1
|
Liu L, Qi W, Zhang N, Zhang J, Liu S, Wang H, Jiang L, Sun Y. Nutraceuticals for Gut-Brain Axis Health: A Novel Approach to Combat Malnutrition and Future Personalised Nutraceutical Interventions. Nutrients 2025; 17:1551. [PMID: 40362863 PMCID: PMC12073618 DOI: 10.3390/nu17091551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
The gut-brain axis (GBA) is a bidirectional communication network between the gastrointestinal tract and the brain, modulated by gut microbiota and related biomarkers. Malnutrition disrupts GBA homeostasis, exacerbating GBA dysfunction through gut dysbiosis, impaired neuroactive metabolite production, and systemic inflammation. Nutraceuticals, including probiotics, prebiotics, synbiotics, postbiotics, and paraprobiotics, offer a promising approach to improving GBA homeostasis by modulating the gut microbiota composition and related neuroactive metabolites. This review aims to elucidate the interplay between gut microbiota-derived biomarkers and GBA dysfunction in malnutrition and evaluate the potential of nutraceuticals in combating malnutrition. Furthermore, it explores the future of personalised nutraceutical interventions tailored to individual genetic and microbiome profiles, providing a targeted approach to optimise health outcomes. The integration of nutraceuticals into GBA health management could transform malnutrition treatment and improve cognitive and metabolic health.
Collapse
Affiliation(s)
- Litai Liu
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Wen Qi
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Na Zhang
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Jinhao Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Shen Liu
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Ying Sun
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| |
Collapse
|
2
|
Shi H, Guo P, Wang Z, Zhou J, He M, Shi L, Huang X, Guo P, Guo Z, Zhang Y, Hou F. Cellulase enhancing rumen microbiome of Tan sheep indicates plastic responses to seasonal variations of diet in the typical steppe. BMC Microbiol 2025; 25:154. [PMID: 40102775 PMCID: PMC11917088 DOI: 10.1186/s12866-025-03799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Climate and geographical changes significantly influence food availability and nutrient composition over time and space, Which in turn affects the selection of microbial communities essential for maintaining gastrointestinal homeostasis and facilitating dietary adaptation. Therefore, it is essential to understand the specific responses of the gut microbiota to dietary and seasonal variations in order to improve animal conservation strategies based on solid scientific knowledge. RESULTS In summer, due to the higher nutritional quality of forage, Tan sheep exhibited enhanced forage degradation and fermentation. This was reflected by increased populations of key rumen bacteria, including Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014. Supplementation with cellulase further facilitated these processes, optimizing the utilization of available nutrients. In contrast, during winter, when the nutritional quality of forage decline, we observed lower indicators of forage degradation and fermentation in Tan sheep. Additionally, there was a significant increase in the Firmicutes/Bacteroidetes ratio, microbial diversity, microbial interactions, and metabolic activity. CONCLUSIONS The rumen microbiota adapts to enhance the breakdown of forage biomass and maintain energy balance during periods of inadequate nutritional value. Supplementing the diet with cellulase during these times can help mitigate the reduced digestibility associated with low-quality forage. This study highlights the dynamic adaptation of the rumen microbiota to seasonal variations in forage quality and emphasizes the potential benefits of cellulase supplementation in supporting rumen function and improving animal performance under varying environmental conditions.
Collapse
Affiliation(s)
- Hairen Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Pei Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Zhen Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Jieyan Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Meiyue He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Liyuan Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Xiaojuan Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Penghui Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoxia Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Yuwen Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China.
- College of Pastoral Agricultural Science and Technology, Lanzhou University, No.768, Jiayuguan West Road, Chengguan District, Lanzhou, Gansu Province, P.R. China.
| |
Collapse
|
3
|
Zhao Y, Zhu S, Dong Y, Xie T, Chai Z, Gao X, Dai Y, Wang X. The Role of Gut Microbiome in Irritable Bowel Syndrome: Implications for Clinical Therapeutics. Biomolecules 2024; 14:1643. [PMID: 39766350 PMCID: PMC11674646 DOI: 10.3390/biom14121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) characterized by chronic or recurrent gastrointestinal symptoms without organic changes, and it is also a common disorder of gut-brain interaction (DGBIs).. The symptoms of IBS not only affect the quality of life for individual patients but also place a significant burden on global healthcare systems. The lack of established and universally applicable biomarkers for IBS, along with the substantial variability in symptoms and progression, presents challenges in developing effective clinical treatments. In recent years, preclinical and clinical studies have linked the pathogenesis of IBS to alterations in the composition and function of the intestinal microbiota. Within the complex microbial community of the gut, intricate metabolic and spatial interactions occur among its members and between microbes and their hosts. Amid the multifaceted pathophysiology of IBS, the role of intestinal microenvironment factors in symptom development has become more apparent. This review aims to delve into the changes in the composition and structure of the gut microbiome in individuals with IBS. It explores how diet-mediated alterations in intestinal microbes and their byproducts play a role in regulating the pathogenesis of IBS by influencing the "brain-gut" axis, intestinal barrier function, immune responses, and more. By doing so, this review seeks to lay a theoretical foundation for advancing the development of clinical therapeutics for IBS.
