1
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2025; 48:84-97. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
2
|
Hany NM, Eissa S, Basyouni M, Hasanin AH, Aboul-Ela YM, Elmagd NMA, Montasser IF, Ali MA, Skipp PJ, Matboli M. Modulation of hepatic stellate cells by Mutaflor ® probiotic in non-alcoholic fatty liver disease management. J Transl Med 2022; 20:342. [PMID: 35907883 PMCID: PMC9338485 DOI: 10.1186/s12967-022-03543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. OBJECTIVE To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor® on this network. METHODS First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-β, were estimated by ELISA. RESULTS Mutaflor® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-β effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. CONCLUSION Mutaflor® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Noha M. Hany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
- MASRI Research Institue, Ain Shams University, Cairo, Egypt
| | - Manal Basyouni
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
| | - Amany H. Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M. Aboul-Ela
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagwa M. Abo Elmagd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F. Montasser
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud A. Ali
- Department of Molecular Microbiology, Military Medical Academy, Cairo, Egypt
| | - Paul J. Skipp
- Centre for Proteomic Research, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381 Egypt
| |
Collapse
|
3
|
Chen L, Li Z, Zheng Y, Zhou F, Zhao J, Zhai Q, Zhang Z, Liu T, Chen Y, Qi S. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact Mater 2021; 10:236-246. [PMID: 34901542 PMCID: PMC8636711 DOI: 10.1016/j.bioactmat.2021.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022] Open
Abstract
Scar contraction frequently happens in patients with deep burn injuries. Hitherto, porcine dermal extracellular matrix (dECM) has supplied microenvironments that assist in wound healing but fail to inhibit scar contraction. To overcome this drawback, we integrate dECM into three-dimensional (3D)-printed dermal analogues (PDA) to prevent scar contraction. We have developed thermally gelled, non-rheologically modified dECM powder (dECMp) inks and successfully transformed them into PDA that was endowed with a micron-scale spatial structure. The optimal crosslinked PDA exhibited desired structure, good mechanical properties as well as excellent biocompatibility. Moreover, in vivo experiments demonstrated that PDA could significantly reduced scar contraction and improved cosmetic upshots of split thickness skin grafts (STSG) than the commercially available dermal templates and STSG along. The PDA has also induced an early, intense neovascularization, and evoked a type-2-like immune response. PDA's superior beneficial effects may attribute to their desired porous structure, the well-balanced physicochemical properties, and the preserved dermis-specific ECM cues, which collectively modulated the expression of genes such as Wnt11, ATF3, and IL1β, and influenced the crucial endogenous signalling pathways. The findings of this study suggest that PDA is a clinical translatable material that possess high potential in reducing scar contraction.
Current dermal analogues have supplied microenvironments that assist in wound healing but cannot inhibit scar contraction. dECMp ink was formulated and transformed into PDA endowed with a micron-scale designed spatial structure. The PDAs were neatly superior to split thickness skin grafts and commercial dermal templates in hindering scar contraction. The transcriptome data may reveal how at the molecular level the IS and skin wounds respond to biomaterial stimuli.
Collapse
Affiliation(s)
- Lei Chen
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Zhiyong Li
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongtai Zheng
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fei Zhou
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Jingling Zhao
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Qiyi Zhai
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Tianrun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongming Chen
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohai Qi
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
4
|
Ding H, Yang X, Tian J, Wang X, Ji Y, El-Ashram S, Ren C, Shen J, Liu M. JQ-1 ameliorates schistosomiasis liver fibrosis by suppressing JAK2 and STAT3 activation. Biomed Pharmacother 2021; 144:112281. [PMID: 34624676 DOI: 10.1016/j.biopha.2021.112281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis is a serious parasitic infection caused by Schistosoma. The parasite deposits eggs in the host liver, causing inflammation that activates hepatic stellate cells (HSCs), which leads to liver fibrosis. Currently, there is no effective therapy for liver fibrosis; thus, treatments are urgently needed. Therefore, in the present study, mice infected with Schistosoma japonicum were treated with JQ-1, a small-molecule bromodomain inhibitor with reliable anti-tumor and anti-inflammatory activities. The fibrotic area of the liver measured by computer-assisted morphometric analysis and the expression levels of the cytoskeletal protein alpha smooth muscle actin (α-SMA) and of collagen assessed by quantitative PCR, Western blot and immunohistochemistry were significantly decreased in the liver following JQ-1 treatment compared with vehicle-treated controls. Total RNA was extracted from the liver of JQ-1-treated Schistosoma-infected mice for RNA-sequencing analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that JQ-1 affected biological processes and the expression of cellular components known to play key roles in the transdifferentiation of HSCs to myofibroblasts. In vitro treatment with JQ-1 of JS-1 cells, a mouse HSC line, indicated that JQ-1 significantly inhibited JS-1 proliferation but had no effect on JS-1 activity, senescence, or apoptosis. Western blot results showed that JQ-1 inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3 without altering expression levels of these non-phosphorylated proteins. Taken together, these findings suggested that JQ-1 treatment ameliorated S. japonicum egg-induced liver fibrosis, at least in part, by suppressing HSC activation and proliferation through the inhibition of JAK2/STAT3 signaling. These results lay a foundation for the development of novel approaches to treat and control liver fibrosis caused by S. japonicum.
Collapse
Affiliation(s)
- Han Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Xuhan Yang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Jiaming Tian
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Xinran Wang
- The Second Clinical Medical College, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yongsheng Ji
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, Guangdong 528231 People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China.
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
5
|
Zhou Y, Wu R, Cai FF, Zhou WJ, Lu YY, Zhang H, Chen QL, Sun MY, Su SB. Development of a novel anti-liver fibrosis formula with luteolin, licochalcone A, aloe-emodin and acacetin by network pharmacology and transcriptomics analysis. PHARMACEUTICAL BIOLOGY 2021; 59:1594-1606. [PMID: 34808067 PMCID: PMC8635660 DOI: 10.1080/13880209.2021.1999275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
CONTEXT Xiaoyaosan decoction (XYS), a classical Traditional Chinese Medicine (TCM) formula is used to treat liver fibrosis in clinics. OBJECTIVE This study explores defined compound combinations from XYS decoction to treat liver fibrosis. MATERIALS AND METHODS Network pharmacology combined with transcriptomics analysis was used to analyze the XYS decoction and liver depression and spleen deficiency syndrome liver fibrosis. From the constructed XYS-Syndrome-liver fibrosis network, the top 10 active formulas were developed by topological analysis according to network stability. The most active formula was determined by in vitro study. The anti-fibrosis effect was evaluated by in vitro and in vivo studies. RESULTS According to the network XYS-Syndrome-liver fibrosis network, 8 key compounds and 255 combinations were predicted from in XYS. Luteolin, licochalcone A, aloe-emodin and acacetin formula (LLAAF) had a synergistic effect on the proliferation inhibition of hepatic stellate cells compared to individual compounds alone. The treatment of XYS and LLAAF showed a similar anti-liver fibrotic effect that reduced histopathological changes of liver fibrosis, Hyp content and levels of α-SMA and collagen I in CCl4-induced liver fibrosis in rats. Transcriptomics analysis revealed LLAAF regulated PI3K-Akt, AMPK, FoxO, Jak-STAT3, P53, cell cycle, focal adhesion, and PPAR signalling. Furthermore, LLAAF was confirmed to regulate Jak-STAT and PI3K-Akt-FoxO signalling in vitro and in vivo. CONCLUSIONS This study developed a novel anti-liver formula LLAAF from XYS, and demonstrated its anti-liver fibrotic activity which may be involved in the regulation of Jak-STAT and PI3K-Akt-FoxO signalling.
