1
|
Xing S, Correa-Alfonso CM, Shin J, Pursley J, Depauw N, Domal S, Withrow J, Bolch W, Grassberger C, Paganetti H. Evaluating the Impact of Liver Vasculature Model Complexity for Estimating Dose to Circulating Blood During Radiation Therapy. Int J Radiat Oncol Biol Phys 2025; 121:1339-1348. [PMID: 39608610 PMCID: PMC11911079 DOI: 10.1016/j.ijrobp.2024.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To assess the impact of liver model complexity on the estimated radiation dose to circulating blood during radiation therapy. METHODS AND MATERIALS Six patients with hepatocellular carcinoma (HCC) were selected covering a range of clinical treatment volume (CTV) sizes and locations. Photon and proton treatment plans were generated for each patient. Planning computed tomography, CTV contours, and dose distributions were deformably registered to the reference livers provided by the International Commission on Radiological Protection report. Three vasculature models were considered: (1) main vascular tree (MVT), (2) coarse vascular tree (CVT) of 1045 vessels, and (3) detailed vascular tree (DVT) of 2041 vessels. Blood dose-volume histograms (bDVHMVT, bDVHCVT, and bDVHDVT) and the mean circulating blood dose (μb,MVT, μb,CVT, and μb,DVT) were estimated using Monte Carlo simulations for all 3 models. The effect of varying blood velocity (vb) in HCC tumors on dose estimation was also evaluated through increasing the tumor vb by 1.5, 2, and 4.2 times. RESULTS For the 3 lesions located in the left lobe, the estimated μb,MVT was lower than μb,DVT by an average ± standard deviation of (6 ± 4)% and (17 ± 7)% for photon and proton treatments, respectively. Smaller differences were found for lesions in the right lobe, where μb,MVT was on average (2 ± 1)% lower than μb,DVT for photon and (3 ± 1)% lower for proton treatments. More pronounced difference between μb,MVT and μb,DVT was seen in lesions with smaller CTV sizes. We also found that considering the elevated tumor vb led to a reduction of estimated dose to circulating blood, with a maximum reduction in the estimated μb of 39% and 8% for CTV of 603 and 249 mL, respectively. CONCLUSION Our study revealed that the impact of liver vasculature model complexity on the estimated dose to blood depended on lesion-specific characteristics. For lesions with larger CTV size on the right liver lobe treated with photons, modeling only major vessels could generate bDVHs that are dosimetrically comparable with bDVHs of more complex vascular models. Increased tumor vb resulted in a reduction of the estimated blood dose.
Collapse
Affiliation(s)
- Shu Xing
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, New York.
| | - Camilo M Correa-Alfonso
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida; Radiation Physics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jungwook Shin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicolas Depauw
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sean Domal
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Julia Withrow
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Wesley Bolch
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Sharma D, Khosla D, Meena BL, Yadav HP, Kapoor R. Exploring the Evolving Landscape of Stereotactic Body Radiation Therapy in Hepatocellular Carcinoma. J Clin Exp Hepatol 2025; 15:102386. [PMID: 39282593 PMCID: PMC11399579 DOI: 10.1016/j.jceh.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) carries significant morbidity and mortality. Management of the HCC requires a multidisciplinary approach. Surgical resection and liver transplantation are the gold standard options for the appropriate settings. Stereotactic body radiation therapy (SBRT) has emerged as a promising treatment modality in managing HCC; its use is more studied and well-established in advanced HCC (aHCC). Current clinical guidelines universally endorse SBRT as a viable alternative to radiofrequency ablation (RFA), transarterial chemoembolisation (TACE), and transarterial radioembolisation (TARE), a recommendation substantiated by literature demonstrating comparable efficacy among these modalities. In early-stage HCC, SBRT primarily manages unresectable tumours unsuitable for ablative procedures such as microwave ablation and RFA. SBRT has been incorporated as a modality to downstage tumours or as a bridge to transplant. In the case of intermediate or advanced HCC, SBRT offers excellent results either as a single modality or adjunct to other locoregional modalities such as TACE/TARE. Recent data from late-stage HCC patients illustrate the effectiveness of SBRT in achieving local tumour control while minimising damage to surrounding healthy liver tissue. It has promising local control of approximately 80-90% in managing HCC. Additional prospective data comparing the efficacy of SBRT with the first-line recommended therapies such as RFA, TACE, and surgery are essential. The standard of care for patients with advanced/metastatic disease is systemic therapy (immunotherapy/tyrosine kinase inhibitors). SBRT, in combination with immune-checkpoint inhibitors, has an immune-modulatory effect that results in a synergistic effect. Recent findings indicate that the combination of immunotherapy and SBRT in HCC is well-tolerated and exhibits synergistic effects. Further exploration of diverse immunotherapy and radiotherapy strategies is essential to identify the appropriate time for combination treatments and to optimise dose and fraction regimens. Prospective, randomised studies are imperative to establish SBRT as the primary treatment for HCC.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Divya Khosla
- Department of Radiation Oncology, PGIMER, Chandigarh, India
| | - Babu L Meena
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hanuman P Yadav
- Department of Radiation Oncology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakesh Kapoor
- Department of Radiation Oncology, PGIMER, Chandigarh, India
| |
Collapse
|
3
|
Yamano A, Inoue T, Shiba S, Shimo T, Yamanaka M, Shirata R, Matsumoto K, Yagihashi T, Tokuuye K, Chang W. Dosimetric Evaluation of Beam-specific PTV and Worst-case Optimization Methods for Liver Proton Therapy. In Vivo 2024; 38:3059-3067. [PMID: 39477417 PMCID: PMC11535939 DOI: 10.21873/invivo.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM In spot-scanning proton therapy, intra-fractional anatomical changes by organ movement can lead to deterioration in dose distribution due to beam range variation. To explore a more robust treatment planning method, this study evaluated the dosimetric characteristics and robustness of two proton therapy planning methods for liver cancer. PATIENTS AND METHODS Two- or three-field treatment plans were created for 11 patients with hepatocellular carcinoma or metastatic liver cancer using a single-field uniform dose (SFUD) technique. The plans were optimized using either beam-specific planning target volume (BSPTV) or worst-case optimization (WCO). The target coverage for the gross tumor volume (GTV), planning target volume (PTV), and organs at risk (OAR) parameters related to toxicity were calculated from the perturbed dose distributions, considering setup and range uncertainties. Statistical analyses of the BSPTV and WCO plans were performed using the Wilcoxon signed-rank sum test (p<0.05). The calculation times for a single optimization process were also recorded and compared. RESULTS The robustness of the WCO plans in the worst-case scenario was significantly higher than that of the BSPTV plan in terms of GTV target coverage, prevention of maximum dose increase to the gastrointestinal tract, and the dose received by normal liver regions. However, there were no significant differences in PTV, and the calculation time required to create the WCO plan was considerably longer. CONCLUSION In SFUD proton therapy for liver cancer, the WCO plans required a longer optimization time but exhibited superior robustness in GTV coverage and sparing of OARs.
Collapse
Affiliation(s)
- Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan;
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takahiro Shimo
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Ryosuke Shirata
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Kazuki Matsumoto
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Koichi Tokuuye
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Weishan Chang
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Chen CY, Huang BS, Hong JH, Chang JTC, Chen MC, Tang WR, Shun SC, Chen ML. Persistent Fatigue in Patients With Hepatocellular Carcinoma Receiving Radiotherapy. J Nurs Res 2024; 32:e319. [PMID: 38506576 DOI: 10.1097/jnr.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Radiation therapy has attracted much attention in the treatment of patients with hepatocellular carcinoma (HCC). However, the association between radiotherapy-related fatigue and HCC has been examined in only a few studies. PURPOSE This study was designed to explore the change over time in fatigue in patients with HCC treated with radiotherapy and related factors. METHODS One hundred patients were enrolled in this prospective longitudinal study using convenience sampling at a medical center in northern Taiwan. The Functional Assessment of Chronic Illness Therapy-Fatigue scale, the Brief Pain Inventory-Short Form, and the psychological subscale of Memorial Symptom Assessment Scale-Short Form were used to assess the symptoms at five time points: before radiotherapy (T0), during treatment (T1), and at 1 month (T2), 3 months (T3), and 6 months (T4) after radiotherapy. The generalized estimating equations method was used to determine the changes in fatigue and the influencing factors. RESULTS Fatigue levels at T1, T2, T3, and T4 were significantly higher than that at T0. Higher fatigue was significantly associated with lower income and poorer functional status. Having worse pain levels and psychological symptoms were both associated with higher fatigue. CONCLUSIONS/IMPLICATIONS FOR PRACTICE The results indicate fatigue does not recover to the baseline (pretherapy) level by 6 months after radiotherapy. Thus, fatigue in patients with HCC receiving radiotherapy should be regularly and effectively assessed, and patients experiencing pain and psychological symptoms should be given greater attention from clinicians.