Collapse
Affiliation(s)
- Yucui Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shixiao Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingling Dong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tian Xie
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiqiang Chai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
| | - Yongna Dai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Ulusoy-Gezer HG, Rakıcıoğlu N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr Nutr Rep 2024; 13:455-477. [PMID: 38806863 PMCID: PMC11327204 DOI: 10.1007/s13668-024-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW: The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
Collapse
Affiliation(s)
- Hande Gül Ulusoy-Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye
| | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
| |
Collapse
|
5
|
Zheng X, Chen M, Zhuang Y, Zhao L, Qian Y, Xu J, Fan J. Genetic associations between gut microbiota and type 2 diabetes mediated by plasma metabolites: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1430675. [PMID: 39184139 PMCID: PMC11341399 DOI: 10.3389/fendo.2024.1430675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Background Numerous research studies have indicated a possible association between type 2 diabetes (T2DM) and gut microbiota. To explore specific metabolic pathways connecting gut microbiota and T2DM, we employed Mendelian randomization (MR) and linkage disequilibrium score regression (LDSC) techniques. Methods This research utilized data from genome-wide association studies (GWAS) that are publicly accessible. We evaluated the genetic correlation between gut microbiota and T2DM using LDSC. Causality was primarily determined through the inverse variance weighted (IVW) method. To verify the robustness of our results, we conducted sensitivity analyses using several approaches, including the weighted median, MR-Egger, and MR-PRESSO. We integrated summary effect estimates from LDSC, along with forward and reverse MR, into a meta-analysis for T2DM using various data sources. Additionally, mediation analysis was performed to explore the impact of plasma metabolites on the relationship between gut microbiota and T2DM. Results Our study indicated a significant genetic correlation between genus RuminococcaceaeUCG005 (Rg = -0.26, Rg_P = 2.07×10-4) and T2DM. Moreover, the forward MR analysis identified genus RuminococcaceaeUCG010 (OR = 0.857, 95% CI 0.795, 0.924; P = 6.33×10-5) and order Clostridiales (OR = 0.936, 95% CI 0.878, 0.997; P = 0.039) as being significantly associated with a decreased risk of T2DM. The analysis also highlighted several plasma metabolites as significant mediators in these relationships, with metabolites like octadecadienedioate (C18:2-DC) and branched chain 14:0 dicarboxylic acid being notably involved. Conclusion The findings demonstrate a significant impact of gut microbiota on T2DM via plasma metabolites, suggesting potential metabolic pathways for therapeutic targeting. This study enhances our understanding of the microbiota's role in T2DM pathogenesis and supports the development of microbiota-based interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - JinNuo Fan
- Emergency Department, Wujin People’s Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
Mauldin K, Pignotti GAP, Gieng J. Measures of nutrition status and health for weight-inclusive patient care: A narrative review. Nutr Clin Pract 2024; 39:751-771. [PMID: 38796769 DOI: 10.1002/ncp.11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
In healthcare, weight is often equated to and used as a marker for health. In examining nutrition and health status, there are many more effective markers independent of weight. In this article, we review practical and emerging clinical applications of technologies and tools used to collect non-weight-related data in nutrition assessment, monitoring, and evaluation in the outpatient setting. The aim is to provide clinicians with new ideas about various types of data to evaluate and track in nutrition care.
Collapse
Affiliation(s)
- Kasuen Mauldin
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, California, USA
- Clinical Nutrition, Stanford Health Care, Stanford, California, USA
| | - Giselle A P Pignotti
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, California, USA
| | - John Gieng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, California, USA
| |
Collapse
|
7
|
El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, Alrubaiy L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J Pers Med 2024; 14:652. [PMID: 38929872 PMCID: PMC11204866 DOI: 10.3390/jpm14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiome is of paramount importance in preserving internal balance in the gastrointestinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting the gut microbiome of the Middle East, and prospective therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Diya Kapila
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Rama Sami Issa Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | | | - Mohd Rafiw Ahmed Mahen
- Department of Medicine, King’s College Hospital London, Dubai P.O. Box 340901, United Arab Emirates;
| | - Roa’a Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | - Laith Alrubaiy
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
8
|
Xu X, Zhang F, Ren J, Zhang H, Jing C, Wei M, Jiang Y, Xie H. Dietary intervention improves metabolic levels in patients with type 2 diabetes through the gut microbiota: a systematic review and meta-analysis. Front Nutr 2024; 10:1243095. [PMID: 38260058 PMCID: PMC10800606 DOI: 10.3389/fnut.2023.1243095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background Poor dietary structure plays a pivotal role in the development and progression of type 2 diabetes and is closely associated with dysbiosis of the gut microbiota. Thus, the objective of this systematic review was to assess the impact of dietary interventions on improving gut microbiota and metabolic levels in patients with type 2 diabetes. Methods We conducted a systematic review and meta-analysis following the PRISMA 2020 guidelines. Results Twelve studies met the inclusion criteria. In comparison to baseline measurements, the high-fiber diet produced substantial reductions in FBG (mean difference -1.15 mmol/L; 95% CI, -2.24 to -0.05; I2 = 94%; P = 0.04), HbA1c (mean difference -0.99%; 95% CI, -1.93 to -0.03; I2 = 89%; P = 0.04), and total cholesterol (mean difference -0.95 mmol/L; 95% CI, -1.57 to -0.33; I2 = 77%; P = 0.003); the high-fat and low-carbohydrate diet led to a significant reduction in HbA1c (mean difference -0.98; 95% CI, -1.50 to -0.46; I2 = 0%; P = 0.0002). Within the experimental group (intervention diets), total cholesterol (mean difference -0.69 mmol/L; 95% CI, -1.27 to -0.10; I2 = 52%; P = 0.02) and LDL-C (mean difference -0.45 mmol/L; 95% CI, -0.68 to -0.22; I2 = 0%; P < 0.0001) experienced significant reductions in comparison to the control group (recommended diets for type 2 diabetes). However, no statistically significant differences emerged in the case of FBG, HbA1c, HOMA-IR, and HDL-C between the experimental and control groups. The high dietary fiber diet triggered an augmented presence of short-chain fatty acid-producing bacteria in the intestines of individuals with T2DM. In addition, the high-fat and low-carbohydrate diet resulted in a notable decrease in Bacteroides abundance while simultaneously increasing the relative abundance of Eubacterium. Compared to a specific dietary pattern, personalized diets appear to result in the production of a greater variety of beneficial bacteria in the gut, leading to more effective blood glucose control in T2D patients. Conclusion Dietary interventions hold promise for enhancing metabolic profiles in individuals with T2D through modulation of the gut microbiota. Tailored dietary regimens appear to be more effective than standard diets in improving glucose metabolism. However, given the limited and highly heterogeneous nature of the current sample size, further well-designed and controlled intervention studies are warranted in the future.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Fan Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Jiajia Ren
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Haimeng Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Cuiqi Jing
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Muhong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yuhong Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Hong Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
9
|
Renner B, Buyken AE, Gedrich K, Lorkowski S, Watzl B, Linseisen J, Daniel H. Perspective: A Conceptual Framework for Adaptive Personalized Nutrition Advice Systems (APNASs). Adv Nutr 2023; 14:983-994. [PMID: 37419418 PMCID: PMC10509404 DOI: 10.1016/j.advnut.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Nearly all approaches to personalized nutrition (PN) use information such as the gene variants of individuals to deliver advice that is more beneficial than a generic "1-size-fits-all" recommendation. Despite great enthusiasm and the increased availability of commercial services, thus far, scientific studies have only revealed small to negligible effects on the efficacy and effectiveness of personalized dietary recommendations, even when using genetic or other individual information. In addition, from a public health perspective, scholars are critical of PN because it primarily targets socially privileged groups rather than the general population, thereby potentially widening health inequality. Therefore, in this perspective, we propose to extend current PN approaches by creating adaptive personalized nutrition advice systems (APNASs) that are tailored to the type and timing of personalized advice for individual needs, capacities, and receptivity in real-life food environments. These systems encompass a broadening of current PN goals (i.e., what should be achieved) to incorporate "individual goal preferences" beyond currently advocated biomedical targets (e.g., making sustainable food choices). Moreover, they cover the "personalization processes of behavior change" by providing in situ, "just-in-time" information in real-life environments (how and when to change), which accounts for individual capacities and constraints (e.g., economic resources). Finally, they are concerned with a "participatory dialog between individuals and experts" (e.g., actual or virtual dieticians, nutritionists, and advisors) when setting goals and deriving measures of adaption. Within this framework, emerging digital nutrition ecosystems enable continuous, real-time monitoring, advice, and support in food environments from exposure to consumption. We present this vision of a novel PN framework along with scenarios and arguments that describe its potential to efficiently address individual and population needs and target groups that would benefit most from its implementation.
