1
|
Zhang X, Chen W, Zhang H, Li Y, Han Y, Liu W, Liu Y, Wang X, Zhang X, Tian D, Wang X. Effects of Vibrio alginolyticus on intestinal health and intestinal flora of sea urchin (Strongylocentrotus intermedius). Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111099. [PMID: 40250796 DOI: 10.1016/j.cbpb.2025.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The aim of this study was to understand the effect of Vibrio alginolyticus on the intestinal tract of Strongylocentrotus intermedius. The effects of injecting V. alginolyticus into the body cavity via the perioral membrane at concentrations of 0 CFU/mL (C), 1.5 × 107 CFU/mL (VA1), and 1.5 × 108 CFU/mL (VA10) on the intestinal tract of S. intermedius were analyzed using histological examination, immunoenzyme activity, and 16S rRNA sequencing. The results showed that V. alginolyticus caused intestinal tissue damage and oxidative stress (e.g. altered levels of superoxide dismutase). In addition, the intestinal flora was altered. At the phylum level, the abundance of Bacteroidota was significantly decreased in the VA10 group, at the genus level, Vibrio spp. exhibited a significant increase following V. alginolyticus injection. Prediction of Kyoto Encyclopedia of Genes and Genomes function in the intestinal flora revealed that high concentrations of V. alginolyticus may have induced pathways such as energy metabolism. These results indicated that V. alginolyticus caused lesions in the intestinal morphology of S. intermedius and disrupted the balance of intestinal flora.
Collapse
Affiliation(s)
- Xiaochen Zhang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Wei Chen
- Yantai Marine Economic Research Institute, Yantai, Shandong 264003, China
| | - Haoyu Zhang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yan Li
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China.
| | - Wan Liu
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Xiaona Wang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Xuekai Zhang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Deyang Tian
- Laizhou LiYang Aquatic Development Co., Ltd., Yantai 261441, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Xie P, Zhao Y, Zhao X, Xu L, Wang K, Jia R, Kou Y, Ge H, Wang W, Yang S. Divergent Photosynthetic Strategies of Lupinus polyphyllus and Helleborus viridis During Cold Acclimation and Freezing-Thaw Recovery. PLANTS (BASEL, SWITZERLAND) 2025; 14:607. [PMID: 40006865 PMCID: PMC11860125 DOI: 10.3390/plants14040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Low temperatures can significantly affect the growth of ornamental plants, emphasizing the importance of improving their cold tolerance. However, comparative studies on the photosynthetic responses of sun and shade plants to low temperatures remain limited. In this study, gas exchange, chlorophyll fluorescence in Photosystem II (PSII) and Photosystem I (PSI), the antioxidant system, the osmoregulator substance, and lipid peroxidation were investigated in the shade plant Helleborus viridis (Hv) and the sun plant Lupinus polyphyllus (Lp) during cold acclimation (CA) and the freezing-thaw recovery (FTR). The CA treatment significantly declined the net photosynthetic rate (Pn) and the maximum photochemical efficiency of PSII (Fv/Fm) in Hv and Lp, indicating the photoinhibition occurred in both species. However, Hv exhibited a much better photosynthetic stability to maintain Pn, Fv/Fm, and carboxylation efficiency (CE) than Lp during CA, suggesting that Hv had a greater photosynthetic resilience compared to Lp. Furthermore, Hv preferred to maintain Pn, Fv/Fm, the actual photosynthetic efficiency of PSII (Y(II)), and the actual photosynthetic efficiency of PSI (Y(I)) to consistently provide the necessary energy for the carbon assimilation process, while Lp tended to divert and dissipate excess energy by thermal dissipation and cyclic electron flow during CA. Moreover, there were higher soluble sugar contents in Hv in comparison to Lp. These traits allowed Hv to recover photosynthetic efficiency and maintain cellular integrity better than Lp after the freezing stress. In conclusion, CA significantly reduced the photosynthetic capacity and led to the divergent photosynthetic strategies of both species, which finally resulted in a different freezing tolerance after the freezing-thaw recovery. These findings provide insights into the divergent photoprotective strategies of sun and shade plants in response to cold temperatures.
Collapse
Affiliation(s)
- Pengyuan Xie
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yining Zhao
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
| | - Xin Zhao
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| | - Linbo Xu
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| | - Kai Wang
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| | - Ruidong Jia
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| | - Yaping Kou
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| | - Hong Ge
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| | - Wenjun Wang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shuhua Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.X.); (Y.Z.); (X.Z.); (R.J.); (Y.K.); (H.G.)
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.X.); (K.W.)
| |
Collapse
|
3
|
Yang P, Shang Y, Qu B, Zhang J, Khalil MF, Hu M, Wang Y. Effects of functionalized nanoplastics on oxidative stress in the mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2025; 211:117437. [PMID: 39657304 DOI: 10.1016/j.marpolbul.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
In the marine environment, various weathering effects on micro or nanoplastics lead to surface modifications, which in turn alter their toxic effects on aquatic organisms. This study investigated the impact of three types of nanoplastics (NPs, NPs-NH2, NPs-COOH) on the antioxidant capacity of Mytilus coruscus gills, mantle, and hemolymph over 28 days. Analyzed key antioxidant stress indicators (CAT, SOD, GSH, GSH-Px, MDA, H2O2) and conducted IBR and PCA analyses to evaluate the toxic effects of modified nanoplastics. In particular, NPs-NH2 showed the most significant inhibition of antioxidant enzymes like CAT and GSH-Px in gills and mantle, while NPs-COOH affected a wider range of oxidative stress markers. Furthermore, tissue-specific responses were observed, with gills being the most sensitive to biomarker changes. Overall, NPs-NH2 emerged as the most toxic nanoplastic, highlighting the need to assess ecological risks associated with novel nanoparticles in marine environments and offering insights into tissue-specific toxicity in mussels.
Collapse
Affiliation(s)
- Peiwen Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Qu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jinping Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Tu Z, Tang L, Shen H, Hu M, Chen F, Wang X, Abo-Raya MH, Wang Y. Molecular insights into the physiological impact of low-frequency noise on sea slug Onchidium reevesii: Activation of p53 signaling and oxidative stress response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123481. [PMID: 39626391 DOI: 10.1016/j.jenvman.2024.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
To investigate the regulatory role of tumor protein p53 of sea slug (Onchidium reevesii) under oxidative stress conditions, we examined the response mechanisms of O. reevesii to low-frequency noise pollution (1000 Hz) using molecular and cellular biology techniques. We successfully cloned the O. reevesii p53 gene (Orp53) from O. reevesii, obtaining a 3356 bp sequence containing a 2727 bp open reading frame (ORF). Phylogenetic analysis revealed that O. reevesii shares a close evolutionary relationship with other molluscs, including Bulinus truncatus and Elysia marginata. Expression analysis showed that Orp53 is expressed across various tissues, with the highest expression levels in the hepatopancreas. Using RNA interference (RNAi) to silence the Orp53 gene, we found that the mRNA expressions of Orp53 and its downstream apoptosis-related genes, including cytochrome C (Cyt_C), Caspase 9, and Caspase 3, were significantly suppressed until the third day of interference (P < 0.05). Moreover, sip53 treatment resulted in significant reductions in the mRNA expression and protein levels of all studied genes (P < 0.05) compared to the noise-exposed group. In addition, the low-frequency noise exposure decreased central nervous system (CNS) viability while increasing oxidative stress markers, including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST). On the other hand, silencing Orp53 expression via siRNA resulted in significant reductions in CNS cell viability (P < 0.05). Our study establishes a molecular basis for evaluating the consequences of marine noise pollution, confirming that low-frequency noise activates the p53 signaling pathway, oxidative stress, and that p53 can regulate oxidative stress and apoptosis-related genes.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Feng Chen
- Fisheries Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Xiaotong Wang
- Yantai Engineering Laboratory of Development and Utilization of Characteristic Marine Organisms, Ludong University, Yantai, 264025, China
| | - Mohamed H Abo-Raya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China.
| |
Collapse
|
5
|
Guo X, Xu J, Zhao Y, Wang J, Fu T, Richard ML, Sokol H, Wang M, Li Y, Liu Y, Wang H, Wang C, Wang X, He H, Wang Y, Ma B, Peng S. Melatonin alleviates heat stress-induced spermatogenesis dysfunction in male dairy goats by regulating arachidonic acid metabolism mediated by remodeling the gut microbiota. MICROBIOME 2024; 12:233. [PMID: 39533343 PMCID: PMC11559159 DOI: 10.1186/s40168-024-01942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Heat stress (HS) commonly occurring in summer has gradually become a factor threatening the reproductive performance of male dairy goats by reducing their fecundity. Despite the melatonin is applied to relieve HS, it is still unclear whether melatonin protects against reproductive damage induced by HS in dairy goats and how it works. The purpose of the present study is to evaluate the role of melatonin in alleviating HS-induced spermatogenesis dysfunction in male dairy goats and further explore its mechanism. RESULTS HS impaired spermatogenesis, sperm formation in the testes, and sperm maturation in the epididymis of dairy goats, resulting in decreased sperm quality. Melatonin rescued the decrease of sperm quality induced by HS via decreasing inflammatory and oxidative stress levels in testicular tissue and enhancing intercellular barrier function within the testes. Amplicon-based microbiota analysis revealed that despite gut microbiota differences between melatonin-treated dairy goats and NC dairy goats to some extent, melatonin administration tends to return the gut microbiota of male dairy goats under HS to the levels of natural control dairy goats. To explore whether the protective role of melatonin in sperm quality is mediated by regulating gut microbiota, fecal microbiota of HS dairy goats with or without melatonin treatment were transferred to HS mice, respectively. We found HS mice that had received fecal bacteria of HS dairy goats experienced serious testicular injury and dyszoospermia, while this phenomenon was ameliorated in HS mice that had received fecal bacteria of dairy goats treated with melatonin, indicating melatonin alleviates HS-induced spermatogenic damage in a microbiota dependent manner. We further found that the testicular tissue of both HS dairy goats and mice transplanted with HS dairy goat feces produced large amounts of arachidonic acid (AA)-related metabolites, which were closely associated with semen quality. Consistently, supplementation with AA has been shown to elevate the levels of inflammation and oxidative stress in the testicular tissue of mice, disrupting intercellular connections and ultimately leading to spermatogenic disorders. CONCLUSION This study has revealed that melatonin can effectively alleviate spermatogenic disorders in dairy goats caused by HS. This beneficial effect was primarily achieved through the modulation of gut microbiota, which subsequently inhibited the excessive synthesis of AA in testicular tissue. These discoveries are of great significance for preventing or improving the decline in male livestock reproductive performance caused by HS, enhancing the reproductive efficiency of elite male breeds, and ultimately improving the production efficiency of animal husbandry. Video Abstract.