Collapse
Affiliation(s)
- Chiao-Yi Chen
- MS, RN, School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bing-Shen Huang
- MD, Associate Professor, Department of Radiation Oncology, Chang Gung Memorial Hospital; and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ji-Hong Hong
- MD, PhD, Professor, Department of Radiation Oncology, Chang Gung Memorial Hospital; and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Joseph Tung-Chieh Chang
- MD, MHA, Professor, Department of Radiation Oncology, Chang Gung Memorial Hospital; and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chi Chen
- PhD, Professor, Department of Public Health and Biostatistics Consulting Center, College of Medicine, Chang Gung University, Taoyuan; and Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Woung-Ru Tang
- PhD, RN, Professor, School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiow-Ching Shun
- PhD, RN, Professor, School of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Ling Chen
- PhD, RN, Professor, School of Nursing, College of Medicine, Chang Gung University, Taoyuan; Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan; and Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
5
|
Lee PY, Huang BS, Lee SH, Chan TY, Yen E, Lee TF, Cho IC. An investigation into the impact of volumetric rescanning and fractionation treatment on dose homogeneity in liver cancer proton therapy. JOURNAL OF RADIATION RESEARCH 2024; 65:100-108. [PMID: 38037473 PMCID: PMC10803156 DOI: 10.1093/jrr/rrad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
The Pencil Beam Scanning (PBS) technique in modern particle therapy offers a highly conformal dose distribution but poses challenges due to the interplay effect, an interaction between respiration-induced organ movement and PBS. This study evaluates the effectiveness of different volumetric rescanning strategies in mitigating this effect in liver cancer proton therapy. We used a Geant4-based Monte Carlo simulation toolkit, 'TOPAS,' and an image registration toolbox, 'Elastix,' to calculate 4D dose distributions from 5 patients' four-dimensional computed tomography (4DCT). We analyzed the homogeneity index (HI) value of the Clinical Tumor Volume (CTV) at different rescan numbers and treatment times. Our results indicate that dose homogeneity stabilizes at a low point after a week of treatment, implying that both rescanning and fractionation treatments help mitigate the interplay effect. Notably, an increase in the number of rescans doesn't significantly reduce the mean dose to normal tissue but effectively prevents high localized doses to tissue adjacent to the CTV. Rescanning techniques, based on statistical averaging, require no extra equipment or patient cooperation, making them widely accessible. However, the number of rescans, tumor location, diaphragm movement, and treatment fractionation significantly influence their effectiveness. Therefore, deciding the number of rescans should involve considering the number of beams, treatment fraction size, and total delivery time to avoid unnecessary treatment extension without significant clinical benefits. The results showed that 2-3 rescans are more clinically suitable for liver cancer patients undergoing proton therapy.
Collapse
Affiliation(s)
- Pei-Yi Lee
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, No. 129, Dapi Rd., Niaosong Dist., Kaohsiung City, 833401, Taiwan
| | - Bing-Shen Huang
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, No. 129, Dapi Rd., Niaosong Dist., Kaohsiung City, 833401, Taiwan
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333011, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
| | - Shen-Hao Lee
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333011, Taiwan
| | - Tsz-Yui Chan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
| | - Eric Yen
- Institute of Physics, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei City, 115201, Taiwan
| | - Tsair-Fwu Lee
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City, 807618, Taiwan
| | - I-Chun Cho
- Research Center for Radiation Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taiwan Taoyuan City, 333323 Taiwan
| |
Collapse
|
6
|
Niitsu H, Mizumoto M, Li Y, Nakamura M, Ishida T, Iizumi T, Saito T, Numajiri H, Makishima H, Nakai K, Oshiro Y, Maruo K, Sakurai H. Tumor Response on Diagnostic Imaging after Proton Beam Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:357. [PMID: 38254846 PMCID: PMC10814092 DOI: 10.3390/cancers16020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Follow-up after treatment for hepatocellular carcinoma (HCC) can be mostly performed using dynamic CT or MRI, but there is no common evaluation method after radiation therapy. The purpose of this study is to examine factors involved in tumor reduction and local recurrence in patients with HCC treated with proton beam therapy (PBT) and to evaluate HCC shrinkage after PBT. METHODS Cases with only one irradiated lesion or those with two lesions irradiated simultaneously were included in this study. Pre- and post-treatment lesions were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) by measuring the largest diameter. RESULTS The 6-, 12-, and 24-month CR + PR rates after PBT were 33.1%, 57.5%, and 76.9%, respectively, and the reduction rates were 25.1% in the first 6 months, 23.3% at 6-12 months, and 14.5% at 13-24 months. Cases that reached CR/PR at 6 and 12 months had improved OS compared to non-CR/non-PR cases. CONCLUSIONS It is possible that a lesion that reached SD may subsequently transition to PR; it is reasonable to monitor progress with periodic imaging evaluations even after 1 year of treatment.
Collapse
Affiliation(s)
- Hikaru Niitsu
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Masashi Mizumoto
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Yinuo Li
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Masatoshi Nakamura
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Toshiki Ishida
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Takashi Iizumi
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Takashi Saito
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Haruko Numajiri
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Hirokazu Makishima
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Kei Nakai
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| | - Yoshiko Oshiro
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba 305-8558, Ibaraki, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan;
| | - Hideyuki Sakurai
- Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan; (H.N.); (Y.L.); (M.N.); (T.I.); (T.I.); (T.S.); (H.N.); (H.M.); (K.N.); (Y.O.); (H.S.)
| |
Collapse
|
7
|
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, Reyngold M, Crane C, Hajj C. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16773. [PMID: 38069095 PMCID: PMC10706661 DOI: 10.3390/ijms242316773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The liver tumor immune microenvironment has been thought to possess a critical role in the development and progression of hepatocellular carcinoma (HCC). Despite the approval of immune checkpoint inhibitors (ICIs), such as programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitors, for several types of cancers, including HCC, liver metastases have shown evidence of resistance or poor response to immunotherapies. Radiation therapy (RT) has displayed evidence of immunosuppressive effects through the upregulation of immune checkpoint molecules post-treatment. However, it was revealed that the limitations of ICIs can be overcome through the use of RT, as it can reshape the liver immune microenvironment. Moreover, ICIs are able to overcome the RT-induced inhibitory signals, effectively restoring anti-tumor activity. Owing to the synergetic effect believed to arise from the combination of ICIs with RT, several clinical trials are currently ongoing to assess the efficacy and safety of this treatment for patients with HCC.
Collapse
Affiliation(s)
- Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Youssef Diab
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Danny N. Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Hassan Azhari
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - James J. Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Jennifer Ma
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
8
|
Li X, Ma Z, Mei L. Comprehensive analysis of UBE2C expression and its potential roles and mechanisms in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:7397-7407. [PMID: 37580802 PMCID: PMC10457065 DOI: 10.18632/aging.204792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/01/2023] [Indexed: 08/16/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks one of the most common and lethal cancers all over the world. Previous studies suggest that ubiquitin-conjugating enzyme E2C (UBE2C) serves as an oncogene in human cancers. However, its expression, diagnosis, prognosis and potential mechanisms in HCC remain largely unknown. In this study, the expression of UBE2C in HCC was first analyzed by comprehensive bioinformatic analysis. ROC curve analysis and survival analysis were employed to assess the diagnostic and prognostic roles of UBE2C in HCC. UBE2C promoter methylation level and upstream regulatory miRNAs of UBE2C in HCC were explored. The present work demonstrated that UBE2C was significantly upregulated in HCC compared with normal controls. We also found significant diagnostic and prognostic values of UBE2C in HCC. Promoter methylation of UBE2C was obviously decreased in HCC and was negatively correlated with UBE2C mRNA expression. 10 miRNAs were predicted to potentially bind to UBE2C. In vitro assay and bioinformatic correlation analysis together revealed that hsa-miR-193b-3p might be another key upstream regulatory mechanism of UBE2C in HCC. In conclusion, UBE2C is overexpressed in HCC and may serve as a key diagnostic/prognostic biomarker for patients with HCC.