Collapse
Affiliation(s)
- Yuan Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei-fei Cai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jun Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Yu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi-Bing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Bolivar S, Espitia-Corredor JA, Olivares-Silva F, Valenzuela P, Humeres C, Anfossi R, Castro E, Vivar R, Salas-Hernández A, Pardo-Jiménez V, Díaz-Araya G. In cardiac fibroblasts, interferon-beta attenuates differentiation, collagen synthesis, and TGF-β1-induced collagen gel contraction. Cytokine 2020; 138:155359. [PMID: 33160814 DOI: 10.1016/j.cyto.2020.155359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblasts (CF) play a key role in the homeostasis of the extracellular matrix in cardiac tissue and are newly recognized as inflammatory supporter cells. Besides, CF-to-Cardiac myofibroblast differentiation is commanded by TGF-b, through SMAD signaling pathways, and these last cells are strongly implicated in cardiac fibrosis. In the heart IFN-β is produced by CF; however, the role of IFN-β, STAT proteins, and STAT-homo or heterodimers in the regulation of CF function with or without a fibrotic environment is unknown. CF were isolated from hearts of adult rats, and by western blot analysis we studied STAT1, STAT2, and STAT3 phosphorylation and through specific siRNA against these proteins we analyzed their role in CF functions such as differentiation (α-SMA expression); and pro-collagen type-I synthesis and secretion expression levels; collagen gels contraction and CF migration. In cultured adult rats CF, IFN-β increases phosphorylation of STAT1, STAT2, and STAT3. Both STAT1 and STAT2 were involved in decreasing α-SMA and CF migration induced by TGF-β1. Also, IFN-β through STAT1 regulated pro-collagen type-I protein expression levels, and collagen gels contraction induced by TGF-β1. STAT3 was not involved in any effects of IFN-β studied. In conclusion, IFN-β through STAT1 and STAT2 shows antifibrotic effects on CF TGF-β1-treated, whereas STAT3 did not participate in such effect.
Collapse
Affiliation(s)
- S Bolivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - J A Espitia-Corredor
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - F Olivares-Silva
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - P Valenzuela
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - C Humeres
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Anfossi
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - E Castro
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Vivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - A Salas-Hernández
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - V Pardo-Jiménez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Yang Q, Lopez MJ. The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development. Toxicol Pathol 2019; 49:1294-1307. [PMID: 31741428 DOI: 10.1177/0192623319880469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The equine hoof capsule, composed of modified epidermis and dermis, is vital for protecting the third phalanx from forces of locomotion. There are descriptions of laminitis, defined as inflammation of sensitive hoof tissues but recognized as pathologic changes with or without inflammatory mediators, in the earliest records of domesticated horses. Laminitis can range from mild to serious, and signs can be acute, chronic, or transition from acute, severe inflammation to permanently abnormal tissue. Damage within the intricate dermal and epidermal connections of the primary and secondary lamellae is often associated with lifelong changes in hoof growth, repair, and conformation. Decades of research contribute to contemporary standards of care that include systemic and local therapies as well as mechanical hoof support. Despite this, consistent mechanisms to restore healthy tissue formation following a laminitic insult are lacking. Endogenous and exogenous progenitor cell contributions to healthy tissue formation is established for most tissues. There is comparably little information about equine hoof progenitor cells. Equine hoof anatomy, laminitis, and progenitor cells are covered in this review. The potential of progenitor cells to advance in vitro equine hoof tissue models and translate to clinical therapies may significantly improve prevention and treatment of a devastating condition that has afflicted equine companions throughout history.
Collapse
Affiliation(s)
- Qingqiu Yang
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| | - Mandi J Lopez
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| |
Collapse
|
8
|
Li X, Zhang H, Pan L, Zou H, Miao X, Cheng J, Wu Y. Puerarin alleviates liver fibrosis via inhibition of the ERK1/2 signaling pathway in thioacetamide-induced hepatic fibrosis in rats. Exp Ther Med 2019; 18:133-138. [PMID: 31258646 DOI: 10.3892/etm.2019.7534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex pathological process and an early step in the progression of liver cirrhosis, which can eventually develop into hepatocellular carcinoma. Currently, there is no effective treatment for liver fibrosis. Puerarin is a traditional Chinese herb, which is commonly used in the treatment of various diseases. In addition, it is also believed to have a therapeutic effect in liver fibrosis. However, whether puerarin reduces liver fibrosis via the ERK1/2 signaling pathway to inhibit the activation of hepatic stellate cell (HSC) and excessive collagen deposition in liver fibrosis remains unknown. The aim of the current study was to establish a liver fibrosis in vivo model by intraperitoneal injection of thioacetamide (TAA) and investigate the effect of puerarin in the treatment of liver fibrosis. Hematoxylin and eosin and Van Gieson's staining were used to examine histopathological changes associated with liver fibrosis. Liver hydroxyproline content was examined to determine the total amount of collagen in the liver. The relative protein expression levels of transforming growth factor β1 (TGFβ1), α-smooth muscle actin (α-SMA), collagen type I, fibronectin, ERK1/2 and p-ERK1/2 were determined by western blot analysis. In the TAA group, histopathological changes and collagen fiber content in rat liver tissue samples were significantly increased compared with the control group (P<0.05). In addition, treatment with puerarin significantly decreased histopathological changes and collagen fiber content in rat liver tissue samples (P<0.05). The relative protein expression levels of TGFβ1, α-SMA, collagen type I, fibronectin and p-ERK1/2 were significantly upregulated in the TAA group compared with the control group (P<0.05), whereas puerarin treatment reversed these changes. These findings suggest that treatment with puerarin may reduce HSC activation and alleviate extracellular matrix protein expression levels by inhibiting the TGF-β/ERK1/2 pathway in liver fibrosis.
Collapse
Affiliation(s)
- Xiuqing Li
- Department of Gastroenterology and Hepatology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Hui Zhang
- Department of Gastroenterology and Hepatology, The Second Hospital of Lianyungang, Lianyungang, Jiangsu 222023, P.R. China
| | - Lijuan Pan
- Department of Gastroenterology and Hepatology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Haiou Zou
- Department of Gastroenterology and Hepatology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Xiaonan Miao
- Department of Gastroenterology and Hepatology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Jing Cheng
- Department of Gastroenterology and Hepatology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Youshan Wu
- Department of Gastroenterology and Hepatology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| |
Collapse
|
9
|
Xiang DM, Sun W, Ning BF, Zhou TF, Li XF, Zhong W, Cheng Z, Xia MY, Wang X, Deng X, Wang W, Li HY, Cui XL, Li SC, Wu B, Xie WF, Wang HY, Ding J. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 2018; 67:1704-1715. [PMID: 28754776 DOI: 10.1136/gutjnl-2016-313392] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Liver fibrosis is a wound-healing response that disrupts the liver architecture and function by replacing functional parenchyma with scar tissue. Recent progress has advanced our knowledge of this scarring process, but the detailed mechanism of liver fibrosis is far from clear. METHODS The fibrotic specimens of patients and HLF (hepatic leukemia factor)PB/PB mice were used to assess the expression and role of HLF in liver fibrosis. Primary murine hepatic stellate cells (HSCs) and human HSC line Lx2 were used to investigate the impact of HLF on HSC activation and the underlying mechanism. RESULTS Expression of HLF was detected in fibrotic livers of patients, but it was absent in the livers of healthy individuals. Intriguingly, HLF expression was confined to activated HSCs rather than other cell types in the liver. The loss of HLF impaired primary HSC activation and attenuated liver fibrosis in HLFPB/PB mice. Consistently, ectopic HLF expression significantly facilitated the activation of human HSCs. Mechanistic studies revealed that upregulated HLF transcriptionally enhanced interleukin 6 (IL-6) expression and intensified signal transducer and activator of transcription 3 (STAT3) phosphorylation, thus promoting HSC activation. Coincidentally, IL-6/STAT3 signalling in turn activated HLF expression in HSCs, thus completing a feedforward regulatory circuit in HSC activation. Moreover, correlation between HLF expression and alpha-smooth muscle actin, IL-6 and p-STAT3 levels was observed in patient fibrotic livers, supporting the role of HLF/IL-6/STAT3 cascade in liver fibrosis. CONCLUSIONS In aggregate, we delineate a paradigm of HLF/IL-6/STAT3 regulatory circuit in liver fibrosis and propose that HLF is a novel biomarker for activated HSCs and a potential target for antifibrotic therapy.