Collapse
Affiliation(s)
- Xinrui Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tingshu Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, 75012, Paris, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, 75012, Paris, France
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, 75012, Paris, France
| | - Miao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yu Li
- Animal Engineering Department, Yangling Vocational and Technical College, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hui Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Chenlei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xueqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haiyang He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
6
|
Delgado Spicuzza JM, Gosalia J, Studinski M, Armando C, Alipour E, Kim-Shapiro DB, Flanagan M, Somani YB, Proctor DN. The acute effects of dietary nitrate supplementation on postmenopausal endothelial resistance to ischemia reperfusion injury: a randomized, placebo-controlled, double blind, crossover clinical trial. Can J Physiol Pharmacol 2024; 102:634-647. [PMID: 38901043 DOI: 10.1139/cjpp-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Postmenopausal cardiovascular health is a critical determinant of longevity. Consumption of beetroot juice (BR) and other nitrate-rich foods is a safe, effective non-pharmaceutical intervention to increase systemic bioavailability of the vasoprotective molecule, nitric oxide, through the exogenous nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway. We hypothesized that a single dose of nitrate-rich beetroot juice (BRnitrate 600 mg NO3 -/140 mL, BRplacebo ∼ 0 mg/140 mL) would improve resting endothelial function and resistance to ischemia-reperfusion (IR) injury to a greater extent in early-postmenopausal (1-6 years following their final menstrual period (FMP), n = 12) compared to late-postmenopausal (6+ years after FMP, n = 12) women. Analyses with general linear models revealed a significant (p < 0.05) time*treatment interaction effect for brachial artery adjusted flow-mediated dilation (FMD). Pairwise comparisons revealed that adjusted FMD was significantly lower following IR-injury in comparison to all other time points with BRplacebo (early FMD 2.51 ± 1.18%, late FMD 1.30 ± 1.10, p < 0.001) and was lower than post-IR with BRnitrate (early FMD 3.84 ± 1.21%, late FMD 3.21 ± 1.13%, p = 0.014). A single dose of BRnitrate significantly increased resting macrovascular function in the late postmenopausal group only (p = 0.005). Considering the postmenopausal stage-dependent variations in endothelial responsiveness to dietary nitrate, we predict differing mechanisms underpin macrovascular protection against IR injury.
Collapse
Affiliation(s)
| | - Jigar Gosalia
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew Studinski
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
| | - Chenée Armando
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Michael Flanagan
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yasina B Somani
- Department of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David N Proctor
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
7
|
Chen J, Hong K, Ma L, Hao X. Effect of time series on the degradation of lignin by Trametes gibbosa: Products and pathways. Int J Biol Macromol 2024; 281:136236. [PMID: 39366598 DOI: 10.1016/j.ijbiomac.2024.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the third most abundant organic resource in nature. The utilization of white-rot fungi for wood degradation effectively circumvents environmental pollution associated with chemical treatments, facilitating the benign decomposition of lignin. Trametes gibbosa is a typical white-rot fungus with rapid growth and strong wood decomposition ability. The lignin content decreased from 23.62 mg/mL to 17.05 mg/mL, which decreased by 27 % in 30 days. The activity of manganese peroxidase increased steadily by 9.44 times. The activities of laccase and lignin peroxidase had the same trend of change and reached peaks of 49.88 U/L and 10.43 U/L on the 25th day, respectively. The change in H2O2 content in vivo was opposite to its trend. For FTIR and GC-MS analysis, the fungi attacked the side chain structure of lignin phenyl propane polymer and benzene ring to crack into low molecular weight aromatic compounds. The side chains of low molecular weight aromatic compounds are oxidized, and long-chain carboxylic acids are formed. Additionally, the absorption peak in the vibration region of the benzene ring skeleton became complex, and the structure of the benzene rings changed. In the beginning, fungal growth was inhibited. Fungal autophagy was aggravated. The metal cation binding proteins of fungi were active, and the genes related to detoxification metabolism were upregulated. The newly produced compounds are related to xenobiotic metabolism. The degradation peak focused on the redox process, and the biological function was enriched in the regulation of macromolecular metabolism, lignin metabolism, and oxidoreductase activity acting on diphenols and related substances as donors. Notably, genes encoding key degradation enzymes, including lcc3, lcc4, phenol-2-monooxygenase, 3-hydroxybenzoate-6-hydroxylase, oxalate decarboxylase, and acetyl-CoA oxidase were significantly upregulated. On the 30th day, the N-glycan biosynthesis pathway was significantly enriched in glycan biosynthesis and metabolism. Weighted correlation network analysis was performed. A total of 1452 genes were clustered in the coral1 module, which were most related to lignin degradation. The genes were significantly enriched in oxidoreductase activity, peptidase activity, cell response to stimulation, signal transduction, lignin metabolism, and phenylpropane metabolism, while the rest were concentrated in glucose metabolism. In this study, the lignin degradation process and products were revealed by T. gibbosa. The molecular mechanism of lignin degradation in different stages was explored. The selection of an efficient utilization time of lignin will help to increase the degradation rate of lignin. This study provides a theoretical basis for the biofuel and biochemical production of lignin. SYNOPSIS: Trametes gibbosa degrades lignin in a pollution-free way, improving the utilization of carbon resources in an environmentally friendly spontaneous cycle. The products are the new way towards sustainable development and low-carbon technology.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Kai Hong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xin Hao
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
8
|
Yang X, Bu X, Li Y, Shen R, Duan Y, Liu M, Ma X, Guo Z, Chen C, He L, Shi H, Kong X, Zhang L. Effects of oxidative stress and protein S-nitrosylation interactions on mitochondrial pathway apoptosis and tenderness of yak meat during postmortem aging. Food Res Int 2024; 191:114717. [PMID: 39059914 DOI: 10.1016/j.foodres.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
To reveal the interaction of oxidative stress and protein S-nitrosylation on mitochondrial pathway apoptosis and tenderness development in postmortem yak meat. Herein, we selected yak longissimus dorsi muscle as the research object and treated hydrogen peroxide (H2O2) with S-nitrosoglutathione agent (GSNO) as well as Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in mixed injections with 0.9 % saline as a control group, followed by incubation at 4 °C for 12, 24, 72, 120 and 168 h. Results showed that this interaction significantly increased mitochondrial ROS and NO content (P < 0.05) while weakening the antioxidant capacity of GSH and TRX redox response systems or accelerating the Ca2+ release process, leading to mitochondrial functional impairment and increased apoptosis rate. Notably, the H2O2 + L-NAME group showed more pronounced apoptosis. Hence, we suggest that the interaction between oxidative stress and protein S-nitrosylation could positively regulate yak meat tenderization.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Bu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
9
|
Yue X, Bi S, Li X, Zhang X, Lan L, Chen L, Zhang Z, Liu Y, Zhou Y, Ye C, Zhu Q. Electrical Stimulation Induces Activation of Mitochondrial Apoptotic Pathway and Down-Regulates Heat Shock Proteins in Pork: An Innovative Strategy for Enhancing the Ripening Process and Quality of Dry-Cured Loin Ham. Foods 2024; 13:1717. [PMID: 38890945 PMCID: PMC11172275 DOI: 10.3390/foods13111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
A fundamental regulatory framework to elucidate the role of electrical stimulation (ES) in reducing long production cycles, enhancing protein utilization, and boosting product quality of dry-cured ham is essential. However, how mitochondria and enzymes in meat fibers are altered by ES during post-processing, curing, and fermentation procedures remains elusive. This study sought to explore the impact of ES on the regulation of heat shock proteins (HSP27, HSP70), apoptotic pathways, and subsequent influences on dry-cured pork loin quality. The gathered data validated the hypothesis that ES notably escalates mitochondrial oxidative stress and accelerates mitochondrial degradation along the ripening process. The proapoptotic response in ES-treated samples was increased by 120.7%, with a cellular apoptosis rate 5-fold higher than that in control samples. This mitochondrial degradation is marked by increased ratios of Bax/Bcl-2 protein along the time course, indicating that apoptosis could contribute to the dry-cured ham processing. ES was shown to further down-regulate HSP27 and HSP70, establishing a direct correlation with the activation of mitochondrial apoptosis pathways, accompanied by dry-cured ham quality improvements. The findings show that ES plays a crucial role in facilitating the ripening of dry-cured ham by inducing mitochondrial apoptosis to reduce HSP expression. This knowledge not only explains the fundamental mechanisms behind myofibril degradation in dry-cured ham production but also offers a promising approach to enhance quality and consistency.
Collapse
Affiliation(s)
- Xi Yue
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Xiangrui Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Xinxin Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Lisha Lan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Zhili Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| | - Chun Ye
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Yang Y, Cao Y, Zhang J, Fan L, Huang Y, Tan TC, Ho LH. Artemisia argyi extract exerts antioxidant properties and extends the lifespan of Drosophila melanogaster. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3926-3935. [PMID: 38252625 DOI: 10.1002/jsfa.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes. RESULTS AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes. CONCLUSION The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhua Yang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Yuping Cao
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lee-Hoon Ho
- Department of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Malaysia
| |
Collapse
|
11
|
Zhang C, Cheng JH. Assessing the Effect of Cold Plasma on the Softening of Postharvest Blueberries through Reactive Oxygen Species Metabolism Using Transcriptomic Analysis. Foods 2024; 13:1132. [PMID: 38611437 PMCID: PMC11011841 DOI: 10.3390/foods13071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The postharvest softening and corresponding quality deterioration of blueberry fruits are crucial factors that hinder long-distance sales and long-term storage. Cold plasma (CP) is an effective technology to solve this, but the specific mechanism of delaying fruit softening remains to be revealed. Here, this study found that CP significantly improved blueberry hardness. Physiological analysis showed that CP regulated the dynamic balance of reactive oxygen species (ROS) to maintain hardness by increasing antioxidant content and antioxidant enzyme activity, resulting in a 12.1% decrease in the H2O2 content. Transcriptome analysis revealed that CP inhibited the expression of cell wall degradation-related genes such as the pectin hydrolase gene and cellulase gene, but up-regulated the genes of the ROS-scavenging system. In addition, the resistance genes in the MAPK signaling pathway were also activated by CP in response to fruit ripening and softening and exhibited positive response characteristics. These results indicate that CP can effectively regulate the physiological characteristics of blueberries at a genetic level and delay the softening process, which is of great significance to the storage of blueberries.