Collapse
Affiliation(s)
- Xiao Li
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Zhaosheng Ma
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Linhang Mei
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| |
Collapse
|
9
|
Bae BK, Yu JI, Park HC, Goh MJ, Paik YH. Radiotherapy trend in elderly hepatocellular carcinoma: retrospective analysis of patients diagnosed between 2005 and 2017. Radiat Oncol J 2023; 41:98-107. [PMID: 37403352 DOI: 10.3857/roj.2023.00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE To report the trends of radiotherapy in the management of elderly patients with hepatocellular carcinoma (HCC). MATERIALS AND METHODS We retrospectively reviewed patients who entered HCC registry of Samsung Medical Center between 2005 and 2017. Patients who were 75 years or older at the time of registration were defined as elderly. They were categorized into three groups based on the year of registration. Radiotherapy characteristics were compared between the groups to observe differences by age groups and period of registration. RESULTS Out of 9,132 HCC registry patients, elderly comprised 6.2% (566 patients) of the registry, and the proportion increased throughout the study period (from 3.1% to 11.4%). Radiotherapy was administered to 107 patients (18.9%) in elderly group. Radiotherapy utilization in the early treatment process (within 1 year after registration) has rapidly increased from 6.1% to 15.3%. All treatments before 2008 were delivered with two-dimensional or three-dimensional conformal radiotherapy, while more than two-thirds of treatments after 2017 were delivered with advanced techniques such as intensity-modulated radiotherapy, stereotactic body radiotherapy, or proton beam therapy. Overall survival (OS) of elderly was significantly worse than younger patients. However, for patients who received radiotherapy during the initial management (within one month after registration), there was no statistically significant difference in OS between age groups. CONCLUSION The proportion of elderly HCC is increasing. Radiotherapy utilization and adoption of advanced radiotherapy technique showed a consistently increasing trend for the group of patients, indicating that the role of radiotherapy in the management of elderly HCC is expanding.
Collapse
Affiliation(s)
- Bong Kyung Bae
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Radiation Oncology, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung Ji Goh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| |
Collapse
|
10
|
Chen MF, Chen PT, Hsieh CC, Wang CC. Effect of Proton Therapy on Tumor Cell Killing and Immune Microenvironment for Hepatocellular Carcinoma. Cells 2023; 12:cells12020332. [PMID: 36672266 PMCID: PMC9857172 DOI: 10.3390/cells12020332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Radiotherapy with proton therapy (PT) has dosimetric advantages over photon therapy, which helps to enlarge the therapeutic window of radiotherapy for hepatocellular carcinoma (HCC). We evaluated the response of HCC to PT and examined the underlying mechanisms. The human liver cancer cell lines HepG2 and HuH7 and the murine liver cancer cell line Hepa1-6 were selected for cell and animal experiments to examine the response induced by PT irradiation. Biological changes and the immunological response following PT irradiation were examined. In vitro experiments showed no significant difference in cell survival following PT compared with photon radiotherapy. In a murine tumor model, the tumors were obviously smaller in size 12 days after PT irradiation. The underlying changes included increased DNA damage, upregulated IL-6 levels, and a regulated immune tumor microenvironment. Protein analysis in vitro and in vivo showed that PT increased the level of programmed cell death ligand 1 (PD-L1) expressed in tumor cells and recruited myeloid-derived suppressor cells (MDSCs). The increase in PD-L1 was positively correlated with the irradiation dose. In Hepa1-6 syngeneic mouse models, the combination of PT with anti-PD-L1 increased tumor growth delay compared with PT alone, which was associated with increased tumor-infiltrating T cells and attenuated MDSC recruitment in the microenvironment. Furthermore, when PT was applied to the primary HCC tumor, anti-PD-L1 antibody-treated mice showed smaller synchronous unirradiated tumors. In conclusion, the response of HCC to PT was determined by tumor cell killing and the immunological response in the tumor microenvironment. The combination with the anti-PD-L1 antibody to enhance antitumor immunity was responsible for the therapeutic synergism for HCC treated with PT. Based on our results, we suggest that PT combined with anti-PD-L1 may be a promising therapeutic policy for HCC.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Correspondence: (M.-F.C.); (C.-C.W.); Tel.: +886-3-3281000 (ext. 7008) (M.-F.C.)
| | - Ping-Tsung Chen
- Department of Medical Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ching-Chuan Hsieh
- College of Medicine, Chang Gung University, Taoyuan333, Taiwan
- Department of Surgery, Chang Gung Memorial Hospital at Chiayi, Chiayi 613, Taiwan
| | - Chih-Chi Wang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: (M.-F.C.); (C.-C.W.); Tel.: +886-3-3281000 (ext. 7008) (M.-F.C.)
| |
Collapse
|
11
|
Nankali S, Worm ES, Thomsen JB, Stick LB, Bertholet J, Høyer M, Weber B, Mortensen HR, Poulsen PR. Intrafraction tumor motion monitoring and dose reconstruction for liver pencil beam scanning proton therapy. Front Oncol 2023; 13:1112481. [PMID: 36937392 PMCID: PMC10019817 DOI: 10.3389/fonc.2023.1112481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pencil beam scanning (PBS) proton therapy can provide highly conformal target dose distributions and healthy tissue sparing. However, proton therapy of hepatocellular carcinoma (HCC) is prone to dosimetrical uncertainties induced by respiratory motion. This study aims to develop intra-treatment tumor motion monitoring during respiratory gated proton therapy and combine it with motion-including dose reconstruction to estimate the delivered tumor doses for individual HCC treatment fractions. Methods Three HCC-patients were planned to receive 58 GyRBE (n=2) or 67.5 GyRBE (n=1) of exhale respiratory gated PBS proton therapy in 15 fractions. The treatment planning was based on the exhale phase of a 4-dimensional CT scan. Daily setup was based on cone-beam CT (CBCT) imaging of three implanted fiducial markers. An external marker block (RPM) on the patient's abdomen was used for exhale gating in free breathing. This study was based on 5 fractions (patient 1), 1 fraction (patient 2) and 6 fractions (patient 3) where a post-treatment control CBCT was available. After treatment, segmented 2D marker positions in the post-treatment CBCT projections provided the estimated 3D motion trajectory during the CBCT by a probability-based method. An external-internal correlation model (ECM) that estimated the tumor motion from the RPM motion was built from the synchronized RPM signal and marker motion in the CBCT. The ECM was then used to estimate intra-treatment tumor motion. Finally, the motion-including CTV dose was estimated using a dose reconstruction method that emulates tumor motion in beam's eye view as lateral spot shifts and in-depth motion as changes in the proton beam energy. The CTV homogeneity index (HI) The CTV homogeneity index (HI) was calculated as D 2 % - D 98 % D 50 % × 100 % . Results The tumor position during spot delivery had a root-mean-square error of 1.3 mm in left-right, 2.8 mm in cranio-caudal and 1.7 mm in anterior-posterior directions compared to the planned position. On average, the CTV HI was larger than planned by 3.7%-points (range: 1.0-6.6%-points) for individual fractions and by 0.7%-points (range: 0.3-1.1%-points) for the average dose of 5 or 6 fractions. Conclusions A method to estimate internal tumor motion and reconstruct the motion-including fraction dose for PBS proton therapy of HCC was developed and demonstrated successfully clinically.
Collapse
Affiliation(s)
- Saber Nankali
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Saber Nankali,
| | | | - Jakob Borup Thomsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Răileanu M, Straticiuc M, Iancu DA, Andrei RF, Radu M, Bacalum M. Proton irradiation induced reactive oxygen species promote morphological and functional changes in HepG2 cells. J Struct Biol 2022; 214:107919. [PMID: 36356881 DOI: 10.1016/j.jsb.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The increased use of proton therapy has led to the need of better understanding the cellular mechanisms involved. The aim of this study was to investigate the effects induced by the accelerated proton beam in hepatocarcinoma cells. An existing facility in IFIN-HH, a 3 MV Tandetron™ accelerator, was used to irradiate HepG2 human hepatocarcinoma cells with doses between 0 and 3 Gy. Colony formation was used to assess the influence of radiation on cell long-term replication. Also, the changes induced at the mitochondrial level were shown by increased ROS and ATP levels as well as a decrease in the mitochondrial membrane potential. An increased dose has induced DNA damages and G2/M cell cycle arrest which leads to caspase 3/7 mediated apoptosis and senescence induction. Finally, the morphological and ultrastructural changes were observed at the membrane level and the nucleus of the irradiated cells. Thus, proton irradiation induces both morphological and functional changes in HepG2 cells.
Collapse
Affiliation(s)
- Mina Răileanu
- University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele, Romania; Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania
| | - Mihai Straticiuc
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania
| | - Decebal-Alexandru Iancu
- University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele, Romania; Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania
| | - Radu-Florin Andrei
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania; University of POLITEHNICA of Bucharest, Faculty of Applied Sciences, Splaiul Independentei 313, Romania
| | - Mihai Radu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania.
| |
Collapse
|
13
|
Bae BK, Park HC, Yu JI, Yoo GS, Sinn DH, Choi MS, Oh JH. Trends in radiotherapy administration in the management of hepatocellular carcinoma: Analysis of a Korean tertiary hospital registry of hepatocellular carcinoma patients diagnosed between 2005 and 2017. Front Oncol 2022; 12:928119. [PMID: 35936747 PMCID: PMC9355731 DOI: 10.3389/fonc.2022.928119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose To present the trends in radiotherapy for the management of hepatocellular carcinoma (HCC) at a single tertiary referral hospital in South Korea. Materials and Methods We retrospectively reviewed prospectively collected registry data of patients newly diagnosed with HCC between January 2005 and December 2017 at the Samsung Medical Center. Trends in radiotherapy, delivery techniques, tumor stage, and age were evaluated. Results During the study period, 9,132 patients were newly diagnosed with HCC at our institution. Of these, 2,445 patients (26.8%) received radiotherapy for all lesions, including extrahepatic metastases; 1,865 patients (20.4%) received radiotherapy for intrahepatic lesions alone, and 469 patients (5.1%) received radiotherapy as initial management. Although the proportion of patients receiving radiotherapy increased slightly over the study period (24.2% vs. 26.6%), the proportions of patients receiving radiotherapy for intrahepatic lesions (16.8% vs. 21.9%) and as initial management (0.1% vs. 12.5%) increased dramatically. The majority of patients treated between 2005 and 2008 received three-dimensional conformal radiotherapy (56.3%), whereas the majority of patients treated between 2018 and 2021 received proton beam therapy (43.6%). With the technical developments, the overall survival (OS) of patients who received radiotherapy as initial management increased significantly (5-year OS: from 5.4% to 30.1%), and the OS difference between patients who did and did not receive radiotherapy as initial management significantly decreased (ratio of restricted mean survival time: from 0.383 to 0.544). Conclusion This registry-based, retrospective study indicated an increasing trend in the utilization of radiotherapy, adoption of advanced radiotherapy techniques, and OS improvements in patients with HCC.