Collapse
Affiliation(s)
- Britta Renner
- Department of Psychology and Centre for the Advanced Study of Collective Behavior, Psychological Assessment and Health Psychology, University of Konstanz, Konstanz, Germany.
| | - Anette E Buyken
- Public Health Nutrition, Paderborn University, Paderborn, Germany
| | - Kurt Gedrich
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences Friedrich Schiller University Jena, Jena, Germany, and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Bernhard Watzl
- Ex. Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Jakob Linseisen
- University Hospital Augsburg, University of Augsburg, Augsburg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannelore Daniel
- Ex. School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
10
|
Wellens J, Vissers E, Matthys C, Vermeire S, Sabino J. Personalized Dietary Regimens for Inflammatory Bowel Disease: Current Knowledge and Future Perspectives. Pharmgenomics Pers Med 2023; 16:15-27. [PMID: 36660362 PMCID: PMC9842524 DOI: 10.2147/pgpm.s359365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and incurable conditions of the gastro-intestinal tract with an increasing incidence and prevalence worldwide. Common symptoms are abdominal pain, diarrhea, and weight loss. Despite recent advances in medical management, many patients fail to achieve clinical remission and healing of the mucosa of the bowel. The cause is thought to involve an inappropriate reaction of the immune system, the microbiome and the environment in genetically susceptible individuals, leading to chronic bowel inflammation. Evidence is emerging that diet is a key environmental factor that might influence disease onset and course, and therefore may become a therapeutic strategy to mitigate inflammation and symptoms. Since IBD is a heterogeneous disease on a clinical and a molecular level, personalizing dietary advice could be the crucial factor to achieve long-lasting changes in dietary behaviors that could not only improve nutritional status but also tackle gut inflammation and abdominal symptoms on an individual level. In this review, we first discuss different aspects of personalized nutrition, namely the level, focus, and scope of personalized dietary regimens. Then, we provide a framework for the different goals of nutritional therapy in IBD and current evidence for personalized dietary approaches. Lastly, we discuss the need for adequate trial designs, access to the right data types and the bioinformatic tools that are necessary to develop algorithms that will allow us to move from general "healthy eating" advice to truly personalized nutritional plans for the individual IBD patient.
Collapse
Affiliation(s)
- Judith Wellens
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Eva Vissers
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Christophe Matthys
- Clinical Nutrition Unit, Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium,KU Leuven Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - João Sabino
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium,Correspondence: João Sabino, Email
| |
Collapse
|
11
|
Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy. Nutrients 2022; 14:nu14153182. [PMID: 35956358 PMCID: PMC9370776 DOI: 10.3390/nu14153182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The long-term success of nonsurgical weight reduction programs is variable; thus, predictors of outcome are of major interest. We hypothesized that the intestinal microbiota known to be linked with diet and obesity contain such predictive elements. Methods: Metagenome analysis by shotgun sequencing of stool DNA was performed in a cohort of 15 adults with obesity (mean body mass index 43.1 kg/m2) who underwent a one-year multidisciplinary weight loss program and another year of follow-up. Eight individuals were persistently successful (mean relative weight loss 18.2%), and seven individuals were not successful (0.2%). The relationship between relative abundancies of bacterial genera/species and changes in relative weight loss or body mass index was studied using three different statistical modeling methods. Results: When combining the predictor variables selected by the applied statistical modeling, we identified seven bacterial genera and eight bacterial species as candidates for predicting success of weight loss. By classification of relative weight-loss predictions for each patient using 2–5 term models, 13 or 14 out of 15 individuals were predicted correctly. Conclusions: Our data strongly suggest that gut microbiota patterns allow individual prediction of long-term weight loss success. Prediction accuracy seems to be high but needs confirmation by larger prospective trials.
Collapse
|
12
|
Gutiérrez-Repiso C, Garrido-Sánchez L, Alcaide-Torres J, Cornejo-Pareja I, Ocaña-Wilhelmi L, García-Fuentes E, Moreno-Indias I, Tinahones FJ. Predictive Role of Gut Microbiota in Weight Loss Achievement after Bariatric Surgery. J Am Coll Surg 2022; 234:861-871. [PMID: 35426398 DOI: 10.1097/xcs.0000000000000145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Bariatric surgery induces changes in gut microbiota that have been suggested to contribute to weight loss and metabolic improvement. However, whether preoperative gut microbiota composition could predict response to bariatric surgery has not yet been elucidated. STUDY DESIGN Seventy-six patients who underwent sleeve gastrectomy were classified according to the percentage of excess weight loss (%EWL) 1 year after surgery in the responder group: >50%EWL (n=50) and the nonresponder group: <50%EWL (n=26). Patients were evaluated before surgery, and 3 months and 1 year after surgery. Gut microbiota composition was analyzed before surgery (n=76) and 3 months after bariatric surgery (n=40). RESULTS Diversity analysis did not show differences between groups before surgery or 3 months after surgery. Before surgery, there were differences in the abundance of members belonging to Bacteroidetes and Firmicutes phyla (nonresponder group: enriched in Bacteroidaceae, Bacteroides, Bacteroides uniformis, Alistipes finegoldii, Alistipes alistipes, Dorea formicigenerans, and Ruminococcus gnavus. Responder group: enriched in Peptostreptococcaceae, Gemmiger, Gemiger formicilis, Barnesiella, Prevotellaceae, and Prevotella; linear discriminant analysis >2; p < 0.05). Prevotella-to-Bacteroides ratio was significantly lower in the nonresponder group compared to the responder group (p = 0.048). After surgery, the responder group showed an enrichment in taxa that have been shown to have beneficial effects on host metabolism. Before surgery, PICRUSt analysis showed an enrichment in pathways involved in the biosynthesis components of the O-antigen polysaccharideunits in lipopolysaccharides in the nonresponder group. CONCLUSIONS Preoperative gut microbiota could have an impact on bariatric surgery outcomes. Prevotella-to-Bacteroides ratio could be used as a predictive tool for weight loss trajectory. Early after surgery, patients who experienced successful weight loss showed an enrichment in taxa related to beneficial effects on host metabolism.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Garrido-Sánchez
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Alcaide-Torres
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Cornejo-Pareja
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General y del Aparato Digestivo (Ocaña-Wilhelmi), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología (Ocaña-Wilhelmi), Universidad de Málaga, Málaga, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo (García-Fuentes), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) (García-Fuentes), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología (Tinahones), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
13
|
