(s)
- Yaxin Zhang
- First College for Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Chen B, Dong X, Zhang JL, Sun X, Zhou L, Zhao K, Deng H, Sun Z. Natural compounds target programmed cell death (PCD) signaling mechanism to treat ulcerative colitis: a review. Front Pharmacol 2024; 15:1333657. [PMID: 38405669 PMCID: PMC10885814 DOI: 10.3389/fphar.2024.1333657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Ulcerative colitis (UC) is a nonspecific inflammatory bowel disease characterized by abdominal pain, bloody diarrhea, weight loss, and colon shortening. However, UC is difficult to cure due to its high drug resistance rate and easy recurrence. Moreover, long-term inflammation and increased disease severity can lead to the development of colon cancer in some patients. Programmed cell death (PCD) is a gene-regulated cell death process that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD plays a crucial role in maintaining body homeostasis and the development of organs and tissues. Abnormal PCD signaling is observed in the pathological process of UC, such as activating the apoptosis signaling pathway to promote the progression of UC. Targeting PCD may be a therapeutic strategy, and natural compounds have shown great potential in modulating key targets of PCD to treat UC. For instance, baicalin can regulate cell apoptosis to alleviate inflammatory infiltration and pathological damage. This review focuses on the specific expression of PCD and its interaction with multiple signaling pathways, such as NF-κB, Nrf2, MAPK, JAK/STAT, PI3K/AKT, NLRP3, GPX4, Bcl-2, etc., to elucidate the role of natural compounds in targeting PCD for the treatment of UC. This review used (ulcerative colitis) (programmed cell death) and (natural products) as keywords to search the related studies in PubMed and the Web of Science, and CNKI database of the past 10 years. This work retrieved 72 studies (65 from the past 5 years and 7 from the past 10 years), which aims to provide new treatment strategies for UC patients and serves as a foundation for the development of new drugs.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Long Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hualiang Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Rezaei Z, Momtaz S, Gharazi P, Rahimifard M, Baeeri M, Abdollahi AR, Abdollahi M, Niknejad A, Khayatan D, Farzaei MH, Abdolghaffari AH. Cinnamic Acid Ameliorates Acetic Acid-induced Inflammatory Response through Inhibition of TLR-4 in Colitis Rat Model. Antiinflamm Antiallergy Agents Med Chem 2024; 23:21-30. [PMID: 38361356 DOI: 10.2174/0118715230278980231212103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Cinnamic acid, an active compound in cinnamon spp., has anti-inflammatory and antioxidant characteristics and is favorable in managing inflammatory bowel diseases. OBJECTIVES Evaluate cinnamic acid's effects on colitis in rats. METHODS To induce colitis in experimental rats, excluding the sham group, a 4% intrarectal solution of acetic acid was administered. The rats were then given oral doses of cinnamic acid at 30, 45, and 90 mg/kg for two days. The animals were assessed for macroscopic and microscopic changes, and the levels of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and myeloperoxidase (MPO) were measured using Eliza kits. Additionally, real-time PCR was performed to examine the gene level of toll-like receptor 4 (TLR-4) in the colon. RESULTS Effective reduction of inflammation in acetic acid-induced colitis was achieved through Cinnamic acid administration at doses of 45 and 90 mg/kg. The decrease was achieved by inhibiting the activities of TNF-α, IL-6, and MPO while downregulating the expression of TLR-4. It is important to note that macroscopic and microscopic evaluations were significant in determining the effectiveness of cinnamic acid in reducing inflammation. CONCLUSION Downregulation of inflammatory cytokines and TLR-4 expression may contribute to cinnamic acid's anti-inflammatory effect.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, And Toxicology & Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pardis Gharazi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, And Toxicology & Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, And Toxicology & Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ali Reza Abdollahi
- Department of Pathology, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, And Toxicology & Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Amirhossein Niknejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
25
|
Gandhi GR, Mohana T, Athesh K, Hillary VE, Vasconcelos ABS, Farias de Franca MN, Montalvão MM, Ceasar SA, Jothi G, Sridharan G, Gurgel RQ, Xu B. Anti-inflammatory natural products modulate interleukins and their related signaling markers in inflammatory bowel disease: A systematic review. J Pharm Anal 2023; 13:1408-1428. [PMID: 38223446 PMCID: PMC10785269 DOI: 10.1016/j.jpha.2023.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2024] Open
Abstract
This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κβ-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Meenakshi Ammal Dental College and Hospital (MAHER), Maduravoyal, 600095, Chennai, Tamil Nadu, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Varghese Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, China
| |
Collapse
|
26
|
Xie W, Jiang H, Chen Y, Zhang H, Song Y, Yu Z, Gu H, Xu H, Han S, Li S, Liu N, Han S. Association between systemic lupus erythematosus and inflammatory bowel disease in European and East Asian populations: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1199896. [PMID: 38022503 PMCID: PMC10654968 DOI: 10.3389/fimmu.2023.1199896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Previous studies have shown a coexistence phenomenon between systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), but the causal relationship between them is still unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis using publicly available summary statistics data to evaluate whether there was a causal relationship between the two diseases. Methods Summary statistics for SLE and IBD were downloaded from the Open Genome-Wide Association Study and the International Inflammatory Bowel Disease Genetics Consortium. European and East Asian populations were included in this MR work. We adopted a series of methods to select instrumental variables that are closely related to SLE and IBD. To make the conclusion more reliable, we applied a variety of different analysis methods, among which the inverse variance-weighted (IVW) method was the main method. In addition, heterogeneity, pleiotropy, and sensitivity were assessed to make the conclusions more convincing. Results In the European population, a negative causal relationship was observed between SLE and overall IBD (OR = 0.94; 95% CI = 0.90, 0.98; P < 0.004) and ulcerative colitis (UC) (OR = 0.93; 95% CI = 0.88, 0.98; P = 0.006). After removing outliers with Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO), the results remained consistent with IVW. However, there was no causal relationship between SLE and Crohn's disease. In the East Asian population, no causal relationship was found between SLE and IBD. Conclusion Our results found that genetic susceptibility to SLE was associated with lower overall IBD risk and UC risk in European populations. In contrast, no association between SLE and IBD was found in East Asian populations. This work might enrich the previous research results, and it may provide some references for research in the future.