Collapse
Affiliation(s)
- Bong Kyung Bae
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- *Correspondence: Hee Chul Park, ; Jeong Il Yu,
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- *Correspondence: Hee Chul Park, ; Jeong Il Yu,
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joo Hyun Oh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Lee B, Cho S, Park HC, Kang SW, Kim JS, Chung JB. Assessment of dose perturbations for metal stent in photon and proton radiotherapy plans for hepatocellular carcinoma. Radiat Oncol 2022; 17:125. [PMID: 35842636 PMCID: PMC9288675 DOI: 10.1186/s13014-022-02100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study aimed to investigate the dosimetric impact of metal stent for photon and proton treatment plans in hepatocellular carcinoma. METHODS With computed tomography data of a water-equivalent solid phantom, dose perturbation caused by a metal stent included in the photon and proton treatment of hepatocellular carcinoma was evaluated by comparing Eclipse and RayStation treatment planning system (TPS) to a Monte Carlo (MC) based dose calculator. Photon and proton plans were created with anterior-posterior/posterior-anterior (AP/PA) fields using a 6 MV beam and AP/PA fields of a wobbling beam using 150 MeV and a 10 cm ridge filter. The difference in dose distributions and dosimetric parameters were compared depending on the stent's positions (the bile duct (GB) and intestinal tract (GI)) and angles (0°, 45°, and 90°). Additionally, the dose variation in the target volume including the stent was comparatively evaluated through dose volume histogram (DVH) analysis. And the comparison of clinical cases was carried out in the same way. RESULTS Percentage differences in the dosimetric parameters calculated by MC ranged from - 7.0 to 3.9% for the photon plan and - 33.7 to 4.3% for the proton plan, depending on the angle at which the GB and GI stents were placed, compared to those without the stent. The maximum difference was observed at the minimum dose (Dmin), which was observed in both photon and proton plans in the GB and GI stents deployed at a 90° incidence angle. The parameter differences were greater in the proton plan than in photon plan. The target volume showed various dose variations depending on positions and angles of stent for both beams. Compared with no-stent, the doses within the target volume containing the GI and GB stents for the photon beam were overestimated in the high-dose area at 0°, nearly equal within 1% at 45°, and underestimated at 90°. These doses to the proton beam were underestimated at all angles, and the amount of underdose to the target volume increased with an increase in the stent angle. However, the difference was significantly greater with the proton plan than the photon plan. CONCLUSIONS Dose perturbations within the target volume due to the presence of the metal stent were not observed in the TPS calculations for photon and proton beams, but MC was used to confirm that there are dose variations within the target volume. The MC results found that delivery of the treatment beam avoiding the stent was the best method to prevent target volume underdose.
Collapse
Affiliation(s)
- Boram Lee
- Department of Radiation Oncology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Seongnam, Korea
| | - Sungkoo Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea.,Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang-Won Kang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Seongnam, Korea
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Seongnam, Korea
| | - Jin-Beom Chung
- Department of Radiation Oncology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Seongnam, Korea.
| |
Collapse
|
15
|
Kobeissi JM, Hilal L, Simone CB, Lin H, Crane CH, Hajj C. Proton Therapy in the Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:2900. [PMID: 35740567 PMCID: PMC9220794 DOI: 10.3390/cancers14122900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Proton radiation therapy plays a central role in the treatment of hepatocellular carcinoma (HCC). Because of the near-zero exit dose and improved sparing of normal liver parenchyma, protons are being used even in challenging scenarios, including larger or multifocal liver tumors, and those associated with vascular tumor thrombus. There is a mounting level of evidence that suggests that protons are superior to photons in terms of survival and toxicity outcomes, specifically the progression to liver failure. A randomized controlled trial comparing protons to photons is currently underway to verify this hypothesis.
Collapse
Affiliation(s)
- Jana M. Kobeissi
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (J.M.K.); (L.H.)
| | - Lara Hilal
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (J.M.K.); (L.H.)
| | - Charles B. Simone
- New York Proton Center, Department of Radiation Oncology, New York, NY 10035, USA; (C.B.S.2nd); (H.L.)
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY 10027, USA;
| | - Haibo Lin
- New York Proton Center, Department of Radiation Oncology, New York, NY 10035, USA; (C.B.S.2nd); (H.L.)
| | - Christopher H. Crane
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY 10027, USA;
| | - Carla Hajj
- New York Proton Center, Department of Radiation Oncology, New York, NY 10035, USA; (C.B.S.2nd); (H.L.)
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY 10027, USA;
| |
Collapse
|
16
|
Zhao W, Jiang X, Weisenthal K, Ma J, Botticelli EM, Zhou Y, Hedley-Whyte ET, Wang B, Swearingen B, Soberman RJ, Klibanski A, Zhang X. High Histone Deacetylase 2/3 Expression in Non-Functioning Pituitary Tumors. Front Oncol 2022; 12:875122. [PMID: 35646715 PMCID: PMC9136140 DOI: 10.3389/fonc.2022.875122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Epigenetic modification of chromatin is involved in non-malignant pituitary neoplasia by causing abnormal expression of tumor suppressors and oncogenes. These changes are potentially reversible, suggesting the possibility of targeting tumor cells by restoring the expression of epigenetically silenced tumor suppressors. The role of the histone deacetylase (HDAC) family in pituitary tumorigenesis is not known. We report that HDAC2 and 3, Class I HDAC members, are highly expressed in clinically non-functioning pituitary adenomas (NFPAs) compared to normal pituitary (NP) samples as determined by RT-PCR and immunohistochemical staining (IHC). Treatment of a human NFPA derived folliculostellate cell line, PDFS, with the HDAC3 inhibitor RGFP966 for 96 hours resulted in inhibition of cell proliferation by 70%. Furthermore, the combination of RGFP966 with a methyltransferase/DNMT inhibitor, 5’-aza-2’-deoxycytidine, led to the restoration of the expression of several tumor suppressor genes, including STAT1, P16, PTEN, and the large non-coding RNA tumor suppressor MEG3, in PDFS cells. Our data support the hypothesis that both histone modification and DNA methylation are involved in the pathogenesis of human NFPAs and suggest that targeting HDACs and DNA methylation can be incorporated into future therapies.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaobin Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karrin Weisenthal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jun Ma
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Erin M. Botticelli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Neuropathology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Baiyao Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Xun Zhang,
| |
Collapse
|
17
|
Lewis S, Dawson L, Barry A, Stanescu T, Mohamad I, Hosni A. Stereotactic body radiation therapy for hepatocellular carcinoma: from infancy to ongoing maturity. JHEP Rep 2022; 4:100498. [PMID: 35860434 PMCID: PMC9289870 DOI: 10.1016/j.jhepr.2022.100498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shirley Lewis
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Laura Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Aisling Barry
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Teodor Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Centre, Jordan
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
- Corresponding author. Address: Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.
| |
Collapse
|
18
|
Xing S, Shin J, Pursley J, Correa-Alfonso CM, Depauw N, Domal S, Withrow J, Bolch W, Grassberger C, Paganetti H. A dynamic blood flow model to compute absorbed dose to circulating blood and lymphocytes in liver external beam radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac4da4. [PMID: 35061601 PMCID: PMC8985306 DOI: 10.1088/1361-6560/ac4da4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 01/01/2023]
Abstract
We have developed a novel 4D dynamic liver blood flow model, capable of accurate dose estimation to circulating blood cells during liver-directed external beam radiotherapy, accounting for blood recirculation and radiation delivery time structure. Adult male and adult female liver computational phantoms with detailed vascular trees were developed to include the hepatic arterial, hepatic portal venous, and hepatic venous trees. A discrete time Markov Chain approach was applied to determine the spatiotemporal distribution of 105blood particles (BP) in the human body based on reference values for cardiac output and organ blood volumes. For BPs entering the liver, an explicit Monte Carlo simulation was implemented to track their propagation along ∼2000 distinct vascular pathways through the liver. The model tracks accumulated absorbed dose from time-dependent radiation fields with a 0.1 s time resolution. The computational model was then evaluated for 3 male and 3 female patients receiving photon (VMAT and IMRT) and proton (passive SOBP and active PBS) treatments. The dosimetric impact of treatment modality, delivery time, and fractionation on circulating blood cells was investigated and quantified using the mean dose (μdose,b),V>0Gy,V>0.125Gy,andD2%. Average reductions inμdose,b,V>0Gy,V>0.125GyandD2%of 45%, 6%, 53%, 19% respectively, were observed for proton treatments as compared to photon treatments. Our simulation also showed thatV>0Gy,V>0.125Gy, andD2%were highly sensitive to the beam-on time. BothV>0GyandV>0.125Gyincreased with beam-on time, whereasD2%decreased with increasing beam-on time, demonstrating the tradeoff between low dose to a large fraction of blood cells and high dose to a small fraction of blood cells. Consequently, proton treatments are not necessarily advantageous in terms of dose to the blood simply based on integral dose considerations. Instead, both integral dose and beam-on time can substantially impact relevant dosimetric indices.