Collapse
Affiliation(s)
- Can Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
12
|
Yang H, Zhang C, Yang M, Liu J, Zhang Y, Liu D, Zhang X. Variations of plasma oxidative stress levels in male patients with chronic schizophrenia. Correlations with psychopathology and matrix metalloproteinase-9: a case-control study. BMC Psychiatry 2024; 24:20. [PMID: 38172869 PMCID: PMC10765744 DOI: 10.1186/s12888-023-05479-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Accumulating evidence has indicated that oxidative stress (OS) and matrix metalloproteinase-9 (MMP-9) may contribute to the mechanism of schizophrenia. In the present study, we aimed to evaluate the associations of OS parameters and MMP-9 levels with psychopathological symptoms in male chronic schizophrenia patients. METHODS This study was an observational, cross-sectional, retrospective case-control study. Plasma hydrogen peroxide (H2O2), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), serum matrix metalloproteinase-9 (MMP-9), and tissue inhibitors of metalloproteinases-1 (TIMP-1) levels were assayed in 80 male patients with chronic schizophrenia and 80 matched healthy controls. Schizophrenia symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). Multivariate regression was used to analyze relationships between OS parameters and MMP-9, and clinical symptoms. RESULTS Our results demonstrated that levels of antioxidant enzymes, SOD, GSH-Px, H2O2, and MDA were significantly decreased, whereas CAT and MMP-9 levels were increased in patients with schizophrenia, when compared with healthy controls (all P < 0.05). In schizophrenia patients, correlation analyses showed that H2O2 levels were significantly and positively correlated with PANSS positive scores, CAT and MDA levels were significant negatively correlated with PANSS negative scores and PANSS total scores, and MDA levels were significantly positively correlated with MMP-9 levels (all P < 0.05). However, we did not find that MMP-9 played an interaction role between OS parameters and PANSS total scores and subscales scores (all P > 0.05). CONCLUSIONS Our results showed that alterations of plasma OS parameters in male patients with chronic schizophrenia were associated with psychopathology and MMP-9, suggesting that OS and neuroinflammation may play important role in the mechanism of schizophrenia.
Collapse
Affiliation(s)
- Haidong Yang
- Medical College of Soochow University, 215137, Suzhou, PR China
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, 215137, Suzhou, P.R. China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Junjun Liu
- Medical College of Soochow University, 215137, Suzhou, PR China
| | - Yuting Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Dongliang Liu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, 222003, Lianyungang, P.R. China
| | - Xiaobin Zhang
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, 215137, Suzhou, P.R. China.
| |
Collapse
|
13
|
Heeba GH, Morsy MA, Mahmoud ME, Abdel-Latif R. Gastro-protective effect of l-arginine against nitric oxide deficiency-related mucosal injury induced by indomethacin: Does age matter? J Biochem Mol Toxicol 2023; 37:e23479. [PMID: 37483153 DOI: 10.1002/jbt.23479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Gastric ulcer is a common disease with increased prevalence in the aged population. Aged gastric mucosa has increased susceptibility to injury along with nonsteroidal anti-inflammatory drugs use due to impaired mucosal defense and decreased vasodilator release. We investigated whether l-arginine could protect against age-related gastric ulceration induced by indomethacin. Aged and adult male Wistar rats were administered sole and combined treatment of l-arginine and Nω -nitro-l-arginine methyl ester ( l-NAME) before induction of gastric ulceration by indomethacin. The gastroprotective effect of l-arginine was displayed only in adult rats with indomethacin-induced gastric ulceration, as evidenced by a significant decrease in ulcer index, oxidative stress parameters, and mucosal myeloperoxidase activity along with increased mucosal PGE2 levels. Interestingly, the mucosal gene expressions of NF-кB, iNOS, and COX-2 were significantly suppressed by l-arginine pretreatment and aggregated upon pretreatment with l-NAME in both adult and aged rats treated with indomethacin. In conclusion, l-arginine protected the rats' gastric mucosa against indomethacin-induced gastric ulceration, possibly, at least in part, by enhancement of mucosal nitric oxide/PGE2 content along with suppressing gastric inflammation and oxidative stress. This study supposed that the gastroprotective effect of l-arginine depends on aging, and even so, the adoption of a new approach to gastric ulcer treatment for the aged population is warranted.
Collapse
Affiliation(s)
- Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Magda E Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
14
|
Zhong W, Tang M, Xie Y, Huang X, Liu Y. Tea Polyphenols Inhibit the Activity and Toxicity of Staphylococcus aureus by Destroying Cell Membranes and Accumulating Reactive Oxygen Species. Foodborne Pathog Dis 2023; 20:294-302. [PMID: 37347934 DOI: 10.1089/fpd.2022.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 μg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.
Collapse
Affiliation(s)
- Weiwei Zhong
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Mengsheng Tang
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Zhang H, Liu X, Liu B, Sun F, Jing L, Shao L, Cui Y, Yao Q, Wang M, Meng C, Gao Z. Synergistic degradation of Azure B and sulfanilamide antibiotics by the white-rot fungus Trametes versicolor with an activated ligninolytic enzyme system. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131939. [PMID: 37385098 DOI: 10.1016/j.jhazmat.2023.131939] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
The treatment of complex polluted wastewater has become an increasingly critical concern for the various types of hazardous organic compounds, including synthetic dyes and pharmaceuticals. Due to their efficient and eco-friendly advantages, the white-rot fungi (WRF) have been applied to degrade environmental pollutants. This study aimed to investigate the removal ability of WRF (i.e., Trametes versicolor WH21) in the co-contamination system composed of Azure B dye and sulfacetamide (SCT). Our study discovered that the decolorization of Azure B (300 mg/L) by strain WH21 was significantly improved (from 30.5% to 86.5%) by the addition of SCT (30 mg/L), while the degradation of SCT was also increased from 76.4% to 96.2% in the co-contamination system. Transcriptomic and biochemical analyses indicated that the ligninolytic enzyme system was activated by the enhanced enzymatic activities of MnPs and laccases, generating higher concentration of extracellular H2O2 and organic acids in strain WH21 in response to SCT stress. Purified MnP and laccase of strain WH21 were revealed with remarkable degradation effect on both Azure B and SCT. These findings significantly expanded the existing knowledge on the biological treatment of organic pollutants, indicating the strong promise of WRF in the treatment of complex polluted wastewater.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiang Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Baoming Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
| | - Lijia Jing
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingshuang Shao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Meng Wang
- Yantai Hongyuan Bio-fertilizer Co., Ltd., Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
16
|
Xu J, Wang XL, Zeng HF, Han ZY. Methionine alleviates heat stress-induced ferroptosis in bovine mammary epithelial cells through the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114889. [PMID: 37079940 DOI: 10.1016/j.ecoenv.2023.114889] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) triggers mammary gland degradation, accompanied by apoptosis and autophagy in bovine mammary epithelial cells, negatively affecting milk performance and mammary gland health. Ferroptosis is iron-mediated regulated cell death caused by over production of lipid peroxides, however, the relationship between ferroptosis and HS in bovine mammary epithelial cells has not been clarified. Methionine (Met) plays a notable role in alleviating HS affecting the mammary glands in dairy cows, but the underlying mechanisms require further exploration. Therefore, we evaluated the regulatory effect and mechanism of Met in alleviating HS-induced ferroptosis by using bovine mammary epithelial cell line (MAC-T) as an in vitro model. The results showed that Met improved cell vitality, restored mitochondrial function; reduced the content of various reactive oxygen species (ROS), especially hydrogen peroxide (H2O2) and superoxide anion (O2·-); had positive effects on antioxidant enzyme activity, namely glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). More importantly, Met reduced labile iron protein (LIP) levels; increased iron storage and simultaneously decreased the levels of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA), which all caused by HS in MAC-T. Mechanistically, Met increased the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7, member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1) by activating nuclear factor E2-related factor 2 (Nrf2) expression. Additionally, the protection effect of Met was cut off in MAC-T cells after interference with Nrf2, manifesting in decresing the protein expression levels of GPX4, SLC7A11 and FTH1,and increasing the levels of LIP and lipid ROS. Our findings indicate that Met eases HS-induced ferroptosis in MAC-T through the Nrf2 pathway, revealing that Met produces a marked effect on easing HS-induced bovine mammary gland injury in dairy cows.
Collapse
Affiliation(s)
- Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Huang N, Wei Y, Liu M, Yang Z, Yuan K, Chen J, Wu Z, Zheng F, Lei K, He M. Dachaihu decoction ameliorates septic intestinal injury via modulating the gut microbiota and glutathione metabolism as revealed by multi-omics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116505. [PMID: 37080366 DOI: 10.1016/j.jep.2023.116505] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dachaihu decoction (DCH), a classic formula for Yangming and Shaoyang Syndrome Complex recorded in "Treatise on Cold Damage", has been widely used in treating intestinal disorders and inflammatory diseases with few side effects in China. However, the mechanism of DCH on septic intestinal injury (SII) remains to be explored. AIM OF THE STUDY This study aimed to clarify the mechanism of DCH on SII. MATERIALS AND METHODS SII model of rat, established by cecal ligation and puncture (CLP), was used to study the effect of DCH on SII. 24 h mortality was recorded. Histological changes were observed by H&E staining. The expression of tight junction protein ZO-1 (ZO-1) and mucin2 (MUC2) was determined by immunohistochemical analysis. Secretory IgA (sIgA), diamine oxidase (DAO) and intestinal fatty acid binding protein (iFABP) were determined by enzyme-linked immunosorbent assay (ELISA). IL-1β, IL-6 and TNF-α were measured by ELISA and quantitative Real-time PCR (RT-qPCR). The gut microbiota was analyzed by 16S rRNA sequencing. The potential targets and pathways of DCH in treating SII were analyzed by integrative analysis of transcriptomic and metabolomic methods. Total glutathione (T-GSH), GSH, GSSG (reduced form of GSH), GSH peroxidase (GPX), superoxide dismutase (SOD), malonaldehyde (MDA) and indicators of hepatic and renal function were measured by biochemical kits. RESULTS Medium dose of DCH improved 24 h mortality of SII rats, reduced the pathological changes of ileum, and increased the expression levels of ZO-1, MUC2 and sIgA. DCH decreased DAO, iFABP of serum and IL-1β, IL-6, TNF-α of ileum. DCH improved α- and β-diversity and modulated the structure of gut microbiota, with Escherichia_Shigella decreased and Bacteroides and Ruminococcus increased. GSH metabolism was identified as the key pathway of DCH on SII by integrative analysis of transcriptome and metabolome. GSH/GSSG and the most common indicators of oxidative stress, were validated. Antioxidative T-GSH, GSH, GPX and SOD were increased, while MDA, the mark of lipid peroxidation was downregulated by DCH. Eventually, DCH was proved to be safe and hepato- and nephro-protective. CONCLUSION DCH ameliorated septic intestinal injury possibly by modulating the gut microbiota and enhancing glutathione metabolism of SII rats, without hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Na Huang
- The Eighth School of Clinical Medicine (Foshan Hospital of Traditional Chinese Medicine), Guangzhou University of Chinese Medicine, Foshan, 528000, China
| | - Yu Wei
- Basic Medical College Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Meng Liu
- Basic Medical College Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhen Yang
- The Eighth School of Clinical Medicine (Foshan Hospital of Traditional Chinese Medicine), Guangzhou University of Chinese Medicine, Foshan, 528000, China
| | - Kang Yuan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Zhixin Wu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Fanghao Zheng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Kaijun Lei
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| |
Collapse
|
18
|
Chen J, Hao X, Chi Y, Ma L. Metabolic regulation mechanism of Trametes gibbosa CB_1 on lignin. Int J Biol Macromol 2023; 240:124189. [PMID: 36990410 DOI: 10.1016/j.ijbiomac.2023.124189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
White rot fungi can degrade lignin and play a significant role in the recycling of carbon resources for environmental protection. Trametes gibbosa is the main white rot fungus in Northeast China. The main acids produced by T. gibbosa degradation, include long-chain fatty acids, lactic acid, succinic acid, and some small molecular compounds for example benzaldehyde. A variety of proteins respond to lignin stress and play an important role in xenobiotics metabolism, metal ion transport, and redox. Coordinated regulation and detoxification activation of H2O2 produced in oxidative stress by peroxidase coenzyme system and Fenton reaction. The Dioxygenase cleavage pathway and β-ketoadipic acid pathway are the main oxidation pathways of lignin degradation, which mediate the entry of "COA" into the TCA cycle. In the joint action of hydrolase and coenzyme, cellulose, hemicellulose, and other polysaccharides are degraded and finally converted to glucose to participate in energy metabolism. The expression of the laccase (Lcc_1) protein was verified by E. coli. Also, the Lcc_1 overexpression mutant was established. The morphology of mycelium was dense and the lignin degradation rate was improved. We completed the first non-directional mutation of in T. gibbosa. It also improved the mechanism of T. gibbosa in response to lignin stress.