Collapse
Affiliation(s)
- Weidong Xie
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haojie Jiang
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Graduate School, Zhejiang University, Hangzhou, China
| | | | - Yaoyu Song
- Wenzhou Medical University, Wenzhou, China
| | - Zhaojie Yu
- Wenzhou Medical University, Wenzhou, China
| | - Huayan Gu
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongkai Xu
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saiyi Han
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou people’s Hospital, Quzhou, China
| | - Sen Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Naxin Liu
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaoliang Han
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Bahar Halpern K, Korem Kohanim Y, Biram A, Harnik Y, Egozi A, Yakubovsky O, Shulman Z, Itzkovitz S. The cellular states and fates of shed intestinal cells. Nat Metab 2023; 5:1858-1869. [PMID: 37857731 DOI: 10.1038/s42255-023-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
The intestinal epithelium is replaced every few days1. Enterocytes are shed into the gut lumen predominantly from the tips of villi2,3 and have been believed to rapidly die upon their dissociation from the tissue4,5. However, technical limitations prohibited studying the cellular states and fates of shed intestinal cells. Here we show that shed epithelial cells remain viable and upregulate distinct anti-microbial programmes upon shedding, using bulk and single-cell RNA sequencing of male mouse intestinal faecal washes. We further identify abundant shedding of immune cells, which is elevated in mice with dextran sulfate sodium-induced colitis. We find that faecal host transcriptomics reflect changes in the intestinal tissue following perturbations. Our study suggests potential functions of shed cells in the intestinal lumen and demonstrates that host cell transcriptomes in intestinal washes can be used to probe tissue states.
Collapse
Affiliation(s)
- Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Yael Korem Kohanim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Adi Biram
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oran Yakubovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Lu Y, Chen Y, Li Y, Xu S, Lian D, Liang J, Jiang D, Chen S, Hou S. Monotropein inhibits colitis associated cancer through VDR/JAK1/STAT1 regulation of macrophage polarization. Int Immunopharmacol 2023; 124:110838. [PMID: 37633235 DOI: 10.1016/j.intimp.2023.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Colorectal cancer (CRC) is a growing concern due to its high morbidity and mortality, and the search for effective and less toxic active substances against inflammatory bowel diseases has been a hot topic in the research and development of drugs against CRC. It is reported that monotropein isolated from the roots of Morinda officinalis, can improve Dextran Sodium Sulfate (DSS)-induced ulcerative colitis in mice, but its therapeutic effects and mechanisms for CRC treatment are still to be investigated. In the present study, we first used molecular docking, BLI, CESTA, and DARTS methods to detest whether monotropein targets VDR proteins. In addition, we used tumor cell conditioned co-culture and four models of macrophage polarisation to investigate the regulation of four macrophage polarisations by monotropein using RT-PCR, IF and western blot. Furthermore, we further validated the target of action of monotropein for the treatment of Azoxymethane (AOM)/DSS induced colitis associated cancer (CAC) using knockout animals. Meanwhile, we further explored the mechanism of action of monotropein in regulating polarisation by detecting JAK/STAT1-related genes and proteins. Molecular docking and biofilm interference techniques showed that monotropein bound to the VDR, and additional results from CESTA and DARTS suggested that VDR proteins are targets of monotropein. Furthermore, in tumor cell conditioned co-cultures or LPS + IFN-γ induced RAW264.7 cells, VDR translocation to the nucleus was reduced, JAK1/STAT1 signaling pathway proteins were up-regulated, and macrophages were polarised towards the M1-type after monotropein intervention. Animal models in which normal VDR or myeloid VDR was knocked out confirmed that JAK1 levels in intestinal tissues were increased after monotropein intervention, macrophages were polarised towards the M1 type, and CAC paracarcinomas were ameliorated. Taken together, the present study concluded that monotropein inhibited colitis-associated cancers through macrophage polarisation regulated by VDR/JAK1/STAT1.
Collapse
Affiliation(s)
- Yingyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yuhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shuoxi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dawei Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dongxu Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510000, PR China.
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
29
|
Zou M, Zhang W, Zhu Y, Xu Y. Identification of 6 cuproptosis-related genes for active ulcerative colitis with both diagnostic and therapeutic values. Medicine (Baltimore) 2023; 102:e35503. [PMID: 37904461 PMCID: PMC10615546 DOI: 10.1097/md.0000000000035503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Cuproptosis has been reported to affect a variety of diseases. Therefore, we aimed to examine the role of cuproptosis-related genes in active ulcerative colitis (UC). We acquired 2 datasets of active UC from the Gene Expression Omnibus database and created immune cell infiltrations to research immune cell dysregulation. Based on the cuproptosis gene set and differentially expressed genes (DEGs), we identified the differentially expressed genes of cuproptosis (CuDEGs). We then used 2 machine learning methods to screen hub CuDEGs. Subsequently, we performed validation on additional datasets and investigated the relationship between hub CuDEGs and drug treatments. Thirty-five controls with inactive UC and 90 patients with active UC were obtained from the training sets. A total of 9157 DEGs and 27 CuDEGs were identified, respectively. Immune cell infiltration analysis revealed that patients with active UC exhibited higher levels of activated dendritic cells and neutrophils as well as lower levels of CD8+ T cells, regulatory T cells (Tregs), and macrophage M2. A six-gene cuproptosis signature was identified using machine learning algorithms. We further validated that the 6 hub CuDEGs showed a strong correlation with active UC and acted as cuproptosis-related biomarkers of active UC. Moreover, the expression of ATOX1 was downregulated, and SUMF1, MT1G, ATP7B, FDX1, and LIAS expression was upregulated in the colonic mucosa of active UC patients who responded to golimumab or vedolizumab therapy. With the exception of ATP7B, the expression patterns of hub CuDEGs before and after infliximab treatment of patients with active UC were similar to those of golimumab and vedolizumab. Cuproptosis and active UC have a complex relationship, as illustrated in our study. ATOX1, SUMF1, MT1G, ATP7B, FDX1, and LIAS are cuproptosis-related hub genes of active UC. Our study opens new avenues for investigating UC progression and developing novel therapeutic potential targets for the disease.
Collapse
Affiliation(s)
- Menglong Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
30
|
Penagini F, Lonoce L, Abbattista L, Silvera V, Rendo G, Cococcioni L, Dilillo D, Calcaterra V, Zuccotti GV. Dual biological therapy and small molecules in pediatric inflammatory bowel disease. Pharmacol Res 2023; 196:106935. [PMID: 37748559 DOI: 10.1016/j.phrs.2023.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Inflammatory bowel diseases (IBDs) including Crohn's disease (CD), ulcerative colitis (UC) and inflammatory bowel disease unclassified (IBD-U) are chronic inflammatory disorders which can affect the gastrointestinal tract. Anti-tumor necrosis factors antibodies (anti-TNFα) such as infliximab (IFX) and adalimumab (ADA) are the first line biological therapy for severe or complicated IBDs in pediatric age. Second line therapeutic options as vedolizumab (VDZ) and ustekinumab (UST) are currently used off-label in pediatric age. Furthermore, despite optimization of biologics, a great proportion of patients may fail to respond to biologic agents (up to 30%) or lose response over the time (around 50%) hence these patients may be left without another valid therapeutic option. Consequently, several efforts have been made in the last years in order to develop new drugs and to contrive new therapeutic strategies. Small molecule drugs (SMDs) and combination therapy with either two biologic agents or with a SMD and a biological agent have recently been proposed. Data on safety and efficacy of these new therapeutic options are limited. The objective of the present review is to summarize the most up-to-date available literature in pediatric IBD.