Collapse
Affiliation(s)
- Shu Xing
- Massachusetts General Hospital, Harvard Medical school, Boston, MA
| | - Jungwook Shin
- Massachusetts General Hospital, Harvard Medical school, Boston, MA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jennifer Pursley
- Massachusetts General Hospital, Harvard Medical school, Boston, MA
| | | | - Nicolas Depauw
- Massachusetts General Hospital, Harvard Medical school, Boston, MA
| | - Sean Domal
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Julia Withrow
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Wesley Bolch
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | | | - Harald Paganetti
- Massachusetts General Hospital, Harvard Medical school, Boston, MA
| |
Collapse
|
19
|
Chen CL, Ong AD, Cheng JY, Yong CC, Lin CC, Chen CY, Cheng YF. Proton beam therapy to bridge or downstage locally advanced hepatocellular carcinoma to living donor liver transplantation. Hepatobiliary Surg Nutr 2022; 11:103-111. [PMID: 35284524 DOI: 10.21037/hbsn-21-379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Chao-Long Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| | - Aldwin D Ong
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| | - Jen-Yu Cheng
- Liver Transplantation Center, Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| | - Chee-Chien Yong
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| | - Chih-Che Lin
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| | - Chih-Yi Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| | - Yu-Fan Cheng
- Liver Transplantation Center, Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, China
| |
Collapse
|
20
|
Subramanian S, Mallia MB, Shinto AS, Mathew AS. Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncol Ther 2021; 9:273-295. [PMID: 34046873 PMCID: PMC8593115 DOI: 10.1007/s40487-021-00154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global killer with preponderance in Asian and African countries. It poses a challenge for successful management in less affluent or developing nations like India, with large populations and limited infrastructures. This review aims to assess the available options and future directions for management of HCC applicable to such countries. While summarizing current and emerging clinical strategies for detection, staging and therapy of the disease, it highlights radioisotope- and radioactivity-based strategies as part of an overall program. Using the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system as a base, it evaluates the applicability of different therapeutic approaches and their synergistic combination(s) in the context of a patient-specific dynamic results-based strategy. It distills the conclusions of multiple HCC management-focused consensus recommendations to provide a picture of clinical strategies, especially radiation-related approaches. Additionally, it discusses the logistical and economic feasibility of these approaches in the context of the limitations of the burdened public health infrastructure in India (and like nations) and highlights possible strategies both at the clinical level and in terms of an administrative health policy on HCC to provide the maximum possible benefit to the widest swathe of the affected population.
Collapse
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Ajit S Shinto
- Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | | |
Collapse
|
21
|
Worm ES, Hansen R, Høyer M, Weber B, Mortensen H, Poulsen PR. Uniform versus non-uniform dose prescription for proton stereotactic body radiotherapy of liver tumors investigated by extensive motion-including treatment simulations. Phys Med Biol 2021; 66. [PMID: 34544071 DOI: 10.1088/1361-6560/ac2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Compared to x-ray-based stereotactic body radiotherapy (SBRT) of liver cancer, proton SBRT may reduce the normal liver tissue dose. For an optimal trade-off between target and liver dose, a non-uniform dose prescription is often applied in x-ray SBRT, but lacks investigation for proton SBRT. Also, proton SBRT is prone to breathing-induced motion-uncertainties causing target mishit or dose alterations by interplay with the proton delivery. This study investigated non-uniform and uniform dose prescription in proton-based liver SBRT, including effects of rigid target motion observed during planning-4DCT and treatment. The study was based on 42 x-ray SBRT fractions delivered to 14 patients under electromagnetic motion-monitoring. For each patient, a non-uniform and uniform proton plan were made. The uniform plan was renormalized to be iso-toxic with the non-uniform plan using a NTCP model for radiation-induced liver disease. The motion data were used in treatment simulations to estimate the delivered target dose with rigid motion. Treatment simulations were performed with and without a repainting scheme designed to mitigate interplay effects. Including rigid motion, the achieved CTV mean dose after three fractions delivered without repainting was on average (±SD) 24.8 ± 8.4% higher and the D98%was 16.2 ± 11.3% higher for non-uniform plans than for uniform plans. The interplay-induced increase in D2%relative to the static plans was reduced from 3.2 ± 4.1% without repainting to -0.5 ± 1.7% with repainting for non-uniform plans and from 1.5 ± 2.0% to 0.1 ± 1.3% for uniform plans. Considerable differences were observed between estimated CTV doses based on 4DCT motion and intra-treatment motion. In conclusion, non-uniform dose prescription in proton SBRT may provide considerably higher tumor doses than uniform prescription for the same complication risk. Due to motion variability, target doses estimated from 4DCT motion may not accurately reflect the delivered dose. Future studies including modelling of deformations and associated range uncertainties are warranted to confirm the findings.
Collapse
Affiliation(s)
| | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Hanna Mortensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Kim KS, Wu HG. Who Will Benefit from Charged-Particle Therapy? Cancer Res Treat 2021; 53:621-634. [PMID: 34176253 PMCID: PMC8291184 DOI: 10.4143/crt.2021.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Charged-particle therapy (CPT) such as proton beam therapy (PBT) and carbon-ion radiotherapy (CIRT) exhibit substantial physical and biological advantages compared to conventional photon radiotherapy. As it can reduce the amount of radiation irradiated in the normal organ, CPT has been mainly applied to pediatric cancer and radioresistent tumors in the eloquent area. Although there is a possibility of greater benefits, high set-up cost and dearth of high level of clinical evidence hinder wide applications of CPT. This review aims to present recent clinical results of PBT and CIRT in selected diseases focusing on possible indications of CPT. We also discussed how clinical studies are conducted to increase the number of patients who can benefit from CPT despite its high cost.
Collapse
Affiliation(s)
- Kyung Su Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul,
Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul,
Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
23
|
Bajaj G, Sundaram K, Jambhekar K, Ram R. Imaging After Locoregional Therapy for Hepatocellular Carcinoma with Emphasis on LIRADS Treatment Response Assessment Criteria. Semin Ultrasound CT MR 2021; 42:318-331. [PMID: 34130846 DOI: 10.1053/j.sult.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radiologists play an essential role in assessing hepatocellular carcinoma treatment response and help guide further clinical management of patients. Interpretation of treatment response after locoregional therapy is challenging. The post-treatment imaging findings vary and depend on the type of treatment, the degree of treatment response, time interval after treatment and several other factors. Given the widespread use of local-regional therapies, understanding the appearance of treated lesions has become crucial to allow for a more accurate interpretation of post-treatment imaging. Several response criteria including the recently introduced Liver Imaging Reporting and Data System (LI-RADS) treatment response algorithm (TRA) are currently used to assess treatment response. This review article describes the imaging assessment of HCC treatment response after several locoregional therapies using various response assessment criteria, emphasizing the LI-RADS treatment algorithm.