Di Domenico M, Ballini A, Boccellino M, Scacco S, Lovero R, Charitos IA, Santacroce L. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. J Pers Med 2022; 12:523. [PMID: 35455639 PMCID: PMC9024566 DOI: 10.3390/jpm12040523] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
The human intestine is colonized by a huge number of microorganisms from the moment of birth. This set of microorganisms found throughout the human body, is called the microbiota; the microbiome indicates the totality of genes that the microbiota can express, i.e., its genetic heritage. Thus, microbiota participates in and influences the proper functioning of the organism. The microbiota is unique for each person; it differs in the types of microorganisms it contains, the number of each microorganism, and the ratio between them, but mainly it changes over time and under the influence of many factors. Therefore, the correct functioning of the human body depends not only on the expression of its genes but also on the expression of the genes of the microorganisms it coexists with. This fact makes clear the enormous interest of community science in studying the relationship of the human microbiota with human health and the incidence of disease. The microbiota is like a unique personalized "mold" for each person; it differs quantitatively and qualitatively for the microorganisms it contains together with the relationship between them, and it changes over time and under the influence of many factors. We are attempting to modulate the microbial components in the human intestinal microbiota over time to provide positive feedback on the health of the host, from intestinal diseases to cancer. These interventions to modulate the intestinal microbiota as well as to identify the relative microbiome (genetic analysis) can range from dietary (with adjuvant prebiotics or probiotics) to fecal transplantation. This article researches the recent advances in these strategies by exploring their advantages and limitations. Furthermore, we aim to understand the relationship between intestinal dysbiosis and pathologies, through the research of resident microbiota, that would allow the personalization of the therapeutic antibiotic strategy.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy;
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy;
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
14
|
Sowah SA, Milanese A, Schübel R, Wirbel J, Kartal E, Johnson TS, Hirche F, Grafetstätter M, Nonnenmacher T, Kirsten R, López-Nogueroles M, Lahoz A, Schwarz KV, Okun JG, Ulrich CM, Nattenmüller J, von Eckardstein A, Müller D, Stangl GI, Kaaks R, Kühn T, Zeller G. Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Med 2022; 14:30. [PMID: 35287713 PMCID: PMC8919571 DOI: 10.1186/s13073-022-01030-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiota has been suggested to play a significant role in the development of overweight and obesity. However, the effects of calorie restriction on gut microbiota of overweight and obese adults, especially over longer durations, are largely unexplored. Methods Here, we longitudinally analyzed the effects of intermittent calorie restriction (ICR) operationalized as the 5:2 diet versus continuous calorie restriction (CCR) on fecal microbiota of 147 overweight or obese adults in a 50-week parallel-arm randomized controlled trial, the HELENA Trial. The primary outcome of the trial was the differential effects of ICR versus CCR on gene expression in subcutaneous adipose tissue. Changes in the gut microbiome, which are the focus of this publication, were defined as exploratory endpoint of the trial. The trial comprised a 12-week intervention period, a 12-week maintenance period, and a final follow-up period of 26 weeks. Results Both diets resulted in ~5% weight loss. However, except for Lactobacillales being enriched after ICR, post-intervention microbiome composition did not significantly differ between groups. Overall weight loss was associated with significant metabolic improvements, but not with changes in the gut microbiome. Nonetheless, the abundance of the Dorea genus at baseline was moderately predictive of subsequent weight loss (AUROC of 0.74 for distinguishing the highest versus lowest weight loss quartiles). Despite the lack of consistent intervention effects on microbiome composition, significant study group-independent co-variation between gut bacterial families and metabolic biomarkers, anthropometric measures, and dietary composition was detectable. Our analysis in particular revealed associations between insulin sensitivity (HOMA-IR) and Akkermansiaceae, Christensenellaceae, and Tanerellaceae. It also suggests the possibility of a beneficial modulation of the latter two intestinal taxa by a diet high in vegetables and fiber, and low in processed meat. Conclusions Overall, our results suggest that the gut microbiome remains stable and highly individual-specific under dietary calorie restriction. Trial registration The trial, including the present microbiome component, was prospectively registered at ClinicalTrials.govNCT02449148 on May 20, 2015. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01030-0.
Collapse
Affiliation(s)
- Solomon A Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Alessio Milanese
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Ruth Schübel
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jakob Wirbel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Ece Kartal
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Theron S Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mirja Grafetstätter
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Romy Kirsten
- Biobank of the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Marina López-Nogueroles
- Analytical Unit, Biomarkers and Precision Medicine Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Agustín Lahoz
- Analytical Unit, Biomarkers and Precision Medicine Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Kathrin V Schwarz
- Department of General Paediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Dietmar-Hopp Metabolic Center, Heidelberg, Germany
| | - Jürgen G Okun
- Department of General Paediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Dietmar-Hopp Metabolic Center, Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | | | - Daniel Müller
- Institute of Clinical Chemistry (IGFS), University Hospital Zurich, Zurich, Switzerland
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. .,Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
| | - Georg Zeller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
15
|
Hillestad EMR, van der Meeren A, Nagaraja BH, Bjørsvik BR, Haleem N, Benitez-Paez A, Sanz Y, Hausken T, Lied GA, Lundervold A, Berentsen B. Gut bless you: The microbiota-gut-brain axis in irritable bowel syndrome. World J Gastroenterol 2022; 28:412-431. [PMID: 35125827 PMCID: PMC8790555 DOI: 10.3748/wjg.v28.i4.412] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common clinical label for medically unexplained gastrointestinal symptoms, recently described as a disturbance of the microbiota-gut-brain axis. Despite decades of research, the pathophysiology of this highly heterogeneous disorder remains elusive. However, a dramatic change in the understanding of the underlying pathophysiological mechanisms surfaced when the importance of gut microbiota protruded the scientific picture. Are we getting any closer to understanding IBS' etiology, or are we drowning in unspecific, conflicting data because we possess limited tools to unravel the cluster of secrets our gut microbiota is concealing? In this comprehensive review we are discussing some of the major important features of IBS and their interaction with gut microbiota, clinical microbiota-altering treatment such as the low FODMAP diet and fecal microbiota transplantation, neuroimaging and methods in microbiota analyses, and current and future challenges with big data analysis in IBS.