Collapse
Affiliation(s)
- Francesca Penagini
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy.
| | - Luisa Lonoce
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy
| | - Luisa Abbattista
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy
| | - Valentina Silvera
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy
| | - Giulia Rendo
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy
| | - Lucia Cococcioni
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy
| | - Dario Dilillo
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy; Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, Milano, Italy; Department of Biomedical and Clinical Science "L. Sacco", University of Milano, Milano, Italy
| |
Collapse
|
31
|
Huai M, Pei M, Pan J, Zhu Y, Chen Y, Du P, Duan Y, Xu H, Ge W. Oral colon-targeted responsive alginate/hyaluronic acid-based hydrogel propels the application of infliximab in colitis. Int J Biol Macromol 2023; 249:125952. [PMID: 37494992 DOI: 10.1016/j.ijbiomac.2023.125952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Currently, commercialized infliximab (IFX) has rapidly propelled the clinical treatment of IBD, however, its inherent attributes, such as off-target effects and rapid metabolism, severely limit practical applications. Moreover, high doses injection of IFX can result in IBD treatment failure, which may induce other side effects. In this study, an colon microenvironment-responsive hydrogel (AL/HA hydrogel), consisting of acid-resistant sodium alginate and colon-degraded and targeted hyaluronic acid, was constructed by simple Ca2+/Zn2+ cross-linking. The ion-mediated hydrogel exhibited the protective effect of gastrointestinal tract to avoid early drug leakage, while the inflammation environments showed well-controlled drug release and significant biodegradable behaviors. Additionally, oral hydrogel exhibited long-standing enteritis areas compared with normal mice. Therefore, hydrogel-assisted enteritis treatment has great potential in IBD as an oral agent. After that, IFX was packaged in hydrogel to fabricate a facile oral antibody delivery system to treat IBD. IFX-embedded hydrogel showed remarkable therapeutic effect on IBD compared with free IFX. Surprisingly, oral hydrogel below 7 times IFX achieve the same amount of IFX-infused treatment that will further help alleviate the drawbacks of IFX. Our work elaborated on the efficacy of oral AL/HA@IFX in IBD, providing a guarantee for the future of promoted clinical transformation.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Mingliang Pei
- Central Laboratory, Department of Stomatology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, PR China.
| | - Jiaxing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, PR China
| | - Yingwen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Yanming Duan
- Department of Endoscopic Diagnosis and Treatment of Digestive Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Huixiong Xu
- Central Laboratory, Department of Stomatology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, PR China.
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
32
|
Aghamohammad S, Sepehr A, Miri ST, Najafi S, Pourshafie MR, Rohani M. Investigation of the anti-inflammatory effects of native potential probiotics as supplementary therapeutic agents in an in-vitro model of inflammation. BMC Complement Med Ther 2023; 23:335. [PMID: 37735396 PMCID: PMC10515064 DOI: 10.1186/s12906-023-04153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND IBD is considered an inflammatory disease with abnormal and exaggerated immune responses. To control the symptoms, different theraputic agents could be used, however, utilizing the agents with the least side effects could be important. Probiotics as beneficial microorganisms are one of the complementory theraputic agents that could be used to modulate inflammatory signaling pathways. In the current study, we aimed to identify the precise molecular effects of potential probiotics on signaling pathways involved in the development of inflammation. METHODS A quantitative real-time polymerase chain reaction (qPCR) assay was used to analyze the expression of JAK /STAT (JAK1, JAK2, JAK3, TYK2, STAT1, STAT2, STAT3, STAT4, STAT5 and STAT6) and inflammatory genes (NEMO, TIRAP, IRAK, and RIP) after the HT -29 cell line treatment with the sonicated pathogens and potential probiotics. A cytokine assay was also used to evaluate IL -6 and IL -1β production after potential probiotic treatment. RESULTS The potential probiotic cocktail downregulated the JAK genes and TIRAP, IRAK4, NEMO, and RIP genes in the NF-kB pathway compared with cells that were treated with sonicated gram negative pathogens. The expression of STAT genes was different after potential probiotic treatment. The production of IL -6 and IL -1β decreased after potential probiotic treatment. CONCLUSIONS Considering the importance of controlling the symptoms of IBD to improve the life quality of the patients, using probiotic could be crucial. In the current study the studied native potential probiotic cocktails showed anti-inflammatory effects via modulation of JAK /STAT and NF-kB signaling pathways. This observation suggests that our native potential probiotics consumption could be useful in reducing intestinal inflammation.
Collapse
Affiliation(s)
| | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Tina Miri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Najafi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
33
|
Guo M, Wang X. Pathological mechanism and targeted drugs of ulcerative colitis: A review. Medicine (Baltimore) 2023; 102:e35020. [PMID: 37713856 PMCID: PMC10508406 DOI: 10.1097/md.0000000000035020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon with abdominal pain, diarrhea, and mucopurulent stools as the main symptoms. Its incidence is increasing worldwide, and traditional treatments have problems such as immunosuppression and metabolic disorders. In this article, the etiology and pathogenesis of ulcerative colitis are reviewed to clarify the targeted drugs of UC in the latest research. Our aim is to provide more ideas for the clinical treatment and new drug development of UC, mainly by analyzing and sorting out the relevant literature on PubMed, summarizing and finding that it is related to the main genetic, environmental, immune and other factors, and explaining its pathogenesis from the NF-κB pathway, PI3K/Akt signaling pathway, and JAK/STAT signaling pathway, and obtaining anti-TNF-α monoclonal antibodies, integrin antagonists, IL-12/IL-23 antagonists, novel UC-targeted drugs such as JAK inhibitors and SIP receptor agonists. We believe that rational selection of targeted drugs and formulation of the best dosing strategy under the comprehensive consideration of clinical evaluation is the best way to treat UC.