Collapse
Affiliation(s)
- Dai-Min Xiang
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, USA.,National Center for Liver Cancer, Shanghai, China
| | - Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bei-Fang Ning
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Teng-Fei Zhou
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Feng Li
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei Zhong
- Department of Gastroenterology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhuo Cheng
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ming-Yang Xia
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xue Wang
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xing Deng
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | - Heng-Yu Li
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiu-Liang Cui
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shi-Chao Li
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bin Wu
- Department of Gastroenterology and Endoscopy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
10
|
Schumacher EC, Götze S, Kordes C, Benes V, Häussinger D. Combined Methylome and Transcriptome Analysis During Rat Hepatic Stellate Cell Activation. Stem Cells Dev 2017; 26:1759-1770. [DOI: 10.1089/scd.2017.0128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Eva Christine Schumacher
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vladimir Benes
- Genomic Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Li XQ, Zhang QQ, Zhang HY, Guo XH, Fan HQ, Liu LX. Interaction between insulin-like growth factor binding protein-related protein 1 and transforming growth factor beta 1 in primary hepatic stellate cells. Hepatobiliary Pancreat Dis Int 2017; 16:395-404. [PMID: 28823370 DOI: 10.1016/s1499-3872(17)60013-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGFβ1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGFβ1 in primary hepatic stellate cells (HSCs). METHODS We overexpressed TGFβ1 or IGFBPrP1 and inhibited TGFβ1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of α-smooth muscle actin (α-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS We found that the adenovirus vector encoding the TGFβ1 gene (AdTGFβ1) induced IGFBPrP1 expression while that of α-SMA, collagen I, fibronectin, and TGFβ1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGFβ1, α-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGFβ1 expression reduced the IGFBPrP1-stimulated expression of α-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGFβ1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGFβ1-depedent manner, and may act as an upstream regulatory factor of TGFβ1 in the Smad pathway.
Collapse
Affiliation(s)
- Xiu-Qing Li
- Department of Gastroenterology and Hepatology, Taiyuan 030001, China
| | - Qian-Qian Zhang
- Department of Gastroenterology and Hepatology, Taiyuan 030001, China; Experimental Center of Science and Research, Taiyuan 030001, China; The First Clinical Hospital of Shanxi Medical University; and Key Laboratory of Cell Physiology, Provincial Department of the Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hai-Yan Zhang
- Department of Gastroenterology and Hepatology, Taiyuan 030001, China; Experimental Center of Science and Research, Taiyuan 030001, China; The First Clinical Hospital of Shanxi Medical University; and Key Laboratory of Cell Physiology, Provincial Department of the Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Hong Guo
- Department of Gastroenterology and Hepatology, Taiyuan 030001, China; Experimental Center of Science and Research, Taiyuan 030001, China; The First Clinical Hospital of Shanxi Medical University; and Key Laboratory of Cell Physiology, Provincial Department of the Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hui-Qin Fan
- Department of Gastroenterology and Hepatology, Taiyuan 030001, China; Experimental Center of Science and Research, Taiyuan 030001, China; The First Clinical Hospital of Shanxi Medical University; and Key Laboratory of Cell Physiology, Provincial Department of the Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Li-Xin Liu
- Department of Gastroenterology and Hepatology, Taiyuan 030001, China; Experimental Center of Science and Research, Taiyuan 030001, China; The First Clinical Hospital of Shanxi Medical University; and Key Laboratory of Cell Physiology, Provincial Department of the Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
12
|
Lu C, Xu W, Shao J, Zhang F, Chen A, Zheng S. Nrf2 induces lipocyte phenotype via a SOCS3-dependent negative feedback loop on JAK2/STAT3 signaling in hepatic stellate cells. Int Immunopharmacol 2017; 49:203-211. [PMID: 28601022 DOI: 10.1016/j.intimp.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
13
|
Chen Y, Surinkaew S, Naud P, Qi XY, Gillis MA, Shi YF, Tardif JC, Dobrev D, Nattel S. JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc Res 2017; 113:310-320. [PMID: 28158495 DOI: 10.1093/cvr/cvx004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Left-atrial (LA) fibrosis is an important feature of many atrial fibrillation (AF) substrates. The JAK-STAT system contributes to cardiac remodelling, but its role in AF is unknown. Here we investigated JAK-STAT changes in an AF-model and their potential contributions to LA-fibrosis. Methods and results LA-remodelling was studied in dogs with heart failure (HF) induced by ventricular tachypacing (VTP, 240 bpm), and in mice with left-ventricular (LV) dysfunction due to myocardial infarction (MI). The selective STAT-3 inhibitor S3I-201 was administered to fibroblasts in vitro or mice in vivo (10 mg/kg/d, osmotic mini-pump). HF-dogs developed LA-selective fibrosis and AF-susceptibility at 1-week VTP. The mRNA-expression of platelet-derived growth factor (PDGF, a JAK-STAT activator) isoforms A, C and D, as well as JAK2, increased in LA fibroblasts from 1-week VTP. HF upregulated protein-expression of PDGF-receptor-β and phosphorylated (activated) signal transducer and activator of transcription 3 (STAT3) in LA. PDGF-AB stimulation of LA fibroblasts increased PDGFR-α, STAT3 and phosphorylated-STAT3 expression, as well as collagen-1 and fibronectin-1 protein secretion (by 1.6- to 20-fold), with smaller changes in LV fibroblasts. Phosphorylated-STAT3 and collagen upregulation were suppressed by the JAK2 inhibitor AG-490, PDGF receptor inhibitor AG1296 and STAT3-inhibitor SI3-201. In vivo S3I-201 treatment of MI-mice attenuated LA-fibrosis, LA-dilation and P-wave duration changes versus vehicle-control. Conclusions HF activates the LA JAK-STAT system and enhances PDGF-signalling. JAK-STAT inhibition reduces the profibrotic effects of PDGF stimulation on canine fibroblasts in vitro while attenuating in vivo LA-fibrosis and remodelling in post-MI mice, suggesting that the JAK/STAT pathway contributes to LA-fibrogenesis and might be a potential target for LA-fibrosis prevention.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6 Canada
| | - Sirirat Surinkaew
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada
| | - Patrice Naud
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada
| | - Xiao-Yan Qi
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada
| | - Marc-Antoine Gillis
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada
| | - Yan-Fen Shi
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada
| | - Jean-Claude Tardif
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada
| | - Dobromir Dobrev
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Stanley Nattel
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Quebec, H1T 1C8 Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6 Canada.,Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| |
Collapse
|
14
|
El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol 2016; 10:1397-1408. [PMID: 27762150 DOI: 10.1080/17474124.2016.1251309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.