Collapse
|
19
|
Jiang X, Gao H, Cao Y, Chen S, Huang F, Feng Y, Zhang Y, Feng S. SiNPs induce ferroptosis in HUVECs through p38 inhibiting NrF2 pathway. Front Public Health 2023; 11:1024130. [PMID: 36844840 PMCID: PMC9945284 DOI: 10.3389/fpubh.2023.1024130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Despite of growing evidence linking silica nanoparticles (SiNPs), one of the global-top-three-produced and -used nanoparticle (NP), to human health risks, there remain many knowledge gaps over the adverse effects of SiNPs exposure on cardiovascular system and the underlying molecular mechanisms. Methods In this study, the ferroptotic effects of SiNPs (20 nm; 0, 25, 50, and 100 μg/mL) on human umbilical vein endothelial cells (HUVECs) and the possible molecular mechanism were studied with the corresponding biochemical and molecular biology assays. Results and discussion The results showed that at the tested concentrations, SiNPs could decrease HUVEC viability, but the deferoxamine mesylate (an iron ion chelator) might rescue this reduction of cell viability. Also, increased levels of intracellular reactive oxygen species and enhanced mRNA expression of lipid oxidation enzymes (ACSL4 and LPCAT3) with increase in lipid peroxidation (malondialdehyde), but decreased ratios of intracellular GSH/total-GSH and mitochondrial membrane potential as well as reduced enzymatic activities of anti-oxidative enzymes (CAT, SOD, and GSH-PX), were found in the SiNPs-treated HUVECs. Meanwhile, increase in p38 protein phosphorylation and decrease in NrF2 protein phosphorylation with reduced mRNA expressions of downstream anti-oxidative enzyme genes (CAT, SOD1, GSH-PX, and GPX4) was identified in the SiNPs-exposed HUVECs. These data indicated that SiNPs exposure might induce ferroptosis in HUVECs via p38 inhibiting NrF2 pathway. Ferroptosis of HUVECs will become a useful biomarker for assessing the cardiovascular health risks of environmental contaminants.
Collapse
Affiliation(s)
- Xiaojun Jiang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China,The School of Public Health, University of South China, Hengyang, China
| | - Huiqian Gao
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Shuting Chen
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China,The School of Public Health, University of South China, Hengyang, China
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, China,The School of Public Health, University of South China, Hengyang, China,The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Shaolong Feng ✉
| |
Collapse
|
20
|
Guo Z, Sun J, Lv X, Zhang T, Yao H, Wu W, Xing Z, Kong N, Wang L, Song L. The ferroptosis in haemocytes of Pacific oyster Crassostrea gigas upon erastin treatment. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108556. [PMID: 36669600 DOI: 10.1016/j.fsi.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is an iron and oxidative dependent form of cell death usually mediated by redox related molecules in vertebrates. In the present study, a glutathione peroxidase 4 (GPX4) and a solute carrier family 7 member 11 (SLC7A11, xCT) homologues were identified from the oyster Crassostrea gigas (designed as CgGPX4 and CgxCT), which contained a GSHPx domain and an AA_permease domain, respectively. The mRNA transcripts of CgGPX4 and CgxCT were expressed in all the examined tissues, including gill, gonad, adductor muscle, labial palp, mantle, hepatopancreas and haemocytes, with the highest expression in haemocytes. After erastin treatment, the rate of cell malformation and cell death increased significantly in haemocytes, and the mitochondrial atrophy, crest loss and fracture were observed in haemocytes. While the amount of Fe2+ and Malondialdehyde (MDA) increased significantly, the mRNA expressions of CgGPX4, CgxCT and voltage-dependent anion channel 2 (CgVDAC2) in haemocytes decreased significantly after erastin treatment. These results indicated that erastin was able to induce the ferroptosis of oyster haemocytes.
Collapse
Affiliation(s)
- Zhicheng Guo
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hongsheng Yao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
21
|
Rao S, Tian Y, Zhang C, Qin Y, Liu M, Niu S, Li Y, Chen J. The JASMONATE ZIM-domain-OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:443-457. [PMID: 36260345 DOI: 10.1093/jxb/erac418] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Drought, which directly affects the yield of crops and trees, is a natural stress with a profound impact on the economy. Improving water use efficiency (WUE) and drought tolerance are relatively effective strategies to alleviate drought stress. OPEN STOMATA1 (OST1), at the core of abscisic acid (ABA) signaling, can improve WUE by regulating stomatal closure and photosynthesis. Methyl jasmonate (MeJA) and ABA crosstalk is considered to be involved in the response to drought stress, but the detailed molecular mechanism is insufficiently known. Here, Populus euphratica, which naturally grows in arid and semiarid regions, was selected as the species for studying MeJA and ABA crosstalk under drought. A yeast two-hybrid assay was performed using PeOST1 as bait and a nucleus-localized factor, JASMONATE ZIM-domain protein 2 (PeJAZ2), was found to participate in MeJA signaling by interacting with PeOST1. Overexpression of PeJAZ2 in poplar notably increased water deficit tolerance and WUE in both severe and mild drought stress by regulating ABA signaling rather than ABA synthesis. Furthermore, a PeJAZ2 overexpression line was shown to have greater ABA-induced stomatal closure and hydrogen peroxide (H2O2) production. Collectively, this evidence establishes a mechanism in which PeJAZ2 acts as a positive regulator in response to drought stress via ABA-induced stomatal closure caused by H2O2 production. Our study presents a new insight into the crosstalk of ABA and jasmonic acid signaling in regulating WUE and drought stress, providing a basis of the drought tolerance mechanism of P. euphratica.
Collapse
Affiliation(s)
- Shupei Rao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Yuru Tian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingzhi Qin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqin Liu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
- Public Analyses and Test Center of Laboratory Equipment Division, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Yue Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
22
|
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr 2023; 79:103400. [PMID: 36521406 DOI: 10.1016/j.ajp.2022.103400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammatory pathways play an important role in the pathophysiology of schizophrenia. The present study investigated the relationship between OS, inflammatory cytokines, and clinical features in male patients with treatment-resistant schizophrenia (TRS). METHOD We measured plasma OS parameters, including manganese-superoxide dismutase (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD), total-SOD (T-SOD), malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px); and serum inflammatory cytokines, including interleukin (IL)- 1α, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN)-γ, from 80 male patients with chronic schizophrenia (31 had TRS and 49 had chronic stable schizophrenia (CSS)), and 42 healthy controls. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared with healthy controls, plasma Mn-SOD, CuZn-SOD, T-SOD, GSH-Px, and MDA levels were significantly lower, while CAT and serum IL-6 levels were higher in both TRS and CSS male patients (all P < 0.05). Significant differences in the activities of CAT (F = 6.068, P = 0.016) and IL-6 levels (F = 6.876, P = 0.011) were observed between TRS and CSS male patients after analysis of covariance. Moreover, a significant positive correlation was found between IL-6 levels and PANSS general psychopathology subscores (r = 0.485, P = 0.006) and between CAT activity and PANSS total scores (r = 0.409, P = 0.022) in TRS male patients. CAT and IL-6 levels were predictors for TRS. Additionally, in chronic schizophrenia patients, a significant positive correlation was observed between IL-6 and GSH-Px (r = 0.292, P = 0.012), and the interaction effect of IL-6 and GSH-Px was positively associated with PANSS general psychopathology scores (r = 0.287, P = 0.014). CONCLUSION This preliminary study indicated that variations in OS and inflammatory cytokines may be involved in psychopathology for patients with chronic schizophrenia, especially in male patients with TRS.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China; Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Yujun Sun
- Department of Psychiatry, Kunshan Mental Health Center, Kunshan 215311, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| |
Collapse
|
23
|
Li DN, Lian TH, Zhang WJ, Zhang YN, Guo P, Guan HY, Li JH, He MY, Zhang WJ, Zhang WJ, Luo DM, Wang XM, Zhang W. Potential roles of oxidative distress on neurodegeneration in Parkinson's disease with neuropsychiatric symptoms. Front Aging Neurosci 2022; 14:875059. [PMID: 36589540 PMCID: PMC9797725 DOI: 10.3389/fnagi.2022.875059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neuropsychiatric symptoms (NPSs) belong to a category of non-motor symptoms of Parkinson's disease (PD), which seriously compromise the quality of life and prognosis of PD. This study focused on the correlations between NPSs, free radicals, neuroinflammatory factors, and neuropathological proteins in cerebrospinal fluid (CSF) in patients with PD, aiming to provide insights into the potential mechanisms and therapeutic target for PD with NPSs (PD-NPSs). Methods In total, 129 patients with PD were enrolled and assessed by the Neuropsychiatric Symptoms Inventory (NPI); they were divided into the PD-NPSs group (75 patients) and PD with no NPSs (PD-nNPSs) group (54 patients). The levels of hydrogen peroxide (H2O2) and nitric oxide (NO), and hydroxyl radical (·OH), anti-oxidative enzyme, neuroinflammatory factors, and neuropathological proteins in CSF from patients with PD were measured. The levels of the above variables were compared between PD-NPSs and PD-nNPSs groups, and correlation analyses among the above variables were conducted. Results (1) The levels of H2O2 and NO in CSF from the PD-NPSs group were significantly elevated compared with the PD-nNPSs group (p = 0.001), and NPI score positively correlated with the levels of H2O2 and NO (r = 0.283, P = 0.001; r = 0.231, P = 0.008). Reversely, total superoxide dismutase (tSOD) activity in CSF from the PD-NPSs group was significantly reduced compared with the PD-nNPSs group (p = 0.011), and negatively correlated with NPI score (r = -0.185, p = 0.036). (2) The tumor necrosis factor (TNF)-α level in CSF from the PD-NPSs group was significantly decreased compared with the PD-nNPSs group (p = 0.002) and negatively correlated with NPI score (r = -0.211, p = 0.016). (3) The total tau (T-tau) level in CSF from the PD-NPSs group was significantly higher than in the PD-nNPSs group (p = 0.014) and positively correlated with the NPI score (r = 0.167, p = 0.060). (4) The levels of H2O2 and NO positively correlated with the T-tau level in CSF from the PD-NPSs group (r = 0.183, p = 0.039; r = 0.251, P = 0.004), and the levels of TNF-α and T-tau showed a negative correlation (r = -0.163, p = 0.067). Conclusion Oxidative distress characterized by the elevations of H2O2 and NO levels may closely correlate with the neurodegeneration in brain regions related to PD-NPSs. Thus, therapeutic antioxidants may become an important target for PD-NPSs therapy.