Collapse
Affiliation(s)
- Eline Margrete Randulff Hillestad
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Aina van der Meeren
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Bharat Halandur Nagaraja
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
| | - Ben René Bjørsvik
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
| | - Noman Haleem
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
| | - Alfonso Benitez-Paez
- Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center, Valencia 46012, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council, Paterna-Valencia 46980, Spain
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Gülen Arslan Lied
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Biomedicine, University of Bergen, Bergen 5021, Norway
| | - Birgitte Berentsen
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
16
|
Aranaz P, Ramos-Lopez O, Cuevas-Sierra A, Martinez JA, Milagro FI, Riezu-Boj JI. A predictive regression model of the obesity-related inflammatory status based on gut microbiota composition. Int J Obes (Lond) 2021; 45:2261-2268. [PMID: 34267323 DOI: 10.1038/s41366-021-00904-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Fecal microbiome disturbances are linked to different human diseases. In the case of obesity, gut microbiota seems to play a role in the development of low-grade inflammation. The purpose of the present study was to identify specific bacterial families and genera associated with an increased obesity-related inflammatory status, which would allow to build a regression model for the prediction of the inflammatory status of obese and overweight subjects based on fecal microorganisms. METHODS A total of 361 volunteers from the Obekit trial (65 normal-weight, 110 overweight, and 186 obese) were classified according to four variables: waist/hip ratio (≥0.86 for women and ≥1.00 for men), leptin/adiponectin ratio (LAR, ≥3.0 for women and ≥1.4 for men), and plasma C-reactive protein (≥2 mg/L) and TNF levels (≥0.85 pg/mL). An inflammation score was designed to classify individuals in low (those subjects who did exceed the threshold value in 0 or 1 variable) or high inflammatory index (those subjects who did exceed the threshold value in 2 or more variables). Fecal 16 S rRNA sequencing was performed for all participants, and differential abundance analyses for family and genera were performed using the MicrobiomeAnalyst web-based platform. RESULTS Methanobacteriaceae, Christensenellaceae, Coriobacteriaceae, Bifidobacteriaceae, Catabacteriaceae, and Dehalobacteriaceae families, and Methanobrevibacter, Eggerthella, Gemmiger, Anaerostipes, and Collinsella genera were significantly overrepresented in subjects with low inflammatory index. Conversely, Carnobacteriaceae, Veillonellaceae, Pasteurellaceae, Prevotellaceae and Enterobacteriaceae families, and Granulicatella, Veillonella, Haemophilus, Dialister Parabacteroides, Prevotella, Shigella, and Allisonella genera were more abundant in subjects with a high inflammatory index. A regression model adjusted by BMI, sex, and age and including the families Coriobacteriaceae and Prevotellaceae and the genus Veillonella was developed. CONCLUSION A microbiota-based regression model was able to predict the obesity-related inflammatory status (area under the ROC curve = 0.8570 ± 0.0092 Harrell's optimism-correction) and could be useful in the precision management of inflammobesity.
Collapse
Affiliation(s)
- Paula Aranaz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Amanda Cuevas-Sierra
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | - J Alfredo Martinez
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermin I Milagro
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jose I Riezu-Boj
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
17
|
So D, Yao CK, Gill PA, Pillai N, Gibson PR, Muir JG. Screening dietary fibres for fermentation characteristics and metabolic profiles using a rapid in vitro approach: implications for irritable bowel syndrome. Br J Nutr 2021; 126:208-218. [PMID: 33028442 DOI: 10.1017/s0007114520003943] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The therapeutic value of specific fibres is partly dependent on their fermentation characteristics. Some fibres are rapidly degraded with the generation of gases that induce symptoms in patients with irritable bowel syndrome (IBS), while more slowly or non-fermentable fibres may be more suitable. More work is needed to profile a comprehensive range of fibres to determine suitability for IBS. Using a rapid in vitro fermentation model, gas production and metabolite profiles of a range of established and novel fibres were compared. Fibre substrates (n 15) were added to faecal slurries from three healthy donors for 4 h with gas production measured using real-time headspace sampling. Concentrations of SCFA and ammonia were analysed using GC and enzymatic assay, respectively. Gas production followed three patterns: rapid (≥60 ml/g over 4 h) for fructans, carrot fibre and maize-derived xylo-oligosaccharide (XOS); mild (30-60 ml/g) for partially hydrolysed guar gum, almond shell-derived XOS and one type of high-amylose resistant starch 2 (RS2) and minimal (no differences with blank controls) for methylcellulose, another high-amylose RS2, acetylated or butyrylated RS2, RS4, acacia gum and sugarcane bagasse. Gas production correlated positively with total SCFA (r 0·80, P < 0·001) and negatively with ammonia concentrations (r -0·68, P < 0·001). Proportions of specific SCFA varied: fermentation of carrot fibre, XOS and acetylated RS2 favoured acetate, while fructans favoured butyrate. Gas production and metabolite profiles differed between fibre types and within fibre classes over a physiologically relevant 4-h time course. Several fibres resisted rapid fermentation and may be candidates for clinical trials in IBS patients.
Collapse
Affiliation(s)
- Daniel So
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Chu K Yao
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Paul A Gill
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Naresh Pillai
- School of Engineering, RMIT University, Melbourne, VIC3000, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Jane G Muir
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| |
Collapse
|
18
|
Grace-Farfaglia P. Self-Reported Diet and Health Outcomes of Participants of the CCSVI-Tracking Survey Study. Nutrients 2021; 13:1891. [PMID: 34072860 PMCID: PMC8230225 DOI: 10.3390/nu13061891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Of the 1575 participants of the CCSVI-Tracking Survey, 475 patients recorded their quality of life and EDSS outcomes for at least 2 months. Self-reported use of complementary and conventional therapies included diet, use of drug therapy, symptoms, quality of life, and mobility. Analysis included comparing outcomes related to different diets within and between groups. Adherence to the MS diet was not associated with a greater quality of life, less disability, a lower Symptom Score, or faster walking speed compared to other diets. Alternately, the participants from the Mediterranean diet region as a whole (µ = 32.65 (SD = 11.37, SEM = 2.37, p = 0.05) had a significantly greater QoL (µ = 60, p = 0.05) and a lower MS symptom score, µ = 32.65 (11.37), p = 0.0029. A decline of symptoms was observed in all diet groups over 3 months with the most dramatic decline observed in participants from the Eastern Mediterranean diet region. The main effect for the within-subjects factor was significant, F(3, 1056) = 55.95, p < 0.001, indicating that there were significant differences between the groups.