Collapse
Affiliation(s)
- Adil El Taghdouini
- a Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy , Université Catholique de Louvain , Brussels , Belgium.,b Liver Cell Biology Laboratory , Vrije Universiteit Brussel (VUB) , Brussels , Belgium
| | - Leo A van Grunsven
- b Liver Cell Biology Laboratory , Vrije Universiteit Brussel (VUB) , Brussels , Belgium
| |
Collapse
|
15
|
Gu YJ, Sun WY, Zhang S, Li XR, Wei W. Targeted blockade of JAK/STAT3 signaling inhibits proliferation, migration and collagen production as well as inducing the apoptosis of hepatic stellate cells. Int J Mol Med 2016; 38:903-11. [PMID: 27460897 DOI: 10.3892/ijmm.2016.2692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine kinases belonging to the Janus kinase (JAK) family are associated with many cytokine receptors, which, on ligand binding, regulate important cellular functions such as proliferation, apoptosis and differentiation. The protective effects of JAK inhibitors on fibrotic diseases such as myelofibrosis and bone marrow fibrosis have been demonstrated in previous studies. The JAK inhibitor SHR0302 is a synthetic molecule that potently inhibits all members of the JAK family, particularly JAK1. However, its effect on hepatic fibrosis has not been investigated to date, to the best of our knowledge. In the present study, the effects of SHR0302 on the activation, proliferation, migration and apoptosis of hepatic stellate cells (HSCs) as well as HSC collagen production were investigated. Our data demonstrated that treatment with SHR0302 (10-9-10-5 mol/l) exerted an inhibitory effect on the activation, proliferation and migration of HSCs. In addition, the expression of collagen I and collagen III were significantly decreased following treatment with SHR0302. Furthermore, SHR0302 induced the apoptosis of HSCs, which was demonstrated by Annexin V/PI staining. SHR0302 significantly increased the activation of caspase-3 and Bax in HSCs whereas it decreased the expression of Bcl-2. SHR0302 also inhibited the activation of Akt signaling pathway. The pharmacological inhibition of the JAK1/signal transducer and activator of transcription (STAT)3 pathway led to the disruption of functions essential for HSC growth. Taken together, these findings provide evidence that SHR0302 may have the potential to alleviate hepatic fibrosis by targeting HSC functions.
Collapse
Affiliation(s)
- Yuan-Jing Gu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Sen Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Xin-Ran Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
16
|
Nakhaei-Rad S, Nakhaeizadeh H, Götze S, Kordes C, Sawitza I, Hoffmann MJ, Franke M, Schulz WA, Scheller J, Piekorz RP, Häussinger D, Ahmadian MR. The Role of Embryonic Stem Cell-expressed RAS (ERAS) in the Maintenance of Quiescent Hepatic Stellate Cells. J Biol Chem 2016; 291:8399-413. [PMID: 26884329 DOI: 10.1074/jbc.m115.700088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cells (HSCs) were recently identified as liver-resident mesenchymal stem cells. HSCs are activated after liver injury and involved in pivotal processes, such as liver development, immunoregulation, regeneration, and also fibrogenesis. To date, several studies have reported candidate pathways that regulate the plasticity of HSCs during physiological and pathophysiological processes. Here we analyzed the expression changes and activity of the RAS family GTPases and thereby investigated the signaling networks of quiescent HSCs versus activated HSCs. For the first time, we report that embryonic stem cell-expressed RAS (ERAS) is specifically expressed in quiescent HSCs and down-regulated during HSC activation via promoter DNA methylation. Notably, in quiescent HSCs, the high level of ERAS protein correlates with the activation of AKT, STAT3, mTORC2, and HIPPO signaling pathways and inactivation of FOXO1 and YAP. Our data strongly indicate that in quiescent HSCs, ERAS targets AKT via two distinct pathways driven by PI3Kα/δ and mTORC2, whereas in activated HSCs, RAS signaling shifts to RAF-MEK-ERK. Thus, in contrast to the reported role of ERAS in tumor cells associated with cell proliferation, our findings indicate that ERAS is important to maintain quiescence in HSCs.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | | | - Silke Götze
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Claus Kordes
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Iris Sawitza
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Michèle J Hoffmann
- the Department of Urology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Manuel Franke
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | - Wolfgang A Schulz
- the Department of Urology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | - Roland P Piekorz
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | - Dieter Häussinger
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Mohammad R Ahmadian
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty,
| |
Collapse
|
17
|
Liu LH, Lai QN, Chen JY, Zhang JX, Cheng B. Overexpression of pim-3 and protective role in lipopolysaccharide-stimulated hepatic stellate cells. World J Gastroenterol 2015; 21:8858-8867. [PMID: 26269675 PMCID: PMC4528028 DOI: 10.3748/wjg.v21.i29.8858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/01/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate pim-3 expression in hepatic stellate cells (HSCs) stimulated by lipopolysaccharide (LPS), and its protective effect on HSCs.
METHODS: Rat HSC-T6 cells were stimulated by LPS. The effect of LPS on proliferation and apoptosis of HSC-T6 cells was investigated by methyl thiazoyltetrazolium (MTT) assay and flow cytometry after annexin V-fluorescein isothiocyanate/propidium iodide double staining. pim-3 mRNA and protein were detected by reverse transcriptase polymerase chain reaction and Western blotting at 48 h when HSC-T6 cells were stimulated with 1 μg/mL LPS for 0, 3, 6, 12, 24 and 48 h. The cells without stimulation served as controls. To study the effect of pim-3 kinase on HSC-T6 cells, si-pim3 (siRNA against pim-3) was transfected into HSC-T6 cells. HSC-T6 cells were subjected to different treatments, including LPS, si-pim3, or si-pim3 plus LPS, and control cells were untreated. Protein expression of pim-3 was detected at 48 h after treatment, and cell proliferation at 24 and 48 h by MTT assay. Apoptosis was detected by flow cytometry, and confirmed with caspase-3 activity assay.