Collapse
Affiliation(s)
- Meitong Guo
- Changchun University of Chinese Medicine, Changchun City, China
| | - Xiaoyan Wang
- Jilin Academy of Chinese Medicine, Chaoyang District, China
| |
Collapse
|
34
|
Saleh DO, El-Nasr NMEA, Fayez AM, Ahmed KA, Mohamed RA. Uro-protective role of chrysin against cyclophosphamide-induced hemorrhagic cystitis in rats involving the turning-off NF-κB/P38-MAPK, NO/PARP-1 and STAT-3 signaling cascades. Chem Biol Interact 2023; 382:110585. [PMID: 37263553 DOI: 10.1016/j.cbi.2023.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Chemotherapeutic agents are used to treat a wide range of cancer types, but they cause serious side effects which must be managed after treatment. Cyclophosphamide (CYP) is one of chemotherapeutic drugs that causes hemorrhagic cystitis (HC) induced by acrolein. OBJECTIVE The current investigation intended to uncover the role of chrysin (CHR) in CYP-induced HC in rats and explore the signaling pathway beyond this effect. ANALYSIS process: A single dose of CYP (200 mg/kg/IP) was injected, meanwhile CHR (25, 50 and 100 mg/kg, P.O) was administered respectively for 7 days prior to CYP administration and resume for 7 days afterwards. Urinary bladder tissue was then isolated from all rats to assess oxidative stress and inflammatory biomarkers. Moreover, histopathological examinations were performed. RESULTS Treatment with CHR showed a marked alleviation in oxidative stress biomarkers induced by CYP. Furthermore, CHR treatment presented a dose-dependent boost in the anti-inflammatory; IL-10 levels and a drop in the pro-inflammatory biomarkers; IL-1β, IL-6, and TNF-α. Additionally, stabilization of the PARP-1 protein expression was also detected thus preventing DNA damage. Similarly, CHR restored the urinary bladder cGMP levels. Notably, CHR treatment was accompanied with inhibition in NF-κB/p38-MAPK, NO/PARP-1 and STAT-3 signaling pathways inflammatory cascades. All these findings conformed with the histopathological examinations as well as iNOS immunostaining in the urinary bladder tissue. CONCLUSION Co-administration of CHR and CYP attained uro-protective therapeutic potential to guard against HC as well as spot the tangled mechanism of CHR in attenuating the HC induced by CYP.
Collapse
Affiliation(s)
- Dalia O Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Nesma M E Abo El-Nasr
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed M Fayez
- Pharmacology and Toxicology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Reem A Mohamed
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
35
|
Zhang RB, Dong LC, Shen Y, Li HY, Huang Q, Yu SG, Wu QF. Electroacupuncture alleviates ulcerative colitis by targeting CXCL1: evidence from the transcriptome and validation. Front Immunol 2023; 14:1187574. [PMID: 37727787 PMCID: PMC10505654 DOI: 10.3389/fimmu.2023.1187574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Background We aimed to use transcriptomics, bioinformatics analysis, and core gene validation to identify the core gene and potential mechanisms for electroacupuncture (EA) treatment of ulcerative colitis (UC). Materials and methods EA was performed in mice after induction of UC via dextran sodium sulfate. Body weight, disease activity index (DAI), colon length, and hematoxylin-eosin of the colon tissue were used to evaluate the effects of EA. Mice transcriptome samples were analyzed to identify the core genes, and further verified with human transcriptome database; the ImmuCellAI database was used to analyze the relationship between the core gene and immune infiltrating cells (IICs); and immunofluorescence was used to verify the results. Results EA could reduce DAI and histological colitis scores, increase bodyweight and colon length, and improve the expression of local and systemic proinflammatory factors in the serum and colon of UC mice. Eighteen co-differentially expressed genes were identified by joint bioinformatics analyses of mouse and human transcriptional data; Cxcl1 was the core gene. EA affected IICs by inhibiting Cxcl1 expression and regulated the polarization of macrophages by affecting the Th1 cytokine IFN-γ, inhibiting the expression of CXCL1. Conclusions CXCL1 is the target of EA, which is associated with the underlying immune mechanism related to Th1 cytokine IFN-γ.
Collapse
Affiliation(s)
| | | | | | | | | | - Shu-Guang Yu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
36
|
Ruan H, Wu J, Zhang F, Jin Z, Tian J, Xia J, Luo J, Yang M. Zearalenone Exposure Disrupts STAT-ISG15 in Rat Colon: A Potential Linkage between Zearalenone and Inflammatory Bowel Disease. Toxins (Basel) 2023; 15:392. [PMID: 37368693 DOI: 10.3390/toxins15060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN), a prevalent mycotoxin contaminating food and known for its intestinal toxicity, has been suggested as a potential risk factor for inflammatory bowel disease (IBD), although the exact relationship between ZEN exposure and IBD remains unclear. In this study, we established a rat model of colon toxicity induced by ZEN exposure to investigate the key targets of ZEN-induced colon toxicity and explore the underlying connection between ZEN exposure and IBD. Histological staining of the rat colon revealed significant pathological changes resulting from ZEN exposure (p < 0.01). Furthermore, the proteomic analysis demonstrated a notable upregulation of protein expression levels, specifically STAT2 (0.12 ± 0.0186), STAT6 (0.36 ± 0.0475) and ISG15 (0.43 ± 0.0226) in the rat colon (p < 0.05). Utilizing bioinformatics analysis, we combined ZEN exposure and IBD clinical sample databases to reveal that ZEN exposure may increase the risk of IBD through activation of the STAT-ISG15 pathway. This study identified novel targets for ZEN-induced intestinal toxicity, providing the basis for further study of ZEN exposure to IBD.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiashuo Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Fangqing Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Ziyue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Xia
- School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
37
|
Patik I, Redhu NS, Eran A, Bao B, Nandy A, Tang Y, El Sayed S, Shen Z, Glickman J, Fox JG, Snapper SB, Horwitz BH. The IL-10 receptor inhibits cell extrinsic signals necessary for STAT1-dependent macrophage accumulation during colitis. Mucosal Immunol 2023; 16:233-249. [PMID: 36868479 PMCID: PMC10431098 DOI: 10.1016/j.mucimm.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The loss of IL-10R function leads to severe early onset colitis and, in murine models, is associated with the accumulation of immature inflammatory colonic macrophages. We have shown that IL-10R-deficient colonic macrophages exhibit increased STAT1-dependent gene expression, suggesting that IL-10R-mediated inhibition of STAT1 signaling in newly recruited colonic macrophages might interfere with the development of an inflammatory phenotype. Indeed, STAT1-/- mice exhibit defects in colonic macrophage accumulation after Helicobacter hepaticus infection and IL-10R blockade, and this was phenocopied in mice lacking IFNγR, an inducer of STAT1 activation. Radiation chimeras demonstrated that reduced accumulation of STAT1-deficient macrophages was based on a cell-intrinsic defect. Unexpectedly, mixed radiation chimeras generated with both wild-type and IL-10R-deficient bone marrow indicated that rather than directly interfering with STAT1 function, IL-10R inhibits the generation of cell extrinsic signals that promote the accumulation of immature macrophages. These results define the essential mechanisms controlling the inflammatory macrophage accumulation in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Izabel Patik