Collapse
Affiliation(s)
- Patricia Grace-Farfaglia
- Department of Health Science, Rocky Mountain University of Health Professions, Provo, UT 84606, USA;
- Department of Health Science, College of Health Professions, Sacred Heart University, Fairfield, CT 06825, USA
| |
Collapse
|
19
|
Rocks T, West M, Hockey M, Aslam H, Lane M, Loughman A, Jacka FN, Ruusunen A. Possible use of fermented foods in rehabilitation of anorexia nervosa: the gut microbiota as a modulator. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110201. [PMID: 33307114 DOI: 10.1016/j.pnpbp.2020.110201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Anorexia nervosa is a serious psychiatric disorder with high morbidity and mortality rate. Evidence for the optimal psychopharmacological approach to managing the disorder remains limited, with nutritional treatment, focused on weight restoration through the consumption of high energy diet, regarded as one of the fundamental steps in treatment. The human gut microbiome is increasingly recognised for its proposed role in gastrointestinal, metabolic, immune and mental health, all of which may be compromised in individuals with anorexia nervosa. Dietary intake plays an important role in shaping gut microbiota composition, whilst the use of fermented foods, foods with potential psychobiotic properties that deliver live bacteria, bacterial metabolites, prebiotics and energy, have been discussed to a lesser extent. However, fermented foods are of increasing interest due to their potential capacity to affect gut microbiota composition, provide beneficial bacterial metabolites, and confer beneficial outcomes to host health. This review provides an overview of the role of the gut microbiota in relation to the disease pathology in anorexia nervosa and especially focuses on the therapeutic potential of fermented foods, proposed here as a recommended addition to the current nutritional treatment protocols warranting further investigation.
Collapse
Affiliation(s)
- Tetyana Rocks
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia.
| | - Madeline West
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Meghan Hockey
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Hajara Aslam
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, VIC, Australia; Black Dog Institute, NSW, Australia; James Cook University, QLD; Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Atzeni A, Galié S, Muralidharan J, Babio N, Tinahones FJ, Vioque J, Corella D, Castañer O, Vidal J, Moreno-Indias I, Torres-Collado L, Fernández-Carrión R, Fitó M, Olbeyra R, Martínez-González MA, Bulló M, Salas-Salvadó J. Gut Microbiota Profile and Changes in Body Weight in Elderly Subjects with Overweight/Obesity and Metabolic Syndrome. Microorganisms 2021; 9:346. [PMID: 33578731 PMCID: PMC7916506 DOI: 10.3390/microorganisms9020346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota is essential for the development of obesity and related comorbidities. However, studies describing the association between specific bacteria and obesity or weight loss reported discordant results. The present observational study, conducted within the frame of the PREDIMED-Plus clinical trial, aims to assess the association between fecal microbiota, body composition and weight loss, in response to a 12-month lifestyle intervention in a subsample of 372 individuals (age 55-75) with overweight/obesity and metabolic syndrome. Participants were stratified by tertiles of baseline body mass index (BMI) and changes in body weight after 12-month intervention. General assessments, anthropometry and biochemical measurements, and stool samples were collected. 16S amplicon sequencing was performed on bacterial DNA extracted from stool samples and microbiota analyzed. Differential abundance analysis showed an enrichment of Prevotella 9, Lachnospiraceae UCG-001 and Bacteroides, associated with a higher weight loss after 12-month of follow-up, whereas in the cross-sectional analysis, Prevotella 2 and Bacteroides were enriched in the lowest tertile of baseline BMI. Our findings suggest that fecal microbiota plays an important role in the control of body weight, supporting specific genera as potential target in personalized nutrition for obesity management. A more in-depth taxonomic identification method and the need of metabolic information encourages to further investigation.
Collapse
Affiliation(s)
- Alessandro Atzeni
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43201 Reus, Spain; (A.A.); (S.G.); (J.M.); (N.B.)
- Institut D’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204 Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
| | - Serena Galié
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43201 Reus, Spain; (A.A.); (S.G.); (J.M.); (N.B.)
- Institut D’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204 Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
| | - Jananee Muralidharan
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43201 Reus, Spain; (A.A.); (S.G.); (J.M.); (N.B.)
- Institut D’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204 Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
| | - Nancy Babio
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43201 Reus, Spain; (A.A.); (S.G.); (J.M.); (N.B.)
- Institut D’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204 Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
| | - Francisco José Tinahones
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Jesús Vioque
- Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL-UMH, 03010 Alicante, Spain; (J.V.); (L.T.-C.)
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Department of Preventive Medicine, University of Valencia, 46100 Valencia, Spain
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Cardiovascular Risk and Nutrition (Regicor Study Group), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Josep Vidal
- Endocrinology and Nutrition Department, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic Universitari, 08036 Barcelona, Spain; (J.V.); (R.O.)
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Laura Torres-Collado
- Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL-UMH, 03010 Alicante, Spain; (J.V.); (L.T.-C.)
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rebeca Fernández-Carrión
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Department of Preventive Medicine, University of Valencia, 46100 Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Cardiovascular Risk and Nutrition (Regicor Study Group), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Romina Olbeyra
- Endocrinology and Nutrition Department, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic Universitari, 08036 Barcelona, Spain; (J.V.); (R.O.)
| | - Miguel Angel Martínez-González
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Monica Bulló
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43201 Reus, Spain; (A.A.); (S.G.); (J.M.); (N.B.)
- Institut D’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204 Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
| | - Jordi Salas-Salvadó
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43201 Reus, Spain; (A.A.); (S.G.); (J.M.); (N.B.)