Collapse
Affiliation(s)
- Gitanjali Bajaj
- Associate professor of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR.
| | - Karthik Sundaram
- Assistant Professor of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kedar Jambhekar
- Professor of Radiology, University of Arkansas for Medical Sciences, AR
| | - Roopa Ram
- Associate professor of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
24
|
Brasse D, Burckel H, Marchand P, Rousseau M, Ouadi A, Vanstalle M, Finck C, Laquerriere P, Boisson F. Comparison of the [ 18F]-FDG and [ 18F]-FLT PET Tracers in the Evaluation of the Preclinical Proton Therapy Response in Hepatocellular Carcinoma. Mol Imaging Biol 2021; 23:724-732. [PMID: 33847900 DOI: 10.1007/s11307-021-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The main objective of the present study was to compare the 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) and 3'-[18F]fluoro-3'-deoxythymidine ([18F]-FLT) PET imaging biomarkers for the longitudinal follow-up of small animal proton therapy studies in the context of hepatocellular carcinoma (HCC). PROCEDURES SK-HEP-1 cells were injected into NMRI nude mice to mimic human HCC. The behavior of [18F]-FDG and [18F]-FLT tumor uptake was evaluated after proton therapy procedures. The proton single-fraction doses were 5, 10, and 20 Gy, with a dose rate of 10 Gy/min. The experimental protocol consisted of 8 groups of 10 mice, each group experiencing a particular dose/radiotracer condition. A reference PET exam was performed on each mouse the day before the irradiation procedure, followed by PET exams every 3 days up to 16 days after irradiation. RESULTS [18F]-FDG uptake showed a linear dose-dependent increase in the first days after treatment (37%, p < 0.05), while [18F]-FLT uptake decreased in a dose-dependent manner (e.g., 21% for 5 Gy compared to 10 Gy, p = 1.1e-2). At the later time point, [18F]-FDG normalized activity showed an 85% decrease (p < 0.01) for both 10 and 20 Gy doses and no variation for 5 Gy. Conversely, a significant 61% (p = 0.002) increase was observed for [18F]-FLT normalized activity at 5 Gy and no variation for higher doses. CONCLUSION We showed that the use of the [18F]-FDG and [18F]-FLT radiolabeled molecules can provide useful and complementary information for longitudinal follow-up of small animal proton therapy studies in the context of HCC. [18F]-FDG PET imaging enables a treatment monitoring several days/weeks postirradiation. On the other hand, [18F]-FLT could represent a good candidate to monitor the treatment few days postirradiation, in the context of hypo-fractioned and close irradiation planning. This opens new perspectives in terms of treatment efficacy verification depending on the irradiation scheme.
Collapse
Affiliation(s)
- David Brasse
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France.
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, 67000, Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Marc Rousseau
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Ali Ouadi
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Christian Finck
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | | | - Frédéric Boisson
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| |
Collapse
|
25
|
Tsai YL, Takei H, Iizumi T, Okumura T, Sekino Y, Numajiri H, Ishikawa H, Sakae T, Sakurai H. Capacity of proton beams in preserving normal liver tissue during proton beam therapy for hepatocellular carcinoma. JOURNAL OF RADIATION RESEARCH 2021; 62:133-141. [PMID: 33392617 PMCID: PMC7779355 DOI: 10.1093/jrr/rraa098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Unirradiated liver volume (ULV) preservation rate is an important factor associated with radiation-induced liver disease (RILD) in patients with hepatocellular carcinoma (HCC) undergoing proton beam therapy (PBT). The purpose of this study is to identify the predictors for ULV preservation and quantify the capacity of proton beams in normal liver sparing during PBT. We reviewed planning data of 92 patients with single intrahepatic HCC tumors undergoing PBT. The potential clinical and planning factors that may affect ULV preservation were involved in multiple linear regression for ULV preservation rate. The significant factors were determined to be predictors and their influences were quantified. The median ULV preservation rate was 62.08%. All the assessed clinical factors showed significant effects on ULV preservation rate: clinical target volume (CTV), P < 0.001; portal vein tumor thrombosis (PVTT), P = 0.010; left lobe tumor, P = 0.010. In contrast, none of the planning factors demonstrated significance. The coefficients of significant factors in multiple linear regression were 60.85 for intercept, -0.02 for CTV, -9.01 for PVTT and 8.31 for left lobe tumors. The capacity of proton beams to spare normal liver tissue during PBT for HCC is mainly affected by clinical factors. The baseline of the ULV preservation rate is 60.85%, decreasing 0.02% with each milliliter of CTV increase and 9.01% for tumors with PVTT, and increasing 8.31% for tumors limited to the left lobe. Further clinical studies should be carried out to correlate our dosimetric findings with clinical outcomes.
Collapse
Affiliation(s)
- Yu-Lun Tsai
- Corresponding author. Department of Radiation Oncology, Cathay General Hospital, 280 Renai Rd. Sec.4, Taipei, Taiwan. Tel: +886227082121#3711; E-mail:
| | - Hideyuki Takei
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Iizumi
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Okumura
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Sekino
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Numajiri
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Ishikawa
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeji Sakae
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Sakurai
- Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Yoo GS, Ahn WG, Kim SY, Kang W, Choi C, Park HC. Radiation-induced abscopal effect and its enhancement by programmed cell death 1 blockade in the hepatocellular carcinoma: A murine model study. Clin Mol Hepatol 2020; 27:144-156. [PMID: 33280350 PMCID: PMC7820196 DOI: 10.3350/cmh.2020.0095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS The abscopal effect, a rare phenomenon induced by radiation, can be reinforced by immunotherapy. Although radiation therapy and immunotherapy are increasingly being utilized for the treatment of hepatocellular carcinoma (HCC), whether immunotherapy could boost the abscopal effect remains unclear. In this study, we aimed to elucidate the immunological mechanisms underlying the abscopal effect induced by the combination of irradiation and immunotherapy in a murine HCC model. METHODS A syngeneic HCC mouse model was established by transplanting murine Hepa 1-6 HCC cells into both hind legs of immunocompetent C57BL/6 mice. The tumors on the right hind legs were irradiated, and abscopal effects were observed in the non-irradiated tumors on the left hind leg with or without the coadministration of anti-programmed cell death 1 (PD-1) antibodies. Flow cytometric analyses were performed to analyze the distributions of immune cells infiltrating both irradiated and non-irradiated tumors and the tumor-draining lymph nodes (TDLNs). RESULTS Administration of 16 Gy in two fractions more effectively inhibited the growth of both irradiated and nonirradiated tumors with higher tumor infiltration of cytotoxic T cells than 8 Gy did in a single fraction. The higher dose also increased activated dendritic cells in TDLNs, which had higher expression of the programmed cell death ligand 1. Coadministration of anti-PD-1 antibodies significantly enhanced the abscopal effect and increased infiltration of activated cytotoxic T cells in both irradiated and non-irradiated tumors. CONCLUSION Our findings show that adding anti-PD-1 therapy to radiation enhanced the abscopal effect in a syngeneic murine model of HCC.
Collapse
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea.,Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Gyun Ahn
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Shin-Yeong Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Wonseok Kang
- Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medicine, Samsung Medical Center, Seoul, Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea.,Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Abstract
External beam radiotherapy (EBRT) has improved efficacy and safety with advancements in technology and techniques. EBRT plays an important role in management of hepatocellular carcinoma (HCC). In resectable cases, EBRT serves as a bridge to transplantation or improves local control through adjuvant radiotherapy. In unresectable patients, EBRT offers high local control rates. In metastatic settings, EBRT provides effective palliation. This review presents an overview of radiotherapy treatment modalities used for HCC, current treatment guidelines for the role of EBRT in HCC, clinical outcomes between various EBRT approaches and other locoregional treatments for HCC, and the future role of EBRT for HCC.
Collapse
Affiliation(s)
- Chien Peter Chen
- Department of Radiation Oncology, Scripps Radiation Therapy Center, 10670 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| |
Collapse
|
28
|
Yoo GS, Yu JI, Park HC, Hyun D, Jeong WK, Lim HY, Choi MS, Ha SY. Do Biliary Complications after Proton Beam Therapy for Perihilar Hepatocellular Carcinoma Matter? Cancers (Basel) 2020; 12:cancers12092395. [PMID: 32847035 PMCID: PMC7565009 DOI: 10.3390/cancers12092395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
We aimed to evaluate the biliary complications and efficacy of proton beam therapy (PBT) for hepatocellular carcinoma (HCC). We retrospectively analyzed 167 patients who received PBT with ≥ 75 GyRBE of biological effective dose with 𝛼/β = 10 for primary HCC. The perihilar region was defined as a 1-cm area extending from the right, left, and common hepatic ducts, including the gallbladder and cystic duct. PBT-related biliary complications were defined as follows: significant elevation in bilirubin level to > 3.0 mg/dL; elevation to more than twice of the baseline level after the completion of PBT; or newly developed radiological biliary abnormalities, which were not caused by HCC progression, comorbidities, or other treatments. Eighty (47.9%) had perihilar HCC. PBT-related events occurred in seven (4.2%), three of whom had perihilar HCC. Radiologic biliary abnormalities developed in 12 patients (7.2%); however, no events were PBT-related. All patients who experienced PBT-related biliary complications had underlying liver cirrhosis. The albumin-bilirubin grade was identified as an independent factor associated with PBT-related biliary complications. PBT at the current dose showed a low rate of PBT-related biliary complications even for patients with perihilar HCC. PBT for HCC patients with risk factors requires attention to reduce PBT-related biliary complications.
Collapse
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (G.S.Y.); (J.I.Y.)
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (G.S.Y.); (J.I.Y.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (G.S.Y.); (J.I.Y.)