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Naresh S Redhu
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA; Morphic Therapeutic, Waltham, Massachusetts, USA
| | - Alal Eran
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bin Bao
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anubhab Nandy
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shorouk El Sayed
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Massachusetts, USA
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Massachusetts, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA; Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
38
|
Kobayashi T, Hoshi M, Yuasa A, Arai S, Ikeda M, Matsuda H, Kim SW, Hibi T. Cost-Effectiveness Analysis of Tofacitinib Compared with Biologics in Biologic-Naïve Patients with Moderate-to-Severe Ulcerative Colitis in Japan. PHARMACOECONOMICS 2023; 41:589-604. [PMID: 36884164 PMCID: PMC10085930 DOI: 10.1007/s40273-023-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Tofacitinib is an oral Janus kinase inhibitor approved for the treatment of ulcerative colitis (UC). The objective of this study was to evaluate the long-term cost-effectiveness of tofacitinib versus current biologics, considering combinations of first-line (1L) and second-line (2L) therapies, from a Japanese payer's perspective in patients with moderate-to-severe active UC following an inadequate response to conventional therapy and in those who were naïve to biologics. METHODS A cost-effectiveness analysis was conducted during the time horizon specified in the Markov model, which considers a patient's lifetime as 60 years and an annual discount rate of 2% on costs and effects. The model compared tofacitinib with vedolizumab, infliximab, adalimumab, golimumab, and ustekinumab. The time of active treatment was divided into induction and maintenance phases. Patients not responding to their biologic treatment after induction or during the maintenance phase were switched to a subsequent line of therapy. Treatment response and remission probabilities (for induction and maintenance phases) were obtained through a systematic literature review and a network meta-analysis that employed a multinomial analysis with fixed effects. Patient characteristics were sourced from the OCTAVE Induction trials. Mean utilities associated with UC health states and adverse events (AEs) were obtained from published sources. Direct medical costs related to drug acquisition, administration, surgery, patient management, and AEs were derived from the JMDC database analysis, which corresponded with the medical procedure fees from 2021. The drug prices were adjusted to April 2021. Further validation through all processes by clinical experts in Japan was conducted to fit the costs to real-world practices. Scenario and sensitivity analyses were also performed to confirm the accuracy and robustness of the base-case results. RESULTS In the base-case, the treatment pattern including 1L tofacitinib was more cost-effective than vedolizumab, infliximab, golimumab, and ustekinumab for 1L therapies in terms of cost per quality-adjusted life year (QALY) gained (based on the Japanese threshold of 5,000,000 yen/QALY [38,023 United States dollars {USD}/QALY]). The base-case results demonstrated that the incremental costs would be reduced for all biologics, and decreases in incremental QALYs were observed for all biologics other than adalimumab. The incremental cost-effectiveness ratio (ICER) was found to be dominant for adalimumab; for the other biologics, it was found to be less costly and less efficacious. The efficiency frontier on the cost-effectiveness plane indicated that tofacitinib-infliximab and infliximab-tofacitinib were more cost-effective than the other treatment patterns. When infliximab-tofacitinib was compared with tofacitinib-infliximab, the ICER was 282,609,856 yen/QALY (2,149,157 USD/QALY) and the net monetary benefit (NMB) was -12,741,342 yen (-96,894 USD) with a threshold of 5,000,000 yen (38,023 USD) in Japan. Therefore, infliximab-tofacitinib was not acceptable by this threshold, and tofacitinib-infliximab was the cost-effective treatment pattern. CONCLUSION The current analysis suggests that the treatment pattern including 1L tofacitinib is a cost-effective alternative to the biologics for patients with moderate-to-severe UC from a Japanese payer's perspective.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Masato Hoshi
- Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | - Akira Yuasa
- Health and Value, Pfizer Japan Inc., Tokyo, Japan
| | - Shoko Arai
- Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | - Mitsunobu Ikeda
- Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | - Hiroyuki Matsuda
- HEOR, Real World Evidence Solutions, IQVIA Solutions Japan K.K., Tokyo, Japan
| | - Seok-Won Kim
- HEOR, Real World Evidence Solutions, IQVIA Solutions Japan K.K., Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| |
Collapse
|
39
|
Liu J, Zong C, Yu X, Ding Y, Chang B, Wang R, Sang L. Alanyl-Glutamine (Ala-Gln) Ameliorates Dextran Sulfate Sodium (DSS)-Induced Acute Colitis by Regulating the Gut Microbiota, PI3K-Akt/NF-κB/STAT3 Signaling, and Associated Pulmonary Injury. ACS Infect Dis 2023; 9:979-992. [PMID: 36917734 DOI: 10.1021/acsinfecdis.3c00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The aim of this study was to investigate the protective effect of alanyl-glutamine (Ala-Gln) on acute colitis complicated by pulmonary injury induced by dextran sulfate sodium (DSS) in C57BL/6 mice. The results showed that Ala-Gln intervention alleviated weight loss, the disease activity index (DAI), colon shortening, and pathological injury and regulated the absolute number of CD4+T-cell subsets in mesenteric lymph nodes (MLNs). In addition, Ala-Gln intervention significantly ameliorated the composition of the gut microbiota in mice with DSS- induced acute colitis, significantly decreasing the relative abundance of Desulfovibrionaceae and increasing the abundances of Gastranaerophilales, Clostridia-vadinBB60, and Alistipes. Moreover, Ala-Gln treatment significantly inhibited the activation of the PI3K-Akt/NF-κB/STAT3 inflammatory signaling pathways in the colon of mice with DSS-induced acute colitis. Notably, Ala-Gln intervention also alleviated the pulmonary injury as well as the imbalance in levels of CD4+T-cell subsets in pulmonary tissue in mice with DSS-induced acute colitis. In conclusion, Ala-Gln alleviates DSS-induced acute colitis by regulating the gut microflora and PI3K-Akt/NF-κB/STAT3 signaling pathways, as well as by alleviating accompanying pulmonary injury.