RESULTS: LPS promoted HSC-T6 cell proliferation and protected against apoptosis. Significantly delayed upregulation of pim-3 expression induced by LPS occurred at 24 and 48 h for mRNA expression (pim-3/β-actin RNA, 24 or 48 h vs 0 h, 0.81 ± 0.20 or 0.78 ± 0.21 vs 0.42 ± 0.13, P < 0.05), and occurred at 12 h and peaked at 24 and 48 h for protein expression (pim-3/GAPDH protein, 12, or 24 or 48 h vs 0 h, 0.68 ± 0.12, 1.47 ± 0.25 or 1.51 ± 0.23 vs 0.34 ± 0.04, P < 0.01). pim-3 protein was ablated by si-pim3 and upregulated by LPS in HSC-T6 cells at 48 h after treatment (pim-3/GAPDH: si-pim3, si-pim3 plus LPS or LPS vs control, 0.11 ± 0.05, 0.12 ± 0.05 or 1.08 ± 0.02 vs 0.39 ± 0.03, P < 0.01). Ablation of pim-3 by si-pim3 in HSC-T6 cells partly abolished proliferation (OD at 24 h, si-pim3 group or si-pim3 plus LPS vs control, 0.2987 ± 0.050 or 0.4063 ± 0.051 vs 0.5267 ± 0.030, P < 0.01; at 48 h 0.4634 ± 0.056 or 0.5433 ± 0.031 vs 0.8435 ± 0.028, P < 0.01; si-pim3 group vs si-pim3 plus LPS, P < 0.01 at 24 h and P < 0.05 at 48 h), and overexpression of pim-3 in the LPS group increased cell proliferation (OD: LPS vs control, at 24 h, 0.7435 ± 0.028 vs 0.5267 ± 0.030, P < 0.01; at 48 h, 1.2136 ± 0.048 vs 0.8435 ± 0.028, P < 0.01). Ablation of pim3 with si-pim3 in HSC-T6 cells aggravated apoptosis (si-pim3 or si-pim3 plus LPS vs control, 42.3% ±1.1% or 40.6% ± 1.3% vs 16.8% ± 3.3%, P < 0.01; si-pim3 vs si-pim3 plus LPS, P > 0.05), and overexpression of pim-3 in the LPS group attenuated apoptosis (LPS vs control, 7.32% ± 2.1% vs 16.8% ± 3.3%, P < 0.05). These results were confirmed by caspase-3 activity assay.
CONCLUSION: Overexpression of pim-3 plays a protective role in LPS-stimulated HSC-T6 cells.
Collapse
|
18
|
Epigenetic Changes during Hepatic Stellate Cell Activation. PLoS One 2015; 10:e0128745. [PMID: 26065684 PMCID: PMC4466775 DOI: 10.1371/journal.pone.0128745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/01/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. METHODS AND RESULTS The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. CONCLUSIONS In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.
Collapse
|
19
|
Su TH, Shiau CW, Jao P, Liu CH, Liu CJ, Tai WT, Jeng YM, Yang HC, Tseng TC, Huang HP, Cheng HR, Chen PJ, Chen KF, Kao JH, Chen DS. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc Natl Acad Sci U S A 2015; 112:7243-7248. [PMID: 26039995 PMCID: PMC4466718 DOI: 10.1073/pnas.1507499112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) had been involved in liver fibrogenesis. We aimed to explore the antifibrotic activities of sorafenib and its derivative SC-1 (devoid of Raf kinase inhibition activity) both in vivo and in vitro with special focus on the STAT3 pathway in hepatic stellate cells (HSCs). The clinical role of STAT3 in chronic hepatitis B (CHB) was also investigated. Experimental fibrosis mouse models were established by thioacetamide injection and bile duct ligation in Balb/C mice and treated with sorafenib and SC-1. Rat and human HSCs were used for mechanistic investigations. Forty CHB patients were enrolled to quantify the hepatic phospho-STAT3 (p-STAT3) levels and correlated with liver fibrosis. Both sorafenib and SC-1 ameliorated liver fibrosis in vivo and promoted HSC apoptosis in vitro. p-STAT3 and downstream signals were down-regulated after sorafenib and SC-1 treatment in HSC. STAT3 overexpression in HSC enhanced cell proliferation and undermined the apoptotic effects of sorafenib and SC-1, whereas STAT3-specific inhibition promoted HSC apoptosis. Sorafenib and SC-1 activated Src-homology protein tyrosine phosphatase-1 (SHP-1) and STAT3 inhibition followed. Of particular interest, in CHB patients with advanced liver fibrosis, p-STAT3 in HSC was significantly overexpressed and positively correlated with the severity of liver fibrosis and plasma IL-6 levels. In conclusion, sorafenib and SC-1 ameliorate liver fibrosis through STAT3 inhibition in HSC and STAT3 may potentially serve as a promising fibrotic biomarker and target in liver fibrosis. SHP-1 phosphatase-directed STAT3 inhibition may represent a previously unidentified strategy for antifibrotic drug discovery.
Collapse
Affiliation(s)
- Tung-Hung Su
- Graduate Institute of Clinical Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ping Jao
- Graduate Institute of Clinical Medicine
| | - Chen-Hua Liu
- Graduate Institute of Clinical Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center
| | - Chun-Jen Liu
- Graduate Institute of Clinical Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center
| | - Wei-Tien Tai
- National Center of Excellence for Clinical Trial and Research, Medical Research, and
| | | | - Hung-Chih Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Tai-Chung Tseng
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taipei 23142, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | | | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center
| | - Kuen-Feng Chen
- National Center of Excellence for Clinical Trial and Research, Medical Research, and
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, Medical Research, and
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, Genomics Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
20
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
21
|
Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, Reza Mazar IG, Görtzen J, Vogt A, Schildberg FA, Gonzalez-Carmona MA, Wojtalla A, Krämer B, Nattermann J, Siegmund SV, Werner N, Fürst DO, Laleman W, Knolle P, Shah VH, Sauerbruch T, Trebicka J. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 2014; 60:334-48. [PMID: 24619965 PMCID: PMC5512562 DOI: 10.1002/hep.27117] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/21/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Activation of the renin angiotensin system resulting in stimulation of angiotensin-II (AngII) type I receptor (AT1R) is an important factor in the development of liver fibrosis. Here, we investigated the role of Janus kinase 2 (JAK2) as a newly described intracellular effector of AT1R in mediating liver fibrosis. Fibrotic liver samples from rodents and humans were compared to respective controls. Transcription, protein expression, activation, and localization of JAK2 and downstream effectors were analyzed by real-time polymerase chain reaction, western blotting, immunohistochemistry, and confocal microscopy. Experimental fibrosis was induced by bile duct ligation (BDL), CCl4 intoxication, thioacetamide intoxication or continuous AngII infusion. JAK2 was inhibited by AG490. In vitro experiments were performed with primary rodent hepatic stellate cells (HSCs), Kupffer cells (KCs), and hepatocytes as well as primary human and human-derived LX2 cells. JAK2 expression and activity were increased in experimental rodent and human liver fibrosis, specifically in myofibroblastic HSCs. AT1R stimulation in wild-type animals led to activation of HSCs and fibrosis in vivo through phosphorylation of JAK2 and subsequent RhoA/Rho-kinase activation. These effects were prevented in AT1R(-/-) mice. Pharmacological inhibition of JAK2 attenuated liver fibrosis in rodent fibrosis models. In vitro, JAK2 and downstream effectors showed increased expression and activation in activated HSCs, when compared to quiescent HSCs, KCs, and hepatocytes isolated from rodents. In primary human and LX2 cells, AG490 blocked AngII-induced profibrotic gene expression. Overexpression of JAK2 led to increased profibrotic gene expression in LX2 cells, which was blocked by AG490. CONCLUSION Our study substantiates the important cell-intrinsic role of JAK2 in HSCs for development of liver fibrosis. Inhibition of JAK2 might therefore offer a promising therapy for liver fibrosis.