- Correspondence: ; Tel.: +82-2-3410-2612; Fax: +82-2-3410-2619
| | - Dongho Hyun
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.H.); (W.K.J.)
| | - Woo Kyoung Jeong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.H.); (W.K.J.)
| | - Ho Yeong Lim
- Department of Internal Medicine (Division of Hematology-Oncology), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Moon Seok Choi
- Department of Internal Medicine (Division of Gastroenterology), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| |
Collapse
|
29
|
Cheng JY, Liu CM, Wang YM, Hsu HC, Huang EY, Huang TT, Lee CH, Hung SP, Huang BS. Proton versus photon radiotherapy for primary hepatocellular carcinoma: a propensity-matched analysis. Radiat Oncol 2020; 15:159. [PMID: 32605627 PMCID: PMC7325065 DOI: 10.1186/s13014-020-01605-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Proton radiotherapy has a dosimetric advantage over photon radiotherapy. Many retrospective studies have shown promising results with proton radiotherapy in treating hepatocellular carcinoma (HCC). However, clinical evidence demonstrating the benefit of protons over photons is still limited. We therefore compared the clinical outcomes of the two modalities using medical research databases from our medical foundation. Methods We conducted a propensity score-matched cohort study based on our multi-institution medical organization research database. From January 2007 to January 2018, a total of 413 patients (photon: 349; proton: 64) who were diagnosed with HCC and primarily treated with radiotherapy with curative intent were enrolled. Overall survival (OS) and radiation-induced liver disease (RILD) were assessed. Stratified analysis was also performed to evaluate the heterogeneous effects of the two arms. Results A total of 110 patients (photon: 55; proton: 55) were analyzed in the propensity-matched series. The matched groups were balanced for baseline tumor risk factors. Cox regression analysis revealed a significant survival benefit in the proton group (p = 0.032, HR 0.56, 95% CI 0.33–0.96). The median overall survival in the proton group was not reached and that in the photon group was 17.4 months. The biological equivalent dose of radiotherapy was significantly higher in the proton group than in the photon group (median, 96.56 Gray [relative biological effectiveness] vs. 62.5 Gray, p < 0.001). The risk of RILD was significantly lower in the proton group (11.8% vs. 36%, p = 0.004). Conclusions Proton radiotherapy could deliver a higher radiation dose than photon radiotherapy without increasing the risk of RILD and result in a better overall survival rate for those diagnosed with HCC and treated with radiotherapy with curative intent.
Collapse
Affiliation(s)
- Jen-Yu Cheng
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Min Liu
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsuan-Chih Hsu
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Ting Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hsin Lee
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Ping Hung
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Bing-Shen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Clinical Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
30
|
Saini G, Shukla R, Sood KS, Shukla SK, Chandra R. Role of Proton Beam Therapy in Current Day Radiation Oncology Practice. ASIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.1055/s-0040-1713703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractProton beam therapy (PBT), because of its unique physics of no–exit dose deposition in the tissue, is an exciting prospect. The phenomenon of Bragg peak allows protons to deposit their almost entire energy towards the end of the path of the proton and stops any further dose delivery. Braggs peak equips PBT with superior dosimetric advantage over photons or electrons because PBT doesn’t traverse the target/body but is stopped sharply at an energy dependent depth in the target/body. It also has no exit dose. Because of no exit dose and normal tissue sparing, PBT is hailed for its potential to bring superior outcomes. Pediatric malignancies is the most common malignancy where PBT have found utmost application. Nowadays, PBT is also being used in the treatment of other malignancies such as carcinoma prostate, carcinoma breast, head and neck malignancies, and gastrointestinal (GI) malignancies. Despite advantages of PBT, there is not only a high cost of setting up of PBT centers but also a lack of definitive phase-III data. Therefore, we review the role of PBT in current day practice of oncology to bring out the nuances that must guide the practice to choose suitable patients for PBT.
Collapse
Affiliation(s)
- Gagan Saini
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Rashmi Shukla
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| | - Kanika S. Sood
- Department of Radiation Oncology, Dharamshila Narayana Superspeciality Hospital, New Delhi, India
| | - Sujit K. Shukla
- Department of Radiation Oncology, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Ritu Chandra
- Department of Radiation Oncology, MAX Super Speciality Hospital Patparganj and Vaishali, New Delhi, India
| |
Collapse
|
31
|
Chun SY, Nam KS, Lee KS. Proton Beam Induces P53-mediated Cell Cycle Arrest in HepG2 Hepatocellular Carcinoma Cells. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Comparison of clinical outcomes between passive scattering versus pencil-beam scanning proton beam therapy for hepatocellular carcinoma. Radiother Oncol 2020; 146:187-193. [PMID: 32179362 DOI: 10.1016/j.radonc.2020.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Our study aimed to compare the oncologic outcomes and toxicities between passive scattering (PS) proton beam therapy (PBT) and pencil-beam scanning (PBS) PBT for primary hepatocellular carcinoma (HCC). MATERIALS AND METHODS The multidisciplinary team for liver cancer identified the PBT candidates who were ineligible for resection or radiofrequency ablation. We retrospectively analyzed 172 patients who received PBT for primary HCC from January 2016 to December 2017. The PS with wobbling method was applied with both breath-hold and regular breathing techniques, while the PBS method was utilized only for regular breathing techniques covering the full amplitude of respiration. To maintain the balance of the variables between the PS and PBS groups, we performed propensity score matching. RESULTS The median follow-up duration for the total cohort was 14 months (range, 1-31 months). After propensity score matching, a total of 103 patients (70 in the PS group and 33 in the PBS group) were included in analysis. There were no significant differences in the rates of overall survival (OS), in-field local control (IFLC), out-field intrahepatic control (OFIHC), extrahepatic progression-free survival (EHPFS), and complete response (CR) between the matched groups. In the subgroup analyses, no subgroup showed a significant difference in IFLC between the PS and PBS groups. There was also no significant difference in the toxicity profiles between the groups. CONCLUSION There are no differences in oncologic outcomes, including OS, IFLC, OFIHC, EHPFS, and CR rates, or in the toxicity profiles between PS and PBS PBT for primary HCC.
Collapse
|
33
|
Takahashi H, Sekino Y, Mori K, Okumura T, Nasu K, Fukuda K, Masuoka S, Iizumi T, Hasegawa N, Sakurai H, Minami M. Indicator for local recurrence of hepatocellular carcinoma after proton beam therapy: analysis of attenuation difference between the irradiated tumor and liver parenchyma on contrast enhancement CT. Br J Radiol 2019; 93:20190375. [PMID: 31670572 DOI: 10.1259/bjr.20190375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES We aimed to identify dynamic CT features that can be used for prediction of local recurrence of hepatocellular carcinoma (HCC) after proton beam therapy (PBT). METHODS We retrospectively retrieved CT scans of patients with PBT-treated HCC, taken between January 2004 and December 2016. 17 recurrent lesions and 34 non-recurrent lesions were retrieved. The attenuation difference between irradiated tumor and irradiated parenchyma (ADHCC-IP) was compared in the two groups by using the Mann-Whitney U test. Cut-off value of ADHCC-IP was estimated by using the Youden index. RESULTS The follow-up time after PBT initiation ranged from 374 to 2402 days (median, 1069 days) in recurrent lesions, and 418 to 2923 days (median, 1091.5 days) in non-recurrent lesions (p = 0.892). The time until appearance of local recurrence after PBT initiation ranged from 189 to 2270 days (median, 497 days). ADHCC-IP of recurrent lesions [mean, -21.8 Hounsfield units (HU); from -95 to -31 HU] was significantly greater than that of non-recurrent lesions (mean, -51.7 HU; from -117 to -12 HU) at 1-2 years in portal venous phase (p = 0.039). 5-year local tumor control rates were 0.93 and 0.56 in lesions with ADHCC-IP at 1-2 years in PVP < -55 and ≥ -55 HU, respectively. CONCLUSION The attenuation difference between irradiated HCC and irradiated liver parenchyma in portal venous phase at 1-2 years after PBT can predict long-term local recurrence of HCC after treatment. ADVANCES IN KNOWLEDGE We identified a cut-off value for contrast enhancement of HCC after PBT that could predict future local recurrence.