Collapse
Affiliation(s)
- Dan-ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-hong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-yue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong-mei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory on Parkinson's Disease, Beijing, China,*Correspondence: Wei Zhang
| |
Collapse
|
24
|
CTGF Promotes the Osteoblast Differentiation of Human Periodontal Ligament Stem Cells by Positively Regulating BMP2/Smad Signal Transduction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2938015. [PMID: 36158888 PMCID: PMC9499771 DOI: 10.1155/2022/2938015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
Objective This work is aimed at revealing the role and the molecular mechanism of connective tissue growth factor 2 (CTGF) in the osteoblast differentiation of periodontal ligament stem cells (PDLSCs). Methods The osteogenic differentiation of PDLSCs was induced by osteogenic induction medium (OM), and the expression level of osteogenic related proteins ALP, RUNX2, OCN, and CTGF was estimated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis. We constructed cell lines with CTGF overexpression or knockdown to verify the role of CTGF in the osteoblast differentiation of PDLSCs. Alkaline phosphatase (ALP) staining was introduced to measure the osteoblasts activity, and alizarin red S (ARS) staining was employed to test matrix mineralization. The interaction between CTGF and bone morphogenetic protein-2 (BMP-2) was determined by endogenous coimmunoprecipitation (Co-IP). Results The expression level of CTGF was increased during the osteogenic induction of PDLSCs. Additionally, CTGF overexpression effectively maintained the stemness and facilitated the osteoblast differentiation in PDLSCs, and CTGF knockdown exerted opposite effects. Moreover, at molecular mechanism, CTGF increased the activity of BMP-2/Smad signaling pathway. Conclusion This investigation verified that CTGF promotes the osteoblast differentiation in PDLSCs at least partly by activating BMP-2/Smad cascade signal.
Collapse
|
25
|
Wu T, He J, Shen X. Study of metabolomics in selenium deprived Przewalski's Gazelle ( Procapra przewalskii). Br J Nutr 2022; 128:549-560. [PMID: 34511139 DOI: 10.1017/s000711452100355x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To understand why Procapra przewalskii does not show the same white myopathy as sheep in Se-deficient regions and to provide reference for feeding nutrition level of artificial population and selection of wild reintroduction areas in the later period, a Se-deficient model was established. The mineral elements content, physiological and biochemical parameters in blood and serum metabonomics were determined. In the Se-deficient group compared with the control group, the Se content was highly significantly lower (P < 0·01), and the Cu content was significantly higher (P < 0·05). The activity of glutathione peroxidase was significantly lower (P < 0·05), but total superoxide dismutase was significantly higher (P < 0·05). By matching the mass spectrum data of compounds with the Kyoto Encyclopedia of Genes and Genomes (KEGG database), eighty-six types of differential metabolites in the serum were identified. The main metabolic pathways included secondary bile acid biosynthesis, biosynthesis of unsaturated fatty acids and pyrimidine metabolism. Further analysis showed that there were seven different metabolites in pyrimidine metabolism pathway between the two groups. And there was no significant difference in erythrocyte, Hb and total antioxidant capacity between the two groups (P > 0·05). The above results showed that the differential metabolism of substances exhibited complementary functions, thus alleviating some adverse effects and resulting normal activities of P. przewalskii can be carried out under the condition of dietary Se content lower than 0·05 mg/kg.
Collapse
Affiliation(s)
- Ting Wu
- College of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan621010, People's Republic of China
- Feng Guang De Laboratory, Tie Qi Li Shi Group, Mianyang, Sichuan, People's Republic of China
| | - Jian He
- College of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan621010, People's Republic of China
- Feng Guang De Laboratory, Tie Qi Li Shi Group, Mianyang, Sichuan, People's Republic of China
| | - Xiaoyun Shen
- College of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan621010, People's Republic of China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
26
|
Zhang H, He Z, Deng P, Lu M, Zhou C, Yang L, Yu Z. PIN1-mediated ROS production is involved in antagonism of N-acetyl-L-cysteine against arsenic-induced hepatotoxicity. Toxicol Res (Camb) 2022; 11:628-643. [PMID: 36051664 PMCID: PMC9424717 DOI: 10.1093/toxres/tfac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 08/26/2023] Open
Abstract
Arsenic, a widely existing environmental contaminant, is recognized to be toxic to multiple organs. Exposure to arsenic results in liver damage via excessive production of reactive oxidative species (ROS). PIN1 regulates the levels of ROS. N-acetyl-L-cysteine (NAC) is an ROS scavenger that protects the hepatic functions. Whether PIN1 plays a regulatory role in NAC-mediated antagonism against arsenic hepatotoxicity remains largely unknown. In our study, the protective effects of NAC against arsenic (NaAsO2)-induced hepatotoxicity were evaluated in vitro and in vivo. Arsenic exposure induced cytotoxicity by increasing the intracellular ROS production, impairing mitochondrial function and inducing apoptosis in L02 hepatocytes. Overexpression of PIN1 markedly protected against arsenic cytotoxicity, decreased ROS levels, and mitigated mitochondrial dysfunction and apoptosis in L02 cells. However, loss of PIN1 further aggravated arsenic-induced cytotoxicity and abolished the protective effects of NAC in L02 cells. An in vivo study showed that pretreatment with NAC rescued arsenic-induced liver injury by restoring liver function and suppressing hepatic oxidative stress. Overexpression of PIN1 in mice transfected with AAV-Pin1 relieved arsenic-induced liver dysfunction and hepatic oxidative stress. Taken together, our study identified PIN1 as a novel intervention target for antagonizing arsenic-induced hepatotoxicity, highlighting a new pharmacological mechanism of NAC targeting PIN1 in antagonism against arsenic toxicity.
Collapse
Affiliation(s)
- Huijie Zhang
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Muxue Lu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Zhengping Yu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
27
|
Ferulic Acid Protects Human Lens Epithelial Cells against Ionizing Radiation-Induced Oxidative Damage by Activating Nrf2/HO-1 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6932188. [PMID: 35592532 PMCID: PMC9113866 DOI: 10.1155/2022/6932188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Ionizing radiation- (IR-) induced oxidative stress has been recognized as an important mediator of apoptosis in lens epithelial cells (LECs) and also plays an important role in the pathogenesis of IR-induced cataract. Ferulic acid (FA), a phenolic phytochemical found in many traditional Chinese medicine, has potent radioprotective and antioxidative properties via activating nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway. The goals of this study were to determine the protective effect of FA against IR-induced oxidative damage on human lens epithelial cells (HLECs) and to elucidate the role of Nrf2 signal pathway. HLECs were subjected to 4 Gy X-ray radiation with or without pretreatment of FA. It was found that FA pretreatment protected HLECs against IR-induced cell apoptosis and reduced levels of ROS and MDA caused by radiation in a dose-dependent manner. IR-dependent attenuated activities of antioxidant enzymes (SOD, CAT, and GPx) and decreased ratio of reduced GSH/GSSG were increased by pretreatment of FA. FA inhibited IR-induced increase of Bax and cleaved caspase-3 and the decrease of Bcl-2 in a dose-dependent manner. Furthermore, FA provoked Nrf2 nuclear translocation and upregulated mRNA and protein expressions of HO-1 in a dose-dependent manner. These findings indicated that FA could effectively protect HLECs against IR-induced apoptosis by activating Nrf2 signal pathway to inhibit oxidative stress, which suggested that FA might have a therapeutic potential in the prevention and alleviation of IR-induced cataract.
Collapse
|
28
|
Huang Y, Cai P, Su X, Zheng M, Chi W, Lin S, Huang Z, Qin S, Zeng S. Hsian-Tsao ( Mesona chinensis Benth.) Extract Improves the Thermal Tolerance of Drosophila melanogaster. Front Nutr 2022; 9:819319. [PMID: 35614980 PMCID: PMC9124935 DOI: 10.3389/fnut.2022.819319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Global warming has prompted scientific communities to consider how to alleviate thermal stress in humans and animals. The present study assessed the supplementation of hsian-tsao extract (HTE) on thermal stress in Drosophila melanogaster and preliminarily explicated its possible physiological and molecular mechanisms. Our results indicated that the lethal time for 50% of female flies fed on HTE was significantly longer than that of male flies at the same heat stress temperature. Under thermal stress, the survival time of females was remarkably increased in the HTE addition groups compared to the non-addition group. Thermal hardening by acute exposure to 36°C for 30 min (9:00 to 9:30 a.m.) every day could significantly prolong the longevity of females. Without thermal hardening, HTE increased the antioxidant capacity of females under heat stress, accompanied by an increment of catalase (CAT) activity, and the inhibition for hydroxyl radicals (OH⋅) and superoxide anions (⋅O2 -). Superoxide dismutase (SOD) activity and the inhibition for ⋅O2 - was significantly affected by thermal hardening in the non-HTE addition groups, and significant differences were shown in CAT and SOD activities, and the inhibition for ⋅O2 - among groups with thermal hardening. After heat exposure, heat shock protein 70 (Hsp70) was only up-regulated in the group with high levels of added HTE compared with the group without and this was similar in the thermal hardening group. It was concluded that the heat stress-relieving ability of HTE might be partly due to the enhancement of enzymatic activities of SOD and CAT, and the inhibition for OH⋅ and ⋅O2 -. However, the expression levels of Hsp70 were not well related to thermal tolerance or heat survival.