Collapse
Affiliation(s)
- Michaela Granzow
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Benita Kowallick
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sebastian Huss
- Department of Pathology, University of Bonn, Bonn, Germany
| | - Markus Linhart
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | | | - Jan Görtzen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Annabelle Vogt
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Frank A. Schildberg
- Institutes for Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | | | | | - Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sören V. Siegmund
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Dieter O. Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wim Laleman
- Department of Liver and Biliopancreatic disorders, University of Leuven, Leuven, Belgium
| | - Percy Knolle
- Institutes for Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Vijay H. Shah
- Gastroenterology Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Zhai PF, Wang F, Su R, Lin HS, Jiang CL, Yang GH, Yu J, Zhang JW. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem 2014; 289:22600-22613. [PMID: 24982425 DOI: 10.1074/jbc.m114.547380] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence has shown that microRNAs have key roles in regulating various normal physiological processes, whereas their deregulated expression is correlated with various diseases. The miR-146 family includes miR-146a and miR-146b, with a distinct expression spectrum in different hematopoietic cells. Recent work indicated that miR-146a has a close relationship with inflammation and autoimmune diseases. miR-146-deficient mice have developed some abnormal hematopoietic phenotypes, suggesting the potential functions of miR-146 in hematopoietic development. In this study, we found that miR-146b was consistently up-regulated in both K562 and CD34(+) hematopoietic stem/progenitor cells (HSPCs) undergoing either erythroid or megakaryocytic differentiation. Remarkably, erythroid and megakaryocytic maturation of K562 cells was induced by excess miR-146b but inhibited by decreased miR-146b levels. More importantly, an mRNA encoding receptor tyrosine kinase, namely platelet-derived growth factor receptor α (PDGFRA), was identified and validated as a direct target of miR-146b in hematopoietic cells. Gain-of-function and loss-of-function assays showed that PDGFRA functioned as a negative regulator in erythroid and megakaryocytic differentiation. miR-146b could ultimately affect the expression of the GATA-1 gene, which is regulated by HEY1 (Hairy/enhancer-of-split related with YRPW motif protein 1), a transcriptional repressor, via inhibition of the PDGFRA/JNK/JUN/HEY1 pathway. Lentivirus-mediated gene transfer also demonstrated that the overexpression of miR-146b promoted erythropoiesis and megakaryocytopoiesis of HSPCs via its regulation on the PDGFRA gene and effects on GATA-1 expression. Moreover, we confirmed that the binding of GATA-1 to the miR-146b promoter and induction of miR-146b during hematopoietic maturation were dependent on GATA-1. Therefore, miR-146b, PDGFRA, and GATA-1 formed a regulatory circuit to promote erythroid and megakaryocytic differentiation.
Collapse
Affiliation(s)
- Peng-Fei Zhai
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Wang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hai-Shuang Lin
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chong-Liang Jiang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Gui-Hua Yang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jun-Wu Zhang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
23
|
Renga B, Francisci D, Schiaroli E, Carino A, Cipriani S, D'Amore C, Sidoni A, Sordo RD, Ferri I, Lucattelli M, Lunghi B, Baldelli F, Fiorucci S. The HIV matrix protein p17 promotes the activation of human hepatic stellate cells through interactions with CXCR2 and Syndecan-2. PLoS One 2014; 9:e94798. [PMID: 24736615 PMCID: PMC3988079 DOI: 10.1371/journal.pone.0094798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. AIM In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. METHODS LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. RESULTS Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. CONCLUSIONS The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | | | | | - Franco Baldelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Liu Y, Liu H, Meyer C, Li J, Nadalin S, Königsrainer A, Weng H, Dooley S, Ten Dijke P. Transforming growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem 2013; 288:30708-30719. [PMID: 24005672 DOI: 10.1074/jbc.m113.478685] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In fibrotic liver, connective tissue growth factor (CTGF) is constantly expressed in activated hepatic stellate cells (HSCs) and acts downstream of TGF-β to modulate extracellular matrix production. Distinct from other cell types in which Smad signaling plays major role in regulating CTGF production, TGF-β stimulated CTGF expression in activated HSCs is only in part dependent on Smad3. Other signaling molecules like MAPKs and PI3Ks may also participate in this process, and the underlying mechanisms have yet to be clarified. In this study, we report involvement of Stat3 activation in modulating CTGF production upon TGF-β challenge in activated HSCs. Stat3 is phosphorylated via JAK1 and acts as a critical ALK5 (activin receptor-like kinase 5) downstream signaling molecule to mediate CTGF expression. This process requires de novo gene transcription and is additionally modulated by MEK1/2, JNK, and PI3K pathways. Cell-specific knockdown of Smad3 partially decreases CTGF production, whereas it has no significant influence on Stat3 activation. The total CTGF production induced by TGF-β in activated HSCs is therefore, to a large extent, dependent on the balance and integration of the canonical Smad3 and Stat3 signaling pathways.
Collapse
Affiliation(s)
- Yan Liu
- From the Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,; the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Heng Liu
- From the Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,; the Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Christoph Meyer
- From the Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jun Li
- the Department of General, Visceral Surgery and Transplantation, University Hospital Tübingen, 72076 Tübingen, Germany, and; the Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Silvio Nadalin
- the Department of General, Visceral Surgery and Transplantation, University Hospital Tübingen, 72076 Tübingen, Germany, and
| | - Alfred Königsrainer
- the Department of General, Visceral Surgery and Transplantation, University Hospital Tübingen, 72076 Tübingen, Germany, and
| | - Honglei Weng
- From the Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Steven Dooley
- From the Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,.
| | - Peter Ten Dijke
- the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands,.
| |
Collapse
|
25
|
Wu CF, Lin YL, Huang YT. Hepatitis C virus core protein stimulates fibrogenesis in hepatic stellate cells involving the obese receptor. J Cell Biochem 2013; 114:541-50. [PMID: 22961938 DOI: 10.1002/jcb.24392] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 08/30/2012] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus core protein (HCVcp), which is secreted by infected cells, is reported as an immunomodulator in immune cells. However, the effects of HCVcp on hepatic stellate cells (HSCs), the key cells in liver fibrosis, still remain unclear. In this study, we investigated the effects of HCVcp on obese receptor (ObR) related downstream signaling pathways and fibrogenic gene expression in HSCs. LX-2, a human HSC line, was incubated with HCVcp. Inhibitors and short interfering RNAs were used to interrogate the mechanisms of HCVcp action on HSCs. HCVcp (20-100 ng/ml) concentration-dependently stimulated α-smooth muscle actin (α-SMA) protein expression and mRNA expression of α-SMA, procollagen α2(I) and TGF-β1 genes, with a plateau of 220% of controls at 100 ng/ml. HCVcp induced mRNA and protein expression of ObR. Blocking of Ob-Rb with a neutralizing antibody inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and AMPKα stimulated by HCVcp. Furthermore, knockdown of Ob-Rb down-regulated HCVcp-induced STAT3, AKT, and AMPKα phosphorylation, and reversed HCVcp-suppressed mRNA expression of matrix metalloproteinase (MMP)-1, peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element binding protein-1c (SREBP-1c) genes. AMPKα signaling blockade reversed HCVcp-suppressed SREBP-1c mRNA expression. HCVcp stimulated reactive oxygen species formation and gp91(phox) (a component of NADPH oxidase) protein expression, together with AKT phosphorylation, leading to suppression of PPARγ and SREBP-1c genes. Our results provide a new finding that HCVcp induced ObR-dependent Janus Kinase (JAK) 2-STAT3, AMPKα, and AKT signaling pathways and modulated downstream fibrogenetic gene expression in HSCs.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