- Institut D’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204 Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.J.T.); (D.C.); (O.C.); (I.M.-I.); (R.F.-C.); (M.F.); (M.A.M.-G.)
| |
Collapse
|
21
|
Kamp KJ, Plantinga AM, Cain KC, Burr RL, Barney P, Jarrett M, Luna RA, Savidge T, Shulman R, Heitkemper MM. A Comprehensive Self-Management Program With Diet Education Does Not Alter Microbiome Characteristics in Women With Irritable Bowel Syndrome. Biol Res Nurs 2021; 23:471-480. [PMID: 33412896 DOI: 10.1177/1099800420984543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Changes in diet and lifestyle factors are frequently recommended for persons with irritable bowel syndrome (IBS). It is unknown whether these recommendations alter the gut microbiome and/or whether baseline microbiome predicts improvement in symptoms and quality of life following treatment. Therefore, the purpose of this study was to explore if baseline gut microbiome composition predicted response to a Comprehensive Self-Management (CSM) intervention and if the intervention resulted in a different gut microbiome composition compared to usual care. METHODS Individuals aged 18-70 years with IBS symptoms ≥6 months were recruited using convenience sampling. Individuals were excluded if medication use or comorbidities would influence symptoms or microbiome. Participants completed a baseline assessment and were randomized into the eight-session CSM intervention which included dietary education and cognitive behavioral therapy versus usual care. Questionnaires included demographics, quality of life, and symptom diaries. Fecal samples were collected at baseline and 3-month post-randomization for 16S rRNA-based microbiome analysis. RESULTS Within the CSM intervention group (n = 30), Shannon diversity, richness, and beta diversity measures at baseline did not predict benefit from the CSM intervention at 3 months, as measured by change in abdominal pain and quality of life. Based on both alpha and beta diversity, the change from baseline to follow-up microbiome bacterial taxa did not differ between CSM (n = 25) and usual care (n = 25). CONCLUSIONS AND INFERENCES Baseline microbiome does not predict symptom improvement with CSM intervention. We do not find evidence that the CSM intervention influences gut microbiome diversity or composition over the course of 3 months.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tor Savidge
- 3989Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
22
|
Dent R, McPherson R, Harper ME. Factors affecting weight loss variability in obesity. Metabolism 2020; 113:154388. [PMID: 33035570 DOI: 10.1016/j.metabol.2020.154388] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
Current obesity treatment strategies include diet, exercise, bariatric surgery, and a limited but growing repertoire of medications. Individual weight loss in response to each of these strategies is highly variable. Here we review research into factors potentially contributing to inter-individual variability in response to treatments for obesity, with a focus on studies in humans. Well-recognized factors associated with weight loss capacity include diet adherence, physical activity, sex, age, and specific medications. However, following control for each of these, differences in weight loss appear to persist in response to behavioral, pharmacological and surgical interventions. Adaptation to energy deficit involves complex feedback mechanisms, and inter-individual differences likely to arise from a host of poorly defined genetic factors, as well as differential responses in neurohormonal mechanisms (including gastrointestinal peptides), metabolic efficiency and capacity of tissues, non-exercise activity thermogenesis, thermogenic response to food, and in gut microbiome. A better understanding of the factors involved in inter-individual variability in response to therapies will guide more personalized approaches to the treatment of obesity.
Collapse
Affiliation(s)
- Robert Dent
- Department of Medicine, Division of Endocrinology and The Ottawa Hospital, University of Ottawa, 210 Melrose Ave, Ottawa, ON K1Y 4K7, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
23
|
Alvarez-Pitti J, de Blas A, Lurbe E. Innovations in Infant Feeding: Future Challenges and Opportunities in Obesity and Cardiometabolic Disease. Nutrients 2020; 12:nu12113508. [PMID: 33202614 PMCID: PMC7697724 DOI: 10.3390/nu12113508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
The field of nutrition in early life, as an effective tool to prevent and treat chronic diseases, has attracted a large amount of interest over recent years. The vital roles of food products and nutrients on the body’s molecular mechanisms have been demonstrated. The knowledge of the mechanisms and the possibility of controlling them via what we eat has opened up the field of precision nutrition, which aims to set dietary strategies in order to improve health with the greatest effectiveness. However, this objective is achieved only if the genetic profile of individuals and their living conditions are also considered. The relevance of this topic is strengthened considering the importance of nutrition during childhood and the impact on the development of obesity. In fact, the prevalence of global childhood obesity has increased substantially from 1990 and has now reached epidemic proportions. The current narrative review presents recent research on precision nutrition and its role on the prevention and treatment of obesity during pediatric years, a novel and promising area of research.
Collapse
Affiliation(s)
- Julio Alvarez-Pitti
- Department of Pediatrics, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (A.d.B.); (E.L.)
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-1820772
| | - Ana de Blas
- Department of Pediatrics, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (A.d.B.); (E.L.)
| | - Empar Lurbe
- Department of Pediatrics, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (A.d.B.); (E.L.)
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
24
|
Liu Z, de Vries B, Gerritsen J, Smidt H, Zoetendal EG. Microbiome-based stratification to guide dietary interventions to improve human health. Nutr Res 2020; 82:1-10. [DOI: 10.1016/j.nutres.2020.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
|
25
|
Manning LP, Yao CK, Biesiekierski JR. Therapy of IBS: Is a Low FODMAP Diet the Answer? Front Psychiatry 2020; 11:865. [PMID: 33110411 PMCID: PMC7488954 DOI: 10.3389/fpsyt.2020.00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorder with a worldwide prevalence of 11%. It is characterized by abdominal pain and altered bowel habits in the absence of underlying unique pathology. The condition is associated with poor quality of life and high use of healthcare resources required for management. The low FODMAP diet (LFD) is a recognized treatment for symptom management of IBS; however, approximately 30% of patients do not respond. The aim of this review was to understand the effectiveness and application of the LFD compared with other dietary and non-dietary interventions. Ten studies were included, eight of which assessed the LFD against other dietary interventions including traditional dietary advice, modified National Institute for Health and Care Excellence guidelines, a high FODMAP diet, gluten-free diet and Mediterranean diet, generalized dietary advice, probiotics, and a sham diet. Two studies compared a LFD to non-diet interventions of gut directed hypnotherapy or yoga. The findings clearly support the LFD as an effective treatment in IBS, and although it highlights the role for microbiota and current psychosocial state, it remains challenging to identify what combination of treatments may be best to ensure a personalized approach and overall higher response rates to IBS therapy.