Collapse
Affiliation(s)
- Yan Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pumo Cai
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xinxin Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjing Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Wenwen Chi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Gu Y, Chen K, Xi B, Xie J, Bing X. Paeonol increases the antioxidant and anti-inflammatory capacity of gibel carp (Carassius auratus gibelio) challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 123:479-488. [PMID: 35314333 DOI: 10.1016/j.fsi.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Paeonol, a naturally occurring polyphenol isolated from medical plant, has been known to exhibit anti-oxidative and anti-inflammatory effects. In order to evaluate the effect of paeonol on Carassius auratus gibelio infected by pathogenic bacteria Aeromonas hydriphila. 750 fish were randomly divided into 5 groups, which separately treated with 0.85% sterile saline (blank), A. hydriphila (negative control), A. hydriphila with paeonol (4 mg/kg, 64 mg/kg), and A. hydriphila with enrofloxacin (12 mg/kg, positive control). Fish were anaesthetized with MS-222 (100 mg/L), and samples were collected at 6 and 72 h after A. hydriphila challenge. The results showed that compared with the negative group, the survival in paeonol groups marked increased by 14.75% and 18.94%. The plasma immunoglobulin M (IgM) was notably increased, and low density lipoprotein (LDL) was significantly decreased in paeonol groups at 6 h (P < 0.05). The antioxidative enzymes catalase (CAT), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) were significantly increased in paeonol groups at 6 h, while malondialdehyde (MDA) and myeloperoxidase (MPO) contents were lower (P < 0.05). The inflammatory related genes MyD88 and TLR-5 were significantly downregulated, and the TLR-3 was significantly increased in paeonol groups at 72 h (P < 0.05). In addition, histopathological analyses showed that the lesion in liver, spleen and caudal kidney were considerably attenuated in paeonol groups. In conclusion, paeonol could increase the survival rate, mitigate oxidative damage, inflammation, tissue lesions, and improve the immunity of gibel carp challenged with A. hydrophila.
Collapse
Affiliation(s)
- Yipeng Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
30
|
Cao YN, Wang Y, Zhang L, Hou Y, Shan J, Li M, Chen C, Zhou Y, Shan E, Wang J. Protective effect of endoplasmic reticulum stress inhibition on 5-fluorouracil-induced oral mucositis. Eur J Pharmacol 2022; 919:174810. [DOI: 10.1016/j.ejphar.2022.174810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
|
31
|
Exploring the Possible Link between the Gut Microbiome and Fat Deposition in Pigs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1098892. [PMID: 35103093 PMCID: PMC8800603 DOI: 10.1155/2022/1098892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022]
Abstract
Excessive lipid accumulation and high oxidative stress have become a serious health and economic problem in the pig industry. Fatness characteristics are crucial in pig production since they are closely related to meat quality. The gut microbiome is well acknowledged as a key element in fat deposition. But the link between gut microbiota and fat accumulation in pigs remains elusive. To examine whether there is a link between pigs' gut microbiome, lipogenic properties, and oxidative stress, we selected 5 high-fat pigs and 5 low-fat pigs from 60 250-day-old Jinhua pigs in the present study and collected the colon content, serum sample, and liver and abdominal fat segments from each pig for metagenomic analysis, the oxidative stress assay, and RT-qPCR analysis, respectively. The backfat thickness and fat content of the longissimus dorsi muscle were considerably higher in the high-fat pigs than in the low-fat pigs (P < 0.05). An obvious difference in GSH-Px and MDA in the serum between the high- and low-fat pigs was observed. After RT-qPCR analysis, we found the gene expression of ACC1 and SREBP1 in the liver and FAS, PPARγ, and LPL in the abdominal fat were significantly higher in high-fat pigs than in low-fat pigs (P < 0.05). Additionally, metagenomic sequencing revealed that high-fat pigs had a higher abundance of Archaeal species with methanogenesis functions, leading to more-efficient fat deposition, while low-fat pigs had higher abundances of butyrate-producing bacteria species that improved the formation of SCFAs, especially butyrate, thus alleviating fat deposition in pigs. Furthermore, a total of 17 CAZyme families were identified to give significant enrichments in different fat phenotypes of pigs. This study would provide a detailed understanding of how the gut microbiome influences fat deposition in pigs, as well as a hint for improving growth performance and fatness traits by manipulating the gut microbiome.
Collapse
|
32
|
Zhang X, Chen H, Zhang X, Xu L, Lei Y, Liu W, Li L, Xu H, Zhu C, Ma B. β-Aldehyde ketones as dual inhibitors of aldose reductase and α-glucosidase with antioxidant properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj03426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized β-aldehyde ketone compounds have strong biological activity because of their ionizable hydroxyl groups.
Collapse
Affiliation(s)
- Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Long Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Hulin Xu
- Beijing Qintian Science & Technology Development Co., Ltd, China
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| |
Collapse
|
33
|
Wu T, Li S, Huang Y, He Z, Zheng Y, Stalin A, Shao Q, Lin D. Structure and pharmacological activities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Wang L, Hou Y, Wang R, Pan Q, Li D, Yan H, Sun Z. Inhibitory Effect of Astaxanthin on Testosterone-Induced Benign Prostatic Hyperplasia in Rats. Mar Drugs 2021; 19:md19120652. [PMID: 34940651 PMCID: PMC8704961 DOI: 10.3390/md19120652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
This study investigates the inhibitory effect of astaxanthin (AST) on testosterone-induced benign prostatic hyperplasia (BPH) in rats. Except for the sham operation, BPH model rats were randomly assigned to five groups: the BPH model control rats, AST-treated BPH model rats (20 mg/kg, 40 mg/kg, and 80 mg/kg), and epristeride (EPR)-treated BPH model rats. After treatment, as compared with the BPH model control rats, the prostate and ventral prostate weights of the AST-treated rats decreased, while there was a marked decline in the 80 mg/kg AST-treated rats. The same effect was also observed in the prostate index and ventral prostate index. The proliferation characteristics of epithelia observed in the BPH model control group were gradually alleviated in the AST-treated rats. As compared with the BPH model control rats, lower epithelial thicknesses of prostates and fewer secretory granules in epithelia were observed in the AST-treated rats. The superoxide dismutase (SOD) activity of prostates increased in all the AST-treated rats with a significant increase in the 40 mg/kg and 80 mg/kg AST-treated rats. The testosterone (T) and dihydrotestosterone (DHT) levels of prostates in the AST-treated groups were lower than those in the BPH model control group, and a significant decline was found in the T level of prostates in the 40 g/kg and 80 mg/kg AST-treated rats and the DHT level of prostates in the 40 mg/kg AST-treated rats. These results indicate that AST might have an inhibitory effect on T-induced BPH in rats, possibly due to SOD activity regulation and T and DHT levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zuyue Sun
- Correspondence: ; Tel.: +86-21-64043044
| |
Collapse
|
35
|
Wichelmann TA, Abdulmujeeb S, Ehrenpreis ED. Bevacizumab and gastrointestinal perforations: a review from the FDA Adverse Event Reporting System (FAERS) database. Aliment Pharmacol Ther 2021; 54:1290-1297. [PMID: 34499740 DOI: 10.1111/apt.16601] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bevacizumab is used in the treatment of advanced malignancies and has a "black box" warning for gastrointestinal perforations. Despite this known side effect, there are no large descriptive series of patients who experience bevacizumab-induced gastrointestinal perforations. AIM To review and describe post-market cases of bevacizumab-induced gastrointestinal perforation reported by healthcare professionals to the United States Food and Drug Association Adverse Event Reporting System (FAERS) database. METHODS In total, 74 025 cases of bevacizumab-induced adverse drug reaction were reported to FAERS from January 1 2004 to July 6 2021. We identified 2874 cases of bevacizumab-induced gastrointestinal perforation. A total of 1375 cases were determined to contain complete patient demographic data after the removal of duplicates and were reviewed. Subgroup analysis was completed on gastro-oesophageal perforations given the lack of prior data. RESULTS The average patient age was 61.9 ± 11.4 years. A total of 698 cases included descriptive locations of perforations with most occurring in the large intestine (385 cases, 55.2% of specifically described cases). Colorectal cancer was the most common indication for bevacizumab (691 cases, 50.3%) followed by ovarian cancer (197 cases, 14.3%) and non-small cell lung cancer (182 cases, 13.2%). Death was reported in 554 patients (40.3% of cases). Sixty-two cases of gastro-oesophageal perforation were identified. CONCLUSIONS This is the largest collective descriptive study of bevacizumab-induced gastrointestinal perforations, and sheds light on this often fatal complication. We additionally identified and described a rare subgroup of patients experiencing bevacizumab-induced gastro-oesophageal perforation not previously described.
Collapse
Affiliation(s)
- Thomas A Wichelmann
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Sufyan Abdulmujeeb
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Eli D Ehrenpreis
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| |
Collapse
|
36
|
Effect of Yellow Wine Lees Supplementation on Milk Antioxidant Capacity and Hematological Parameters in Lactating Cows under Heat Stress. Animals (Basel) 2021; 11:ani11092643. [PMID: 34573609 PMCID: PMC8468981 DOI: 10.3390/ani11092643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The yellow wine lees (YWL), a byproduct of the yellow wine brewing industry which contain high levels of crude protein and anti-oxidative substrates can be a suitable ingredient in dairy rations. Total mixed rations (TMR) containing unfermented/fermented YWL were greater in total phenolic and flavonoid concentrations. Feeding lactating cows under heat stress with TMR containing unfermented or fermented YWL mix can reduce their inflammation response and oxidative stress, as well as improve fatty acid quality and oxidative stability of their milk. Abstract Fifteen multiparous lactating Chinese Holstein dairy cows were used in a replicated 3 × 3 Latin Square Design to evaluate the effect of total mixed rations (TMR) containing unfermented and fermented yellow wine lees (YWL) on the oxidative status of heat-stressed lactating cows and the oxidative stability of the milk and milk fatty acids they produced. Cows were fed with three isonitrogenous and isocaloric diets as follows: (1) TMR containing 18% soybean meal, (2) TMR containing 11% unfermented YWL (UM), and (3) TMR containing 11% fermented YWL (FM). The rectal temperature (at 1300 h) and respiratory rate were higher in control cows than in cows fed UM or FM. Both types of YWL were greater in total phenolic and flavonoid contents, reducing power, and radical scavenging abilities than soybean meal. Cows fed UM or FM had higher blood neutrophil, white blood cell, and lymphocyte counts, as well as lower plasma malondialdehyde level, higher plasma superoxide dismutase, glutathione peroxidase, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate levels, and higher total antioxidant capacity in the plasma than those fed control diet. The proportion of milk unsaturated fatty acids was higher and that of saturated fatty acids was lower in UM- and FM-fed animals than in the control animals. Milk from UM- and FM-fed cows had lower malondialdehyde content but higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate content than the control cows. In conclusion, feeding TMR containing UM and FM to cows reduced both the oxidative stress in heat-stressed cows and improved the oxidative capacity of their milk.