26
|
Lakner AM, Steuerwald NM, Schrum LW. [Not Available]. Hepatology 2013; 57:1286-7. [PMID: 22886552 DOI: 10.1002/hep.25997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2012] [Indexed: 12/07/2022]
|
27
|
Trujillo CA, Negraes PD, Schwindt TT, Lameu C, Carromeu C, Muotri AR, Pesquero JB, Cerqueira DM, Pillat MM, de Souza HDN, Turaça LT, Abreu JG, Ulrich H. Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. J Biol Chem 2012; 287:44046-61. [PMID: 23132855 DOI: 10.1074/jbc.m112.407197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific β3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin-induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less β3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil 05508-000
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH, Russo MW, Bonkovsky HL, Schrum LW. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 2012; 56:300-10. [PMID: 22278637 PMCID: PMC3342471 DOI: 10.1002/hep.25613] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/07/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hepatic stellate cell (HSC) activation is a pivotal event in initiation and progression of hepatic fibrosis and a major contributor to collagen deposition driven by transforming growth factor beta (TGF-β). MicroRNAs (miRs), small noncoding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key regulatory molecules in chronic liver disease. We investigated differentially expressed miRs in quiescent and activated HSCs to identify novel regulators of profibrotic TGF-β signaling. miR microarray analysis was performed on quiescent and activated rat HSCs. Members of the miR-17-92 cluster (19a, 19b, 92a) were significantly down-regulated in activated HSCs. Because miR 19b showed the highest fold-change of the cluster members, activated HSCs were transfected with miR 19b mimic or negative control and TGF-β signaling and HSC activation assessed. miR 19b expression was determined in fibrotic rat and human liver specimens. miR 19b mimic negatively regulated TGF-β signaling components demonstrated by decreased TGF-β receptor II (TGF-βRII) and SMAD3 expression. Computational prediction of miR 19b binding to the 3' untranslated region of TGF-βRII was validated by luciferase reporter assay. Inhibition of TGF-β signaling by miR 19b was confirmed by decreased expression of type I collagen and by blocking TGF-β-induced expression of α1(I) and α2(I) procollagen mRNAs. miR 19b blunted the activated HSC phenotype by morphological assessment and decreased smooth muscle α-actin expression. Additionally, miR 19b expression was markedly diminished in fibrotic rat liver compared with normal liver; similarly, miR 19b expression was markedly down-regulated in fibrotic compared with normal human livers. CONCLUSION miR 19b is a novel regulator of TGF-β signaling in HSCs, suggesting a potential therapeutic approach for hepatic fibrosis.
Collapse
Affiliation(s)
- Ashley M. Lakner
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
| | - Nury M. Steuerwald
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
| | - Tracy L. Walling
- Department of General Surgery, Carolinas Medical Center, Charlotte, NC
| | - Sriparna Ghosh
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
| | - Ting Li
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
| | - Iain H. McKillop
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
- Department of General Surgery, Carolinas Medical Center, Charlotte, NC
| | - Mark W. Russo
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
- Department of Internal Medicine, Center for Liver and Transplantation, Carolinas Medical Center, Charlotte, NC
| | - Herbert L. Bonkovsky
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT
| | - Laura W. Schrum
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
- Department of Internal Medicine, Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC
| |
Collapse
|
29
|
Kong X, Horiguchi N, Mori M, Gao B. Cytokines and STATs in Liver Fibrosis. Front Physiol 2012; 3:69. [PMID: 22493582 PMCID: PMC3318231 DOI: 10.3389/fphys.2012.00069] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/11/2012] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis.
Collapse
Affiliation(s)
- Xiaoni Kong
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
30
|
Wei J, Shi M, Wu WQ, Xu H, Wang T, Wang N, Ma JL, Wang YG. IκB kinase-beta inhibitor attenuates hepatic fibrosis in mice. World J Gastroenterol 2011; 17:5203-5213. [PMID: 22215946 PMCID: PMC3243888 DOI: 10.3748/wjg.v17.i47.5203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-fibrosis effect of IκB kinase-beta inhibitor (IKK2 inhibitor IMD0354) in liver fibrosis. METHODS Twenty male C57BL6 mice were divided into four groups. Five high-fat fed mice were injected with lipopolysaccharide (LPS, 10 mg/kg) intraperitoneally and five high-fat fed mice were without LPS injection to build models of liver injury, and the intervention group (five mice) was injected intraperitoneally with IKK2 inhibitor (IMD 30 mg/kg for 14 d), while the remaining five mice received a normal diet as controls. Hepatic function, pathological evaluation and liver interleukin-6 (IL-6) expression were examined. Western blotting and real-time polymerase chain reaction were used to detect the expressions of nuclear factor-κB (NF-κB), alpha-smooth muscle actin (α-SMA), tumor growth factor-beta1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), typeIand type III collagen proteins and mRNA. RESULTS A mouse model of liver injury was successfully established, and IMD decreased nuclear translocation of NF-κB p65 in liver cells. In the IMD-treated group, the levels of alanine aminotransferase (103 ± 9.77 μ/L vs 62.4 ± 7.90 μ/L, P < 0.05) and aminotransferase (295.8 ± 38.56 μ/L vs 212 ± 25.10 μ/L, P < 0.05) were significantly decreased when compared with the model groups. The histological changes were significantly ameliorated. After treatment, the expressions of IL-6 (681 ± 45.96 vs 77 ± 7.79, P < 0.05), TGF-β1 (Western blotting 5.65% ± 0.017% vs 2.73% ± 0.005%, P < 0.05), TNF-α (11.58% ± 0.0063% vs 8.86% ± 0.0050%, P < 0.05), typeIcollagen (4.49% ± 0.014% vs 1.90% ± 0.0006%, P < 0.05) and type III collagen (3.46% ± 0.008% vs 2.29% ± 0.0035%, P < 0.05) as well as α-SMA (6.19 ± 0.0036 μ/L vs 2.16 ± 0.0023 μ/L, P < 0.05) protein and mRNA were downregulated in the IMD group compared to the fibrosis control groups (P < 0.05). CONCLUSION IKK2 inhibitor IMD markedly improved non-alcoholic fatty liver disease in mice by lowering NF-κB activation, which could become a remedial target for liver fibrosis.
Collapse
|
31
|
Bourd-Boittin K, Bonnier D, Leyme A, Mari B, Tuffery P, Samson M, Ezan F, Baffet G, Theret N. Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatology 2011; 54:2173-84. [PMID: 21826695 DOI: 10.1002/hep.24598] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED During chronic liver disease, tissue remodeling leads to dramatic changes and accumulation of matrix components. Matrix metalloproteases and their inhibitors have been involved in the regulation of matrix degradation. However, the role of other proteases remains incompletely defined. We undertook a gene-expression screen of human liver fibrosis samples using a dedicated gene array selected for relevance to protease activities, identifying the ADAMTS1 (A Disintegrin And Metalloproteinase [ADAM] with thrombospondin type 1 motif, 1) gene as an important node of the protease network. Up-regulation of ADAMTS1 in fibrosis was found to be associated with hepatic stellate cell (HSC) activation. ADAMTS1 is synthesized as 110-kDa latent forms and is processed by HSCs to accumulate as 87-kDa mature forms in fibrotic tissues. Structural evidence has suggested that the thrombospondin motif-containing domain from ADAMTS1 may be involved in interactions with, and activation of, the major fibrogenic cytokine, transforming growth factor beta (TGF-β). Indeed, we observed direct interactions between ADAMTS1 and latency-associated peptide-TGF-β (LAP-TGF-β). ADAMTS1 induces TGF-β activation through the interaction of the ADAMTS1 KTFR peptide with the LAP-TGF-β LKSL peptide. Down-regulation of ADAMTS1 in HSCs decreases the release of TGF-β competent for transcriptional activation, and KTFR competitor peptides directed against ADAMTS1 block the HSC-mediated release of active TGF-β. Using a mouse liver fibrosis model, we show that carbon tetrachloride treatment induces ADAMTS1 expression in parallel to that of type I collagen. Importantly, concurrent injection of the KTFR peptide prevents liver damage. CONCLUSION Our results indicate that up-regulation of ADAMTS1 in HSCs constitutes a new mechanism for control of TGF-β activation in chronic liver disease.