Collapse
Affiliation(s)
- Hiroaki Takahashi
- University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology, Ibaraki, Japan
| | - Yuta Sekino
- University of Tsukuba Hospital, Department of Radiation Oncology and Proton Medical Research Center, Ibaraki, Japan
| | - Kensaku Mori
- University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology, Ibaraki, Japan
| | - Toshiyuki Okumura
- University of Tsukuba Hospital, Department of Radiation Oncology and Proton Medical Research Center, Ibaraki, Japan
| | - Katsuhiro Nasu
- University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology, Ibaraki, Japan
| | - Kuniaki Fukuda
- University of Tsukuba Hospital, Department of Gastroenterology, Ibaraki, Japan
| | - Sota Masuoka
- University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology, Ibaraki, Japan
| | - Takashi Iizumi
- University of Tsukuba Hospital, Department of Radiation Oncology and Proton Medical Research Center, Ibaraki, Japan
| | - Naoyuki Hasegawa
- University of Tsukuba Hospital, Department of Gastroenterology, Ibaraki, Japan
| | - Hideyuki Sakurai
- University of Tsukuba Hospital, Department of Radiation Oncology and Proton Medical Research Center, Ibaraki, Japan
| | - Manabu Minami
- University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology, Ibaraki, Japan
| |
Collapse
|
34
|
Yuan TZ, Zhan ZJ, Qian CN. New frontiers in proton therapy: applications in cancers. Cancer Commun (Lond) 2019; 39:61. [PMID: 31640788 PMCID: PMC6805548 DOI: 10.1186/s40880-019-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Proton therapy offers dominant advantages over photon therapy due to the unique depth-dose characteristics of proton, which can cause a dramatic reduction in normal tissue doses both distal and proximal to the tumor target volume. In turn, this feature may allow dose escalation to the tumor target volume while sparing the tumor-neighboring susceptible organs at risk, which has the potential to reduce treatment toxicity and improve local control rate, quality of life and survival. Some dosimetric studies in various cancers have demonstrated the advantages over photon therapy in dose distributions. Further, it has been observed that proton therapy confers to substantial clinical advantage over photon therapy in head and neck, breast, hepatocellular, and non-small cell lung cancers. As such, proton therapy is regarded as the standard modality of radiotherapy in many pediatric cancers from the technical point of view. However, due to the limited clinical evidence, there have been concerns about the high cost of proton therapy from an economic point of view. Considering the treatment expenses for late radiation-induced toxicities, cost-effective analysis in many studies have shown that proton therapy is the most cost-effective option for brain, head and neck and selected breast cancers. Additional studies are warranted to better unveil the cost-effective values of proton therapy and to develop newer ways for better protection of normal tissues. This review aims at reviewing the recent studies on proton therapy to explore its benefits and cost-effectiveness in cancers. We strongly believe that proton therapy will be a common radiotherapy modality for most types of solid cancers in the future.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China
| | - Ze-Jiang Zhan
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, 510095, Guangdong, P. R. China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China.
| |
Collapse
|
35
|
Decreased IL-6 induces sensitivity of hepatocellular carcinoma cells to sorafenib. Pathol Res Pract 2019; 215:152565. [DOI: 10.1016/j.prp.2019.152565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
|
36
|
Angiographic Findings in Patients with Hepatocellular Carcinoma Previously Treated Using Proton Beam Therapy. JOURNAL OF ONCOLOGY 2019; 2019:3580379. [PMID: 31354819 PMCID: PMC6637669 DOI: 10.1155/2019/3580379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 01/26/2023]
Abstract
Given the growing interest in using proton beam therapy (PBT) for hepatocellular carcinoma (HCC), it is possible that transarterial chemoembolization (TACE) could be used for selected patients who have previously undergone PBT. However, these cases can be technically challenging to treat and require appropriate preparation. Thus, we aimed to identify angiographic findings in this setting. We retrospectively identified 31 patients (28 men and 3 women, mean age: 69 years, range: 43–84 years) who underwent hepatic angiography plus TACE or transarterial infusion chemotherapy (TAI) for HCC that recurred after PBT (July 2007 to June 2018). We discovered four angiographic findings, which we speculate were related to the previous PBT. 18 patients experienced recurrence in the irradiated field, and 13 patients experienced recurrence outside the irradiated field. 29 patients underwent TACE and only 2 patients underwent TAI. The mean number of previous PBT treatments was 1.3 ± 0.6 (range: 1–4). The median interval from the earliest PBT treatment to hepatic angiography was 559 days (range: 34–5,383 days), and the median interval from the latest PBT treatment to hepatic angiography was 464 days (range: 34–5,383 days). Abnormal staining of the irradiated liver parenchyma was observed in 22 patients, which obscured the angiographic tumor staining in 4 patients. Development of a tortuous tumor feeder vessel was observed in 13 patients. Development of an extrahepatic collateral pathway was observed in 7 patients. Development of an arterioportal or arteriovenous shunt was observed in 4 patients. Based on these findings, we conclude that PBT was associated with various angiographic findings during subsequent transarterial chemotherapy for recurrent HCC, and familiarity with these findings will be important in developing appropriate treatment plans.
Collapse
|
37
|
Chen CP. Role of Radiotherapy in the Treatment of Hepatocellular Carcinoma. J Clin Transl Hepatol 2019; 7:183-190. [PMID: 31293919 PMCID: PMC6609847 DOI: 10.14218/jcth.2018.00060] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
The role of radiotherapy in the treatment of hepatocellular carcinoma (HCC) has evolved over the past few decades with the advancement of technology and improved imaging. Radiotherapy can offer high local control rates in unresectable HCC, including cases with major vascular involvement, and can provide a modality to help bridge patients to potentially curative resection or transplantation. In metastatic cases, radiotherapy can provide good palliation. This review focuses on the common radiotherapy treatment modalities used for HCC, provides outcome comparisons of these radiotherapy techniques to outcomes with other treatment modalities for HCC, and highlights the discrepancy of the role of radiotherapy in HCC amongst the current available treatment guidelines.
Collapse
Affiliation(s)
- Chien Pong Chen
- Correspondence to: Chien Pong Chen, Department of Radiation Oncology, Scripps MD Anderson Cancer Center, 10670 John Jay Hopkins Drive, San Diego, CA 92121, USA. Tel: +1-858-554-4100, E-mail:
| |
Collapse
|
38
|
Choi C, Son A, Lee GH, Shin SW, Park S, Ahn SH, Chung Y, Yu JI, Park HC. Targeting DNA-dependent protein kinase sensitizes hepatocellular carcinoma cells to proton beam irradiation through apoptosis induction. PLoS One 2019; 14:e0218049. [PMID: 31194786 PMCID: PMC6563991 DOI: 10.1371/journal.pone.0218049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies have highlighted the implications of genetic variations in the relative biological effectiveness (RBE) of proton beam irradiation over conventional X-ray irradiation. Proton beam radiotherapy is a reasonable radiotherapy option for hepatocellular carcinoma (HCC), but the impact of genetic difference on the HCC RBE remains unknown. Here, we determined proton RBE in human HCC cells by exposing them to various doses of either 6-MV X-rays or 230-MeV proton beams. Clonogenic survival assay revealed variable radiosensitivity of human HCC cell lines with survival fraction at 2 Gy ranging from 0.38 to 0.83 and variable proton RBEs with 37% survival fraction ranging from 1.00 to 1.48. HCC cells appeared more sensitive to proton irradiation than X-rays, with more persistent activation of DNA damage repair proteins over time. Depletion of a DNA damage repair gene, DNA-PKcs, by siRNA dramatically increased the sensitivity of HCC cells to proton beams with a decrease in colony survival and an increase in apoptosis. Our findings suggest that there are large variations in proton RBE in HCC cells despite the use of a constant RBE of 1.1 in the clinic and targeting DNA-PKcs in combination with proton beam therapy may be a promising regimen for treating HCC.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Ga-Haeng Lee
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Sang Hee Ahn
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoonsun Chung
- Department of Nuclear Engineering, Hanyang University, Seoul, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
- Sungkyunkwan University School of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
39
|
Choi C, Yoo GS, Cho WK, Park HC. Optimizing radiotherapy with immune checkpoint blockade in hepatocellular carcinoma. World J Gastroenterol 2019; 25:2416-2429. [PMID: 31171886 PMCID: PMC6543238 DOI: 10.3748/wjg.v25.i20.2416] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and its incidence is rapidly increasing in North America and Western Europe as well as South-East Asia. Patients with advanced stage HCC have very poor outcomes; therefore, the discovery of new innovative approaches is urgently needed. Cancer immunotherapy has become a game-changer and revolutionized cancer treatment. A comprehensive understanding of tumor-immune interactions led to the development of immune checkpoint inhibitors (ICIs) as new therapeutic tools, which have been used with great success. Targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T lymphocyte-associated protein-4 (CTLA-4) reinvigorates anti-tumor immunity by restoring exhausted T cells. Despite their effectiveness in several types of cancer, of the many immune suppressive mechanisms limit the efficacy of ICI monotherapy. Radiation therapy (RT) is an essential local treatment modality for a broad range of malignancies, and it is currently gaining extensive attention as a promising combination partner with ICIs because of its ability to trigger immunogenic cell death. The efficacy of combination approaches using RT and ICIs has been well documented in numerous preclinical and clinical studies on various types of cancers but not HCC. The application of ICIs has now expanded to HCC, and RT is recognized as a promising modality in HCC. This review will highlight the current roles of PD-1 and CTLA-4 therapies and their combination with RT in the treatment of cancers, including HCC. In addition, this review will discuss the future perspectives of the combination of ICIs and RT in HCC treatment.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| |
Collapse
|