Collapse
|
37
|
Xie C, Pu S, Xiong X, Chen S, Peng L, Fu J, Sun L, Guo B, Jiang M, Li X. Melatonin-assisted phytoremediation of Pb-contaminated soil using bermudagrass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44374-44388. [PMID: 33846924 DOI: 10.1007/s11356-021-13790-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Exogenous application of melatonin to plants is a promising approach for assisted phytoremediation of soil lead (Pb). In this study, we investigated the effects of foliar applications of melatonin to mature bermudagrass (Cynodon dactylon (L.) Pers.), a fast-growing perennial with potential as a non-hyperaccumulator plant for Pb phytoremediation. Following exposure to Pb (3000 mg kg-1) for 30 days, decreases in biomass and chlorophyll production, degradation of thylakoid membranes, reduced photosynthesis and PSII (reaction center of photosystem II) efficiency, and elevated oxidative stress were found. Foliar applications of melatonin to Pb-stressed bermudagrass mitigated these negative effects, restoring photosynthetic pigments and chloroplast ultrastructure, subsequently improving photosynthesis and photochemistry efficiency of PSII. Exogenous melatonin also eliminated the excessive accumulations of reactive oxygen species (ROS) and methylglyoxal (MG) which associated with cellular redox homeostasis by improving ascorbic acid (AsA) and reduced glutathione (GSH) contents, redox status of GSH/GSSG (oxidative glutathione), and key enzymes activities in both AsA-GSH and glyoxalase systems. Ultimately, treating bermudagrass plants with exogenous melatonin elevated biomass production and disproportionally greater Pb translocation to roots and senescent leaves. This collectively resulted in 21% greater recovery of Pb compared to Pb-stressed bermudagrass lacking melatonin application. Overall, results from this study demonstrated the beneficial roles of melatonin for improving the effectiveness of bermudagrass as a non-hyperaccumulator plant for soil Pb phytoremediation.
Collapse
Affiliation(s)
- Chengcheng Xie
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Siyi Pu
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Xi Xiong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Shuyu Chen
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Lingli Peng
- Department of Leisure and Tourism, Chengdu Agricultural College, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Jingyi Fu
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
38
|
Liu D, Yu J, Xie J, Zhang Z, Tang C, Yu T, Chen S, Hong Z, Wang C. PbAc Triggers Oxidation and Apoptosis via the PKA Pathway in NRK-52E Cells. Biol Trace Elem Res 2021; 199:2687-2694. [PMID: 32926327 DOI: 10.1007/s12011-020-02378-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/06/2020] [Indexed: 01/28/2023]
Abstract
This study aimed to investigate the mechanism of the lead exposure-induced oxidative stress and apoptosis of renal tubular epithelial cells. We explored the effects of lead acetate (PbAc) on the oxidation and apoptosis of renal proximal tubular cells (NRK-52E) through in vitro experiments. Results showed that PbAc induced dose-dependent reactive oxygen species (ROS) accumulation in NRK-52E cells, and the activities of superoxide dismutase (SOD) and glutathione (GSH) decreased, whereas the malondialdehyde (MDA) content increased. Under the exposure of 40 and 80 μM PbAc, the mRNA level of B cell lymphoma-2 (Bcl-2) in the cells decreased, the mRNA levels of Bcl-2-associated X protein (Bax) and caspase-3 increased, and apoptosis was obvious. Furthermore, the nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) activity was enhanced by PbAc in a dose-dependent manner. The mRNA levels of protein kinase A (PKA) were upregulated by PbAc. H-89, a PKA inhibitor, suppressed PKA activation, ROS accumulation, and Nox4 activity in NRK-52E cells. Our results indicated that PbAc potentially stimulated oxidative stress and apoptosis in NRK-52E cells by increasing Nox4-dependent ROS production via the PKA signaling pathway.
Collapse
Affiliation(s)
- Duanya Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jun Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jie Xie
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zhaoyu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Caoli Tang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Tianmei Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Shouni Chen
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
39
|
Zhu Z, Shi J, Huang X, Zhang X, Li Y, Qin L, Zhang R, Liu B. Bioaccumulation, Metabolism, and Biomarker Responses in Hyriopsis cumingii Exposed to 4-Mono-Chlorinated Dibenzothiophene. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1873-1882. [PMID: 33683752 DOI: 10.1002/etc.5033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated dibenzothiophenes (PCDTs) are sulfur analogues of polychlorinated dibenzofurans with prevalent occurrence in aquatic environments and potential ecological risks. However, data on the behavior and toxicity of PCDTs in aquatic organisms remain scarce. In the present study, the bioaccumulation, metabolism, and oxidative damage of 4-mono-chlorinated dibenzothiophene (4-mono-CDT) in freshwater mussel (Hyriopsis cumingii) were investigated after exposure to 4-mono-CDT in semistatic water. The uptake rates, depuration rates, half-lives, and bioconcentration factors of 4-mono-CDT in hepatopancreas, gill, and muscle tissues ranged from 0.492 to 1.652 L d-1 g-1 dry weight, from 0.117 to 0.308 d-1 , from 2.250 to 5.924 d, and from 2.903 to 8.045 × 103 L kg-1 dry weight, respectively. A dechlorinated metabolite (dibenzothiophene) was detected in hepatopancreas tissue, indicating that dechlorination was the main metabolic pathway of 4-mono-CDT. As the exposure time increased, the activities of superoxide dismutase, catalase, and glutathione peroxidase were induced or inhibited in the different experimental groups. The malondialdehyde content increased with increasing 4-mono-CDT dose and exposure time. A higher concentration of 4-mono-CDT corresponded to a greater integrated biomarker response in each tissue and greater oxidative damage. The antioxidant enzymes in hepatopancreas were more sensitive to 4-mono-CDT than those in gill. The results provide useful information on the behavior and ecotoxicity of PCDTs in freshwater mussels. Environ Toxicol Chem 2021;40:1873-1882. © 2021 SETAC.
Collapse
Affiliation(s)
- Ziqing Zhu
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Jiaqi Shi
- Nanjing Institute of Environmental Sciences of the Ministry of Ecological Environment, Jiangsu Nanjing, China
| | - Xinxin Huang
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- School of Resources and Environment, University of Jinan, Shandong Jinan, China
| | - Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| |
Collapse
|
40
|
Liu W, Chen H, Zhang X, Zhang X, Xu L, Lei Y, Zhu C, Ma B. Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02751-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Yin C, Tang S, Liu L, Cao A, Xie J, Zhang H. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals (Basel) 2021; 11:ani11030630. [PMID: 33673472 PMCID: PMC7997420 DOI: 10.3390/ani11030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The negative impacts of heat stress (HS) on growth performance and lipid metabolism have been reported, but there are still no effective nutritional strategies to alleviate heat stress. Bile acids are new for their antioxidative properties and regulatory effect on lipid metabolism. This study was carried out to evaluate the growth performance and lipid metabolism in chickens under heat stress when fed with bile acid supplements in their diet. The results showed that mild heat stress (32 °C) induced hepatic lipogenic gene (hepatic SREBP-1c) expressions and lipid deposition, without obvious tissue damage in broilers. Dietary supplementation of bile acid could decrease hepatic lipid deposition without affecting endogenous bile acid biosynthesis. Therefore, bile acid supplements can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress. Abstract This study aimed to investigate whether dietary bile acid (BA) supplements can improve growth performance and lipid metabolism in heat-stressed broiler chickens. A total of 288 Arbor Acres broilers were blocked by BW and then randomly allocated into 4 treatments at 21 days of age. Birds reared under 32 °C had a higher cloacal temperature (p = 0.01), faster respiratory rate (p < 0.001), and a greatly reduced average daily feed intake (ADFI, p = 0.016), average daily gain (ADG, p = 0.006), final body weight (FBW, p = 0.008), and feed conversion rate (FCR, p = 0.004). In heat stress (HS) birds, the breast muscle rate (p = 0.006) and pH 24 h postmortem (p = 0.065) were lower, and the shear force was higher (p = 0.027). Dietary BA supplements tended to increase the breast muscle rate (p = 0.075) without affecting the growth performance and serum lipids (p > 0.05). Serum total bile acid (TBA) was roughly duplicated after BA supplements (p = 0.001). In the liver, total cholesterol was lower (p = 0.046), and triglycerides were higher (p = 0.04) in the HS birds, whereas the expression of SREBP-1c showed an increasing trend (p = 0.06). In contrast, dietary BA decreased triglycerides and the expressions of hepatic SREBP-1c and FAS in the liver (p < 0.05). In summary, mild HS causes hepatic lipid accumulation without obvious tissue damages, whereas BA has positive effects on relieving abnormal lipid metabolism, indicating that BA as a nutritional strategy has a certain potential in alleviating HS.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Aizhi Cao
- Shandong Longchang Animal Health Care Co., Ltd., Jinan 251100, China;
| | - Jingjing Xie
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
- Correspondence:
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| |
Collapse
|
42
|
Pro-Aging Effects of Xanthine Oxidoreductase Products. Antioxidants (Basel) 2020; 9:antiox9090839. [PMID: 32911634 PMCID: PMC7555004 DOI: 10.3390/antiox9090839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
The senescence process is the result of a series of factors that start from the genetic constitution interacting with epigenetic modifications induced by endogenous and environmental causes and that lead to a progressive deterioration at the cellular and functional levels. One of the main causes of aging is oxidative stress deriving from the imbalance between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their scavenging through antioxidants. Xanthine oxidoreductase (XOR) activities produce uric acid, as well as reactive oxygen and nitrogen species, which all may be relevant to such equilibrium. This review analyzes XOR activity through in vitro experiments, animal studies and clinical reports, which highlight the pro-aging effects of XOR products. However, XOR activity contributes to a regular level of ROS and RNS, which appears essential for the proper functioning of many physiological pathways. This discourages the use of therapies with XOR inhibitors, unless symptomatic hyperuricemia is present.