Collapse
Affiliation(s)
- Jing Liu
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Chengguo Zong
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Xin Yu
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Yan Ding
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang 110001, Liaoning, China
| | - Ruoyu Wang
- Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006, Liaoning, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian 116001, Liaoning, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110022, Liaoning, China
| |
Collapse
|
40
|
Ernest-Suarez K, Panaccione R. Update on the role of upadacitinib in the treatment of adults with moderately to severely active ulcerative colitis. Therap Adv Gastroenterol 2023; 16:17562848231158235. [PMID: 36923487 PMCID: PMC10009038 DOI: 10.1177/17562848231158235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
With further knowledge of the pathogenesis of inflammatory bowel disease, small oral molecules have become available, including the Janus kinase (JAK) inhibitors. Upadacitinib (UPA) is a selective JAK1 inhibitor and has become the newest drug in this class, with recent approval for the management of moderate-to-severe ulcerative colitis. The large phase III program (including the U-ACHIEVE and U-ACCOMPLISH parallel induction trials and the U-ACHIEVE Maintenance trial) demonstrated superiority over placebo, for all primary and secondary endpoints including key clinical, endoscopic, and histological outcomes utilizing 45 mg orally (po) once daily (OD) during induction and either 30 mg or 15 mg po OD in maintenance. From a safety perspective, UPA has proven to be a safe and well-tolerated medication across immune-mediated diseases with manageable adverse risks such as an increase in herpes zoster. Proper discussion and patient profiling are essential when positioning UPA, considering efficacy and potential risks associated with this highly effective medication.
Collapse
Affiliation(s)
- Kenneth Ernest-Suarez
- Inflammatory Bowel Disease Unit, Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Remo Panaccione
- Inflammatory Bowel Disease Unit, Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Rm 6D32, Cal Wenzel Precision Health Building, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
41
|
Subramanyam SH, Hriczko JT, Pappas A, Schippers A, Wagner N, Ohl K, Tenbrock K. Tofacitinib fails to prevent T cell transfer colitis in mice but ameliorates disease activity. Sci Rep 2023; 13:3762. [PMID: 36882462 PMCID: PMC9992375 DOI: 10.1038/s41598-023-30616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Tofactinib is a JAK inhibitor approved for ulcerative colitis in humans. Despite of its' proven effectiveness in humans, mechanistic data are scarce on the effectiveness of Tofactinib in experimental colitis in mice. We induced experimental colitis by transfer of CD4+CD25- isolated T cells into RAG2-/- (T and B cell deficient) mice and treated these mice with tofacitinib for 5-6 weeks either with a dosage of 10 or 40 mg/kg body weight immediately after CD4+ transfer or started treatment after first symptoms of disease for several weeks. While treatment with tofacitinib immediately after transfer resulted in an enhanced expansion of CD4+ T cells and did not prevent occurrence of colitis, treatment after start of symptoms of colitis ameliorated disease activity on a clinical basis and in histological analyses. Tofacitinib is effective in the treatment of murine experimental T cell transfer colitis, however does not prevent occurrence of disease.
Collapse
Affiliation(s)
| | - Judit Turyne Hriczko
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Angeliki Pappas
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Nobert Wagner
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany.
| |
Collapse
|
42
|
Law CCY, Kayal M, Mehandru S, Colombel JF. A critical review of upadacitinib for the treatment of adults with moderately to severely active ulcerative colitis. Expert Rev Gastroenterol Hepatol 2023; 17:109-117. [PMID: 36681073 DOI: 10.1080/17474124.2023.2172399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Upadacitinib is a selective janus kinase 1 inhibitor. In March 2022, upadacitinib was approved by the US Food and Drug Administration for the management of moderately to severely active ulcerative colitis (UC) in those who have had an inadequate response or intolerance of tumor necrosis factor inhibitors. It is also approved for the treatment of psoriatic arthritis, atopic dermatitis, rheumatoid arthritis, ankylosing spondylitis, and non-radiographic axial spondyloarthritis. AREAS COVERED The aim of this article is to review the mechanism of action of upadacitinib, clinical data regarding its efficacy in treating UC, and safety information. EXPERT OPINION Upadacitinib is superior to placebo in inducing and maintaining both clinical and endoscopic remission in moderately to severely active UC. Its strengths include once daily oral route of administration, low risk of immunogenicity, rapid onset, and efficacy in patients with previous failure of biologic therapy. The use of upadacitinib has been limited due to safety concerns surrounding JAK inhibitors. Phase 3 clinical trials recorded more cases of herpes zoster infection and venous thromboembolism in patients with UC treated with upadacitinib compared to placebo. Ongoing long-term safety studies will provide much needed clarity. Further research is also required to define the positioning of upadacitinib in treatment algorithms.
Collapse
Affiliation(s)
- Cindy C Y Law
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maia Kayal
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frédéric Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Purohit M, Gupta G, Afzal O, Altamimi ASA, Alzarea SI, Kazmi I, Almalki WH, Gulati M, Kaur IP, Singh SK, Dua K. Janus kinase/signal transducers and activator of transcription (JAK/STAT) and its role in Lung inflammatory disease. Chem Biol Interact 2023; 371:110334. [PMID: 36610610 DOI: 10.1016/j.cbi.2023.110334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
A key signaling channel for the signal transduction of several crucial cytokines implicated in sepsis is the JAK/STAT system. Once cytokines attach to the proper receptors, JAK kinases linked to them are activated and can selectively phosphorylate STATs. Activated STATs subsequently go to the nucleus, where they play a key role in the transcription of the target genes. Various biological activities use the JAK/STAT pathway, including hematopoiesis, immunological modulation, cell differentiation, and apoptosis. Inflammatory lung illnesses affect people worldwide and are a serious public health concern. Numerous common respiratory conditions, such as asthma, bronchiectasis, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome, are strongly influenced by inflammation. Microorganism infections or the destruction or demise of host cells are the causes of inflammation and the factors that perpetuate it. This review discusses the main elements of severe lung inflammation and how the JAK/STAT signaling pathway is essential for lung inflammation.