Collapse
Affiliation(s)
- Lauren P. Manning
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Melbourne, VIC, Australia
| | - C. K. Yao
- Department of Gastroenterology, Central Clinical School, Monash University & Alfred Health, Melbourne, VIC, Australia
| | - Jessica R. Biesiekierski
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Yan Y, Nguyen LH, Franzosa EA, Huttenhower C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med 2020; 12:71. [PMID: 32791981 PMCID: PMC7427293 DOI: 10.1186/s13073-020-00765-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The biological importance and varied metabolic capabilities of specific microbial strains have long been established in the scientific community. Strains have, in the past, been largely defined and characterized based on microbial isolates. However, the emergence of new technologies and techniques has enabled assessments of their ecology and phenotypes within microbial communities and the human microbiome. While it is now more obvious how pathogenic strain variants are detrimental to human health, the consequences of subtle genetic variation in the microbiome have only recently been exposed. Here, we review the operational definitions of strains (e.g., genetic and structural variants) as they can now be identified from microbial communities using different high-throughput, often culture-independent techniques. We summarize the distribution and diversity of strains across the human body and their emerging links to health maintenance, disease risk and progression, and biochemical responses to perturbations, such as diet or drugs. We list methods for identifying, quantifying, and tracking strains, utilizing high-throughput sequencing along with other molecular and “culturomics” technologies. Finally, we discuss implications of population studies in bridging experimental gaps and leading to a better understanding of the health effects of strains in the human microbiome.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Long H Nguyen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
27
|
Shah BR, Li B, Al Sabbah H, Xu W, Mráz J. Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations. Trends Food Sci Technol 2020; 102:178-192. [PMID: 32834500 PMCID: PMC7309926 DOI: 10.1016/j.tifs.2020.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Background Dietary fibers (DFs) are known as potential formulations in human health due to their beneficial effects in control of life-threatening chronic diseases including cardiovascular disease (CVD), diabetes mellitus, obesity and cancer. In recent decades scientists around the globe have shown tremendous interest to evaluate the interplay between DFs and gastrointestinal (GIT) microbiota. Evidences from various epidemiological and clinical trials have revealed that DFs modulate formation and metabolic activities of the microbial communities residing in the human GIT which in turn play significant roles in maintaining health and well-being. Furthermore, interestingly, a rapidly growing literature indicates success of DFs being prebiotics in immunomodulation, namely the stimulation of innate, cellular and humoral immune response, which could also be linked with their significant roles in modulation of the probiotics (live beneficial microorganisms). Scope and approach The main focus of the current review is to expressively highlight the importance of DFs being prebiotics in human health in association with their influence on gut microbiota. Now in order to significantly achieve the promising health benefits from these prebiotics, it is aimed to develop novel formulations to enhance and scale up their efficacy. Therefore, finally, herein unlike previously published articles, we highlighted different kinds of prebiotic and probiotic formulations which are being regarded as hot research topics among the scientific community now a days. Conclusion The information in this article will specifically provide a platform for the development of novel functional foods the demands for which has risen drastically in recent years.
Collapse
Key Words
- CS, chitosan
- Dietary fiber
- Encapsulation
- FOS, Fructooligosaccharide
- Formulations
- GIT, Gastro intestinal tract
- GO, gum odina
- Gut micro-biota
- Human health
- In, Inulin
- MD, maltodextrin
- OL, oligofructose
- OSA, octenyl-succinic anhydride
- PS, potato starch
- PSY, plantago psyllium
- Prebiotics
Collapse
Affiliation(s)
- Bakht Ramin Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haleama Al Sabbah
- Department of Public Health Nutrition, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Jan Mráz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
28
|
Genetic Polymorphisms, Mediterranean Diet and Microbiota-Associated Urolithin Metabotypes can Predict Obesity in Childhood-Adolescence. Sci Rep 2020; 10:7850. [PMID: 32398726 PMCID: PMC7217888 DOI: 10.1038/s41598-020-64833-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Environmental and genetic factors are associated with pandemic obesity since childhood. However, the association of overweight-obesity with these factors, acting as a consortium, has been scarcely studied in children. We aimed here to assess the probabilities of being overweighed-obese in a randomly recruited cohort of Spanish children and adolescents (n = 415, 5−17 years-old) by estimating the odds ratios for different predictor variables, and their relative importance in the prediction. The predictor variables were ethnicity, age, sex, adherence to the Mediterranean diet (KIDMED), physical activity, urolithin metabotypes (UM-A, UM-B and UM-0) as biomarkers of the gut microbiota, and 53 single-nucleotide polymorphisms (SNPs) from 43 genes mainly related to obesity and cardiometabolic diseases. A proportional-odds logistic ordinal regression, validated through bootstrap, was used to model the data. While every variable was not independently associated with overweight-obesity, however, the ordinal logistic model revealed that overweight-obesity prevalence was related to being a young boy with either UM-B or UM-0, low KIDMED score and high contribution of a consortium of 24 SNPs, being rs1801253-ADRB1, rs4343-ACE, rs8061518-FTO, rs1130864-CRP, rs659366-UCP2, rs6131-SELP, rs12535708-LEP, rs1501299-ADIPOQ, rs708272-CETP and rs2241766-ADIPOQ the top-ten contributing SNPs. Additional research should confirm and complete this model by including dietary interventions and the individuals’ gut microbiota composition.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To provide an overview of recent studies exploring the gut microbiota in pathogenesis and treatment of irritable bowel syndrome (IBS). RECENT FINDINGS Primary bacterial gut disturbances have been linked to the development and severity of IBS. Dysbiosis, or alteration in the normal intestinal flora, modulates intestinal permeability, inflammation, gut motility and likely quality of life. These biomechanical changes are associated with enteric and central nervous system processing as well. When compared to healthy controls, IBS patients display poor quality of life measures and are at increased risk of depression and anxiety. The severity of psychological and gastrointestinal symptoms in IBS has been linked with a distinct intestinal microbiota signature. Efforts to modulate intestinal dysbiosis in IBS have shown little improvement in large systematic reviews. The low FODMAP diet reduces bacteria, such as Bifidobacterum and Actinobacteria. Although rifaximin improves symptoms, it may only stimulate a transient effect on the gut microbiota. Fecal microbiota transplant does not provide prolonged symptom relief in IBS. SUMMARY This review elucidates recent advances in IBS and the gut microbiota. Microbiota changes are one underlying factor in perpetuating global IBS symptoms. The opportunity to exploit this disturbance through treatment modalities requires further investigation.
Collapse
Affiliation(s)
- Andrew Canakis
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
30
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
31
|
Biesiekierski JR, Livingstone KM, Moschonis G. Personalised Nutrition: Updates, Gaps and Next Steps. Nutrients 2019; 11:nu11081793. [PMID: 31382527 PMCID: PMC6722533 DOI: 10.3390/nu11081793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Personalised nutrition approaches provide healthy eating advice tailored to the nutritional needs of the individual[...].
Collapse
Affiliation(s)
- Jessica R Biesiekierski
- Department of Dietetics, Nutrition and Sport, School of Allied Health, Human Services and Sport,La Trobe University, Bundoora, VIC 3086, Australia.
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3125, Australia
| | - George Moschonis
- Department of Dietetics, Nutrition and Sport, School of Allied Health, Human Services and Sport,La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|