Collapse
|
43
|
Cao J, Tang C, Gao M, Rui Y, Zhang J, Wang L, Wang Y, Xu B, Yan BC. Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112884. [PMID: 32311482 DOI: 10.1016/j.jep.2020.112884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. (genus Hypericum, family Hypericaceae), a plant commonly used in traditional Chinese medicine, is believed to confer a wide range of benefits, including fever reduction, detoxification, calming, and pain relief via decoctions of its stems and leaves. Hyperoside (HYP), a natural compound extracted from Hypericum perforatum L., has been shown to demonstrate a wide array of bioactivities including antioxidative, anti-inflammatory, and anti-apoptotic effects. In this study, we investigated the effects of HYP on epilepsy-induced neuronal damage in mice and the associated regulatory factors. AIM OF THE STUDY This study examined the potential therapeutic use of HYP for the treatment of neuronal damage in a mouse model of epilepsy and explored the relationships of the potential neuroprotective effects of HYP pretreatment with antioxidant levels and autophagy. MATERIALS AND METHODS ICR mice were randomly divided into six groups: sham group, sham-HYP group, KA group, KA-HYP group, KA-HYP-DDC group and KA-CQ group. Immunohistochemical staining was used to assess changes in NeuN, IBA-1, and GFAP expression in the CA3 region of the hippocampus. Immunofluorescence staining was used to assess the effects of HYP on the number of autophagosomes that accumulated in neurons in the hippocampal CA3 region. The levels of SOD1, SOD2, LC3I/II, Beclin1, and PI3K/AKT and MAPK signaling-related proteins were detected by Western blot. RESULTS Pretreatment with 50 mg/kg HYP protected against epilepsy-induced neuronal damage in the hippocampal CA3 region. Additionally, HYP enhanced antioxidant levels and reduced the levels of autophagy-related proteins via the PI3K/AKT and MAPK pathways. CONCLUSION HYP protected the hippocampal CA3 region against epilepsy-induced neuronal damage via enhancing antioxidant levels and reducing autophagy. The mechanism of action may be related to the maintenance of antioxidant levels and the suppression of autophagy via the PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Jianwen Cao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Cheng Tang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Yanggang Rui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Li Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Yang Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Bo Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China; Department of Neurology, Affiliated Hospital, Yangzhou University, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine of Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
44
|
Chen R, Zeng Z, Zhang YY, Cao C, Liu HM, Li W, Wu Y, Xia ZY, Ma D, Meng QT. Ischemic postconditioning attenuates acute kidney injury following intestinal ischemia-reperfusion through Nrf2-regulated autophagy, anti-oxidation, and anti-inflammation in mice. FASEB J 2020; 34:8887-8901. [PMID: 32519766 DOI: 10.1096/fj.202000274r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Intestinal ischemia-reperfusion (IIR) often occurs during and following major cardiovascular or gut surgery and causes significant organ including kidney injuries. This study was to investigate the protective effect of intestinal ischemic postconditioning (IPo) on IIR-induced acute kidney injury (AKI) and the underling cellular signaling mechanisms with focus on the Nrf2/HO-1. Adult C57BL/6J mice were subjected to IIR with or without IPo. IIR was established by clamping the superior mesenteric artery (SMA) for 45 minutes followed by 120 minutes reperfusion. Outcome measures were: (i) Intestinal and renal histopathology; (ii) Renal function; (iii) Cellular signaling changes; (iv) Oxidative stress and inflammatory responses. IPo significantly attenuated IIR-induced kidney injury. Furthermore, IPo significantly increased both nuclear Nrf2 and HO-1 expression in the kidney, upregulated autophagic flux, inhibited IIR-induced inflammation and reduced oxidative stress. The protective effect of IPo was abolished by the administration of Nrf2 inhibitor (Brusatol) or Nrf2 siRNA. Conversely, a Nrf2 activator t-BHQ has a similar protective effect to that of IPo. Our data indicate that IPo protects the kidney injury induced by IIR, which was likely mediated through the Nrf2/HO-1 cellular signaling activation.
Collapse
Affiliation(s)
- Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zi Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun-Yan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Cao
- Department of Endocrinology, The 3rd Hospital of Wuhan, Wuhan, China
| | - Hui-Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Sci Rep 2020; 10:8243. [PMID: 32427937 PMCID: PMC7237458 DOI: 10.1038/s41598-020-65219-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfadiazine (SD), sulfamerazine (SM1), and sulfamethazine (SM2) are widely used and disorderly discharged into surface water, causing contamination of lakes and rivers. However, microalgae are regard as a potential resource to alleviate and degrade antibiotic pollution. The physiological changes of Chlorella vulgaris in the presence of three sulfonamides (SAs) with varying numbers of –CH3 groups and its SA-removal efficiency were investigated following a 7-day exposure experiment. Our results showed that the growth inhibitory effect of SD (7.9–22.6%), SM1 (7.2–45.9%), and SM2 (10.3–44%) resulted in increased proteins and decreased soluble sugars. Oxidative stress caused an increase in superoxide dismutase and glutathione reductase levels but decreased catalase level. The antioxidant responses were insufficient to cope-up with reactive oxygen species (hydrogen peroxide and superoxide anion) levels and prevent oxidative damage (malondialdehyde level). The ultrastructure and DNA of SA-treated algal cells were affected, as evident from the considerable changes in the cell wall, chloroplast, and mitochondrion, and DNA migration. C. vulgaris-mediated was able to remove up to 29% of SD, 16% of SM1, and 15% of SM2. Our results suggest that certain concentrations of specific antibiotics may induce algal growth, and algal-mediated biodegradation process can accelerate the removal of antibiotic contamination.
Collapse
|
46
|
Arabacı Tamer S, Üçem S, Büke B, Güner M, Karaküçük AG, Yiğit N, Şirvancı S, Çevik Ö, Ercan F, Yeğen BÇ. Regular moderate exercise alleviates gastric oxidative damage in rats via the contribution of oxytocin receptors. J Physiol 2020; 598:2355-2370. [PMID: 32266969 DOI: 10.1113/jp279577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/31/2020] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS A moderate level of exercise has beneficial effects for the prevention of gastric ulcers. Although regular aerobic exercise was shown to elevate serum oxytocin levels and exogenously administered oxytocin exerts an anti-ulcer activity, the role of endogenous oxytocin in the gastroprotective effects of exercise has not yet been elucidated. We showed that increased anxiety and oxidative gastric damage induced by gastric ulcers were reversed in pre-exercised rats, while reduced hypothalamic oxytocin expression and decreased myenteric oxytocin receptor expression due to gastric ulcers were abolished by exercise. We also reported that the blockade of oxytocin receptors exaggerated gastric damage in exercised rats with ulcers. Our data establish that endogenous oxytocin is the key mediator in the beneficial effects of regular physical activity in alleviating gastric injury. ABSTRACT Exercise increases serum oxytocin levels and exogenous oxytocin exerts an anti-ulcer activity; but the role of oxytocin in the protective effects of exercise against gastric ulcers has not yet been evaluated. This study was designed to investigate the impact of regular swimming exercise on oxidative gastric injury, and the role of oxytocin receptor activity in the anxiolytic and anti-inflammatory actions of exercise. Adult Wistar albino rats of both sexes performed swimming exercise (30 min/day, 5 days) or stayed sedentary. At the end of the 6-week exercise/sedentary protocol, rats were injected intraperitoneally with atosiban (0.1 mg/kg/day) or saline for 4 days. On the 5th day, under anaesthesia, acetic acid (ulcer) or saline (sham) was applied onto the gastric serosa and the treatments were continued. On the 9th day, anxiety levels were determined; gastric blood flow was measured, and blood, gastric and brain tissues were obtained. Induction of ulcers in sedentary rats increased anxiety and serum corticosterone levels; but reduced gastric blood flow and resulted in apoptosis and oxidative gastric damage with increased cytokine expressions. However, when ulcers were induced in pre-exercised rats, behavioural and biochemical alterations due to gastric damage were reversed. The inhibition of oxytocin receptors by atosiban exaggerated pro-inflammatory cytokine expressions and gastric lipid peroxidation in the stomachs of exercised rats with ulcers. When rats had regularly exercised prior to ulcer induction, reductions in the immunolabelling of hypothalamic oxytocin and myenteric oxytocin receptors were abolished, suggesting that exercise-induced alleviation of gastric injury may involve the reversal of down-regulated oxytocinergic activity.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Selen Üçem
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Berk Büke
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Muhammed Güner
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Alp Giray Karaküçük
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Niyazi Yiğit
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Serap Şirvancı
- Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Feriha Ercan
- Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Berrak Ç Yeğen
- Departments of Physiology and Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| |
Collapse
|
47
|
Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism. J Mol Histol 2020; 51:161-171. [DOI: 10.1007/s10735-020-09866-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
|
48
|
Li K, Jiang L, Wang J, Xia L, Zhao R, Cai C, Wang P, Zhan X, Wang Y. Maternal dietary supplementation with different sources of selenium on antioxidant status and mortality of chicken embryo in a model of diquat-induced acute oxidative stress. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Qian JY, Deng P, Liang YD, Pang L, Wu LC, Yang LL, Zhou Z, Yu ZP. 8-Formylophiopogonanone B Antagonizes Paraquat-Induced Hepatotoxicity by Suppressing Oxidative Stress. Front Pharmacol 2019; 10:1283. [PMID: 31708790 PMCID: PMC6821879 DOI: 10.3389/fphar.2019.01283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/07/2019] [Indexed: 01/15/2023] Open
Abstract
Flavonoids are some of the most important natural products with a variety of physiological activities. 8-Formylophiopogonanone B (8-FOB) is a naturally existing homoisoflavonoid in Ophiopogon japonicus. Paraquat (PQ) has been widely used as a potent herbicide and has high toxicity in humans. The goal of the present study was to investigate whether 8-FOB could protect against PQ-induced hepatotoxicity in vitro and in vivo. We first tested the protective effects of 8-FOB on PQ-induced cytotoxicity in L02 cells by determining cell viability, intracellular oxidative stress levels, mitochondrial function, and apoptosis in vitro. To verify the protective effects of 8-FOB, we pretreated mice with 8-FOB and assessed liver function, hepatic oxidative stress, and histopathological changes after PQ administration. Our results revealed that 8-FOB could antagonize PQ-induced hepatotoxicity in vitro and in vivo. The antagonistic effects could be attributed to suppressing oxidative stress, preserving mitochondrial function, and inhibiting apoptosis. The present study is the first to document that 8-FOB, a homoisoflavonoid compound, is an effective antioxidant for antagonizing PQ-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing-Yu Qian
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yi-Dan Liang
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Li Pang
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Li-Chuan Wu
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Ling-Ling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhouv Zhou
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Zheng-Ping Yu
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
50
|
Shi Z, Xing H, Qi C, Fang M, Fu J, Zhang X. Chinese tree shrews as a primate experimental animal eligible for the study of alcoholic liver disease: characterization and confirmation by MRI. Exp Anim 2019; 69:110-118. [PMID: 31554748 PMCID: PMC7004808 DOI: 10.1538/expanim.19-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There has been a lack of suitable fatty liver models and characterization techniques for
histopathological evaluation of alcoholic fatty liver (AFL). This work aimed to exploit an
magnetic resonance imaging (MRI) technique for characterizing an alcohol-induced fatty
liver model established in tree shrews (Tupaia belangeri chinese). The
animals were treated with 15% alcohol for two weeks instead of drinking water to induce
AFL. Blood alanine aminotransferase (ALT), aspartate aminotransferase (AST), alcohol, and
liver malondialdehyde (MDA) concentrations were determined, and the histopathology of the
liver was checked by hematoxylin & eosin (HE) and Oil red O staining on day 0 and on
the 4th, 7th and 14th days after alcohol feeding. MRI was used to trace the
histopathological changes in the liver of tree shrews in real time. Compared with the
control group, the levels of ALT, AST, and MDA significantly increased in the
alcohol-induced group and were positively correlated with the induction time. HE and Oil
red O staining revealed that a moderate fatty lesion occurred in the liver on the 4th day
and that a serious AFL was successfully induced on the 14th day. MRI further confirmed the
formation of AFL. MRI, as noninvasive examination technique, provides an alternative tool
for accurate characterization of AFL in live subjects. It is comparable to HE or Oil red O
staining for histopathological examination, but is more suitable by virtue of its high
flexibility and compliance. The AFL model of tree shrews combined with MRI
characterization can work as a platform for studying fatty liver diseases and medications
for their treatment.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan Province 450008, P.R. China
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong Province 510632, P.R. China
| | - Chunli Qi
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong Province 510632, P.R. China
| | - Meixia Fang
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong Province 510632, P.R. China
| | - Jiangnan Fu
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong Province 510632, P.R. China
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong Province 510632, P.R. China
| |
Collapse
|