Collapse
Affiliation(s)
- Manish Purohit
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
44
|
Bao B, Zhu C, Shi J, Lu C. Causal association between inflammatory bowel disease and hidradenitis suppurativa: A two-sample bidirectional Mendelian randomization study. Front Immunol 2023; 14:1071616. [PMID: 36776852 PMCID: PMC9909343 DOI: 10.3389/fimmu.2023.1071616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Epidemiological studies have revealed a link between inflammatory bowel disease (IBD) and hidradenitis suppurativa (HS). To determine whether IBD and HS are causally related, we used the Mendelian randomization (MR) approach. Methods A two-sample MR was performed using an analysis of 12,882 patients and 21,770 controls with IBD and its main subtypes, ulcerative colitis (UC) and Crohn's disease (CD). A total of 409 cases and 211,139 controls without hidradenitis suppurativa (HS) were included in the data for this condition from various GWAS investigations. Odds ratios (ORs) with 95% confidence intervals (CIs) are used to estimate causal effects. Results The study assessed the causal relationship between HS and IBD in both directions. The risk of HS was increased by IBD (IVW OR = 1.34, 95% CI = 1.20-1.49, p = 2.15E-07) and, in addition, HS was affected by UC (IVW OR = 1.27, 95% CI = 1.13-1.43, p = 8.97E-04) and CD (IVW OR = 1.18, 95% CI = 1.08-1.29, p = 4.15E-04). However, there was no evidence of a causal relationship between HS and IBD or its subtypes (IBD IVW OR = 1.00, 95% CI = 0.96-1.05, p = 0.85; UC IVW OR = 0.99, 95% CI = 0.95-1.03, p = 0.65; CD IVW OR = 1.03, 95% CI = 0.98- 1.07, p = 0.28). Conclusion This study demonstrates that IBD and its subtypes have a causal effect on HS, whereas HS does not affect IBD. Gut-skin axis interactions may help to understand this association. Nevertheless, further studies are needed to clarify the pathophysiology of the causal relationship between IBD and HS.
Collapse
Affiliation(s)
- Bingzhou Bao
- Department of Anorectal, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chao Zhu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Shi
- Department of Anorectal, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Canxing Lu
- Department of Anorectal, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
45
|
Xian W, Wu D, Liu B, Hong S, Huo Z, Xiao H, Li Y. Graves' disease and inflammatory bowel disease: A bidirectional Mendelian randomization. J Clin Endocrinol Metab 2022; 108:1075-1083. [PMID: 36459455 PMCID: PMC10099169 DOI: 10.1210/clinem/dgac683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
CONTEXT Both Graves' disease (GD) and inflammatory bowel disease (IBD) are common autoimmune diseases that severely damage patients' quality of life. Previous epidemiological studies have suggested associations between GD and IBD. However, whether a causal relationship exists between these two diseases remains unknown. OBJECTIVE To infer a causal relationship between GD and IBD using bidirectional two-sample Mendelian randomization(MR). METHODS We performed bidirectional two-sample MR to infer a causal relationship between GD and IBD using GWAS summary data obtained from Biobank Japan (BBJ) and the International Inflammatory Bowel Disease Genetic Consortium (IIBDGC). Several methods (random-effect inverse variance weighted, weighted median, MR‒Egger regression, and MR-PRESSO) were used to ensure the robustness of the causal effect. Heterogeneity was measured based on Cochran's Q value. Horizontal pleiotropy was evaluated by MR‒Egger regression and leave-one-out analysis. RESULTS Genetically predicted IBD may increase the risk of GD by 24% (OR 1.24, 95% CI 1.01-1.52, p = 0.041). Crohn's disease (CD) may increase the risk of GD, whereas ulcerative colitis (UC) may prevent patients from developing GD. Conversely, genetically predicted GD may slightly increase the risk of CD, although evidence indicating that the presence of GD increased the risk of UC or IBD was lacking. Outlier-corrected results were consistent with raw causal estimates. CONCLUSIONS Our study revealed a potentially higher comorbidity rate for GD and CD. However, UC might represent a protective factor for GD. The underlying mechanism and potential common pathways await discovery.
Collapse
Affiliation(s)
- Wei Xian
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dide Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Boyuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zijun Huo
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
46
|
Xia F, Bo W, Ding J, Yu Y, Wang J, Wang J, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China. MiR-222-3p Aggravates the Inflammatory Response by Targeting SOCS1 to Activate STAT3 Signaling in Ulcerative Colitis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:934-944. [PMID: 35946880 PMCID: PMC9797778 DOI: 10.5152/tjg.2022.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ulcerative colitis is characterized by relapsing inflammation in the gastrointestinal tract with limited treatment options. The aim of the present study was to assess the anti-inflammatory effect of Suppressor of cytokine signaling (SOCS1) on lipopolysac- charide-stimulated RAW264.7 cells and to investigate its potential mechanisms. METHODS The in vitro ulcerative colitis model was established by using lipopolysaccharide-stimulated RAW264.7 cells. Western blot- ting was used to detect the protein expression levels of SOCS1, JAK2, STAT3, and VDR. Reverse transcription-quantitative polymerase chain reaction was used to measure the mRNA expression of SOCS1, miR-222-3p, and VDR. An enzyme-linked immunosorbent assay was performed to measure the levels of inflammatory cytokines. A luciferase assay assessed the binding of SOCS1 to miR-222-3p. A total of 15 patients with ulcerative colitis and 18 healthy controls were recruited. The expression levels of SOCS1 and miR-222-3p in the colonic mucosa tissues of patients with ulcerative colitis and healthy controls were determined by reverse transcription-quantitative polymerase chain reaction. RESULTS SOCS1 upregulation inhibited the lipopolysaccharide-induced inflammation in RAW264.7 cells. SOCS1 was confirmed to be tar- geted by miR-222-3p. Silencing SOCS1 significantly abolished the inhibitory effects of miR-222-3p downregulation on inflammation. MiR-222-3p activated STAT3 signaling and reduced VDR expression by targeting SOCS1 in lipopolysaccharide-treated RAW264.7 cells. Additionally, miR-222-3p expression was upregulated in ulcerative colitis patients (P = 5.16E-10), while SOCS1 (P = 2.75E-10) and VDR (P = 52.5E-9) expression was downregulated in ulcerative colitis patients. Endoscopic scores (UCEIS) revealed significant positive cor- relation with miR-222-3p and negative correlation with SOCS1 and VDR. CONCLUSION MiR-222-3p targets SOCS1 to aggravate the inflammatory response by suppressing VDR and activating STAT3 signaling in ulcerative colitis.