Collapse
Affiliation(s)
- Katia Bourd-Boittin
- Institut de Recherche en Santé, Environnement et Travail EA4427 SeRAIC, Université de Rennes 1, IFR14, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang HJ, Wu JF, Liu CB. Plasticity of hepatic stellate cells: implications for the treatment of hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2011; 19:3415-3419. [DOI: 10.11569/wcjd.v19.i33.3415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of hepatic stellate cells (HSCs) plays an important role in hepatic fibrogenesis. More and more experimental and clinical data have shown that HSCs have the capacity of multi-directional differentiation in special niches. Hepatic fibrosis may be prevented and reversed in part, if not all, by changing HSC fate. Thus, the research of HSC plasticity may break a new path for therapy of chronic hepatic diseases. This review aims to elucidate the origin, structure and plasticity of HSCs, and identify HSCs as a potential therapeutic target for liver fibrosis.
Collapse
|
33
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
34
|
Moore CC, Lakner AM, Yengo CM, Schrum LW. Nonmuscle myosin II regulates migration but not contraction in rat hepatic stellate cells. World J Hepatol 2011; 3:184-97. [PMID: 21866250 PMCID: PMC3158907 DOI: 10.4254/wjh.v3.i7.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To identify and characterize the function of nonmuscle myosin II (NMM II) isoforms in primary rat hepatic stellate cells (HSCs). METHODS Primary HSCs were isolated from male Sprague-Dawley rats by pronase/collagenase digestion. Total RNA and protein were harvested from quiescent and culture-activated HSCs. NMM II isoform (II-A, II-B and II-C) gene and protein expression were measured by RealTime polymerase chain reaction and Western blot analyses respectively. NMM II protein localization was visualized in vitro using immunocytochemical analysis. For in vivo assessment, liver tissue was harvested from bile duct-ligated (BDL) rats and NMM IIisoform expression determined by immunohistochemistry. Using a selective myosin II inhibitor and siRNA-mediated knockdown of each isoform, NMM II functionality in primary rat HSCs was determined by contraction and migration assays. RESULTS NMM II-A and II-B mRNA expression was increased in culture-activated HSCs (Day 14) with significant increases seen in all pair-wise comparisons (II-A: 12.67 ± 0.99 (quiescent) vs 17.36 ± 0.78 (Day 14), P < 0.05; II-B: 4.94 ± 0.62 (quiescent) vs 13.90 ±0.85 (Day 14), P < 0.001). Protein expression exhibited similar expression patterns (II-A: 1.87 ± 2.50 (quiescent) vs 58.64 ± 8.76 (Day 14), P < 0.05; II-B: 1.17 ± 1.93 (quiescent) vs 103.71 ± 21.73 (Day 14), P < 0.05). No significant differences were observed in NMM II-C mRNA and protein expression between quiescent and activated HSCs. In culture-activated HSCs, NMM II-A and II-B merged with F-actin at the cellular periphery and throughout cytoplasm respectively. In vitro studies showed increased expression of NMM II-B in HSCs activated by BDL compared to sham-operated animals. There were no apparent increases of NMM II-A and II-C protein expression in HSCs during hepatic BDL injury. To determine the contribution of NMM II-A and II-B to migration and contraction, NMM II-A and II-B expression were downregulated with siRNA. NMM II-A and/or II-B siRNA inhibited HSC migration by approximately 25% compared to scramble siRNA-treated cells. Conversely, siRNA-mediated NMM II-A and II-B inhibition had no significant effect on HSC contraction; however, contraction was inhibited with the myosin II inhibitor, blebbistatin (38.7% ± 1.9%). CONCLUSION Increased expression of NMM II-A and II-B regulates HSC migration, while other myosin IIclasses likely modulate contraction, contributing to development and severity of liver fibrosis.
Collapse
Affiliation(s)
- Cathy C Moore
- Cathy C Moore, Ashley M Lakner, Christopher M Yengo, Laura W Schrum, Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | | | | | | |
Collapse
|
35
|
Wang H, Lafdil F, Kong X, Gao B. Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci 2011; 7:536-50. [PMID: 21552420 PMCID: PMC3088876 DOI: 10.7150/ijbs.7.536] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is activated by many cytokines and growth factors and plays a key role in cell survival, proliferation, and differentiation. STAT3 activation is detected virtually in all rodent models of liver injury and in human liver diseases. In this review, we highlight recent advances of STAT3 signaling in liver injury, steatosis, inflammation, regeneration, fibrosis, and hepatocarcinogenesis. The cytokines and small molecules that activate STAT3 in hepatocytes may have therapeutic benefits to treat acute liver injury, fatty liver disease, and alcoholic hepatitis, while blockage of STAT3 may have a therapeutic potential to prevent and treat liver cancer.
Collapse
Affiliation(s)
- Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Day SA, Lakner AM, Moore CC, Yen MH, Clemens MG, Wu ES, Schrum LW. Opioid-like compound exerts anti-fibrotic activity via decreased hepatic stellate cell activation and inflammation. Biochem Pharmacol 2011; 81:996-1003. [PMID: 21291870 DOI: 10.1016/j.bcp.2011.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 12/21/2022]
Abstract
Hepatic fibrosis is characterized by excess type I collagen deposition and exacerbated inflammatory response. Naltrexone, an opioid receptor antagonist used for treating alcohol abuse, attenuates hepatocellular injury in fibrotic animal models, which can be accompanied by deleterious side effects. Additionally, opioid neurotransmission is upregulated in patients with inflammatory liver disease. Several derivatives of Naltrexone, Nalmefene (Nal) and JKB-119, exert immunomodulatory activity; however, unlike Nal, JKB-119 does not show significant opioid receptor antagonism. To delineate the potential hepatoprotective effects of these compounds, we investigated if JKB-119 and Nal could modulate activation of hepatic stellate cells (HSCs), primary effector cells that secrete type I collagen and inflammatory mediators during liver injury. Our results demonstrated that Nal or JKB-119 treatment decreased smooth muscle α-actin, a marker of HSC activation, mRNA and protein expression. Despite decreased collagen mRNA expression, both compounds increased intracellular collagen protein expression; however, inhibition of collagen secretion was observed. To address a possible mechanism for suppressed collagen secretion or retention of intracellular collagen, endoplasmic (ER) protein expression and matrix metalloproteinase (MMP) activity were examined. While no change in ER protein expression (Grp78, PDI, Hsp47) was observed, MMP13 mRNA expression was dramatically increased. In an acute LPS inflammatory injury animal model, JKB-119 treatment decreased liver injury (ALT), plasma TNFα and PMN liver infiltration. Overall, these results suggest that JKB-119 can directly inhibit HSC activation attributed to anti-inflammatory activity and may, therefore, attenuate inflammation associated with HSC activation and liver disease.
Collapse
Affiliation(s)
- Stephani A Day
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | | | | | | | |
Collapse
|