Collapse
Affiliation(s)
| | | | | | - Yanqiu Yu
- Corresponding authors: Yanqiu Yu or Jianning Wang, e-mail: ;
| | - Jianning Wang
- Corresponding authors: Yanqiu Yu or Jianning Wang, e-mail: ;
| | | | | | | | | | | |
Collapse
|
47
|
Mannucci A, D'Amico F, El Saadi A, Peyrin-Biroulet L, Danese S. Filgotinib for moderately to severely active ulcerative colitis. Expert Rev Gastroenterol Hepatol 2022; 16:927-940. [PMID: 36278878 DOI: 10.1080/17474124.2022.2138857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Filgotinib is an oral Janus kinase type 1 (JAK1) selective inhibitor with demonstrated efficacy and safety in ulcerative colitis (UC). The aim of this review is to summarize the available evidence on pharmacological characteristics, efficacy, and safety of filgotinib in UC. AREAS COVERED Pubmed, Scopus, and Embase databases were searched for all relevant studies reporting the efficacy and safety of filgotinib in patients with moderate to severe UC. We particularly focused on the risk of zoster infection and venous thromboembolism compared to other JAK inhibitors. EXPERT OPINION Filgotinib has remarkable efficacy, safety, and tolerability profiles in the treatment of moderate-to-severe active UC. It can be used in both biologic-naïve and biologic-experienced patients. The rapid mechanism of action and its oral administration route make it a reliable therapeutic option.
Collapse
Affiliation(s)
- Alessandro Mannucci
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando D'Amico
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, F-54000, Nancy, France.,Department of Gastroenterology, University of Lorraine, Inserm, NGERE, F-54000, Nancy, France
| | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
48
|
Chen J, Shen B, Jiang Z. Traditional Chinese medicine prescription Shenling BaiZhu powder to treat ulcerative colitis: Clinical evidence and potential mechanisms. Front Pharmacol 2022; 13:978558. [PMID: 36160392 PMCID: PMC9494158 DOI: 10.3389/fphar.2022.978558] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC), characterized by syndromes including abdominal pain, bloody stool, diarrhea, weight loss, and repeated relapse, is a non-specific inflammatory intestinal disease. In recent years, with the changing dietary habits in China, the incidence of UC has shown an upward trend. UC belongs to the category of recorded as "diarrhea," "chronic dysentery," and "hematochezia" in traditional Chinese medicine (TCM), and Shenling BaiZhu powder (SLBZP) is one of the most effective and commonly used prescriptions. In this review, we aim to systematically summarize the clinical application and pharmacological mechanism of SLBZP in the treatment of UC to provide a theoretical basis for its clinical use and experimental evaluation of SLBZP. Our results showed that both SLBZP and SLBZP in combination with chemical drugs, have a significant therapeutic effect against UC with few adverse reactions. Furthermore, combined therapy was better than western medicine. Further, pathophysiological studies indicated that SLBZP has anti-inflammatory, immunomodulatory, antioxidant effects, regulation relative cell signal transduction and regulation of gut microbiota. Although evidence suggests superior therapeutic efficacy of SLBZP for treating UC and the relative mechanism has been studied extensively, various shortcomings limit the existing research on the topic. There is a lack of UC animal models, especially UC with TCM syndromes, with no uniform standard and certain differences between the animal model and clinical syndrome. The dosage, dosage form, and therapeutic time of SLBZP are inconsistent and lack pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. In addition, SLSZP is composed of multiple Chinese drugs that contain massive numbers of ingredients and which or several components contribute to therapeutic effects. How they work synergistically together remains unknown. Therefore, on the one hand, large sample prospective cohort studies to clarify the clinical efficacy and safety of SLBZP in the treatment of UC are needed. In contrast, researchers should strengthen the study of the molecular biological mechanism of active ingredients and its synergistic actions, clarifying the mechanism of SLBZP in treating UC by multi-component, multi-target, and multi-pathway.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, China
| | - Bixin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhengli Jiang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, China
| |
Collapse
|
49
|
Mishra S, Jena A, Kakadiya R, Sharma V, Ahuja V. Positioning of tofacitinib in treatment of ulcerative colitis: a global perspective. Expert Rev Gastroenterol Hepatol 2022; 16:737-752. [PMID: 35875997 DOI: 10.1080/17474124.2022.2106216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/22/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Tofacitinib has emerged as a useful drug for the treatment of ulcerative colitis (UC). AREAS COVERED There is an unmet need for cost-effective, non-immunogenic drugs with a safe adverse effect profile to treat patients with ulcerative colitis. In the present review, we evaluate the available literature to inform the appropriate positioning of tofacitinib in the current drug landscape and identify subsets where its use should be done with caution. EXPERT OPINION Tofacitinib is helpful in the treatment of patients where the standard conventional or biological therapies have failed or were not tolerated. With lower costs of the generic drug than the biologicals (or biosimilars), it could be an important therapy in low- to middle-income countries. The risk of infections, especially Herpes Zoster and tuberculosis, needs to be addressed before initiation. Tofacitinib should be avoided in patients with venous thromboembolism and cardiovascular disease risk factors. Due to limited evidence, the use is not recommended in pregnancy, while it should be used with caution in elderly citizens. Future trials should look into the head-to-head comparison of tofacitinib with biologicals. The role of tofacitinib in acute severe colitis needs evaluation with comparative trials with current standards of care.
Collapse
Affiliation(s)
- Shubhra Mishra
- Department of Gastroenterology, Asian Institute of Gastroenterology Hospitals, Hyderabad, India
| | - Anuraag Jena
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rinkalben Kakadiya
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Education and Research, New Delhi, India
| |
Collapse
|
50
|
Zhong WM, Qian XH, Jin ZW. Identification of potential predictive biomarkers and biological pathways and the correction with immune infiltration in the activation of Crohn's disease. Immunogenetics 2022; 74:527-537. [PMID: 35861879 DOI: 10.1007/s00251-022-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), has increasing prevalence in the world. Due to the lack of cure strategy, most patients with CD develop progressive disease companying with a series of serious complications. Therefore, exploring molecular mechanism differences between active and inactive CD will help in the screening of predict markers and therapeutic targets. In this study, we analyzed differentially expressed genes (DEGs) and molecular pathways through between active and inactive CD patients. In addition, the abundance of 22 immune cell types were assessed by using the CIBERSORT. The hub DEGs were screened out by the CytoHubba in Cytoscape, followed by the least absolute shrinkage and selection operator (LASSO) regression. Finally, the clinical predictive model was constructed by binary logistic regression model. The diagnostic efficacy was tested by receiver operating characteristic (ROC) curve and verified in independent datasets. The results showed that there were 137 DEGs between the active and inactive CD. Most of them were involved in regulating the immunity process. In addition, the decreased abundance of CD8 T cells and the increased abundance of M0, M1 macrophages, and neutrophils were closely related to CD activation. CXCL9, C3AR1, IL1B, and TLR4 were the hub gene and can be applied to the prediction of CD activation. Our results provided important targets for the prediction of CD activation and the selection of therapeutic targets.
Collapse
Affiliation(s)
- Wei-Ming Zhong
- Department of General Practice, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province, China
| | - Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|