1
|
Varadharajan V, Balu AK, Shiju A, Muthuramalingam P, Shin H, Venkidasamy B, Alharbi NS, Kadaikunnan S, Thiruvengadam M. Deciphering the Anticancer Arsenal of Piper longum: Network Pharmacology and Molecular Docking Unveil Phytochemical Targets Against Lung Cancer. Int J Med Sci 2024; 21:1915-1928. [PMID: 39113883 PMCID: PMC11302554 DOI: 10.7150/ijms.98393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1β, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics.
Collapse
Affiliation(s)
| | - Ashwath Kumar Balu
- Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, India
| | - Atul Shiju
- Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Korea
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Alsharif ST, Gardouh AM, Mandour MF, Alaqais ZM, Alharbi LK, Almarwani MJ, Mokhtar HI, Hisham FA, Abdellah MM, Mohamed GM, Shorog EM, Almaeen AH, Atteia HH, Zaitone SA. Antitumor activity and targeting p53-PUMA mRNA expression by 5-flurouracil PLGA-lipid polymeric nanoparticles in mouse mammary carcinomas: comparison to free 5-flurouracil. Toxicol Mech Methods 2024; 34:385-397. [PMID: 38083807 DOI: 10.1080/15376516.2023.2294083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Polymeric poly (lactic-co-glycolic acid) (PLGA)-lipid hybrid nanoparticles (PNPs)-based therapy are powerful carriers for various therapeutic agents. This study was conducted to evaluate the chemotherapeutic potential of free 5-flurouracil (5FU) and synthetized 5FU-PNPs and impact on p53-dependent apoptosis in mammary carcinomas (MCs) grown in mice. Breast cancer cells were injected in Swiss albino female mice and 2 bilateral masses of MC were confirmed after one week. Mice were distributed to five experimental groups; Group 1: MC control group. Groups 2 and 3: MC + free 5FU [5 or 10 mg per kg] groups. Groups 4 and 5: synthetized MC+ 5FU-PNPs [5 or 10 mg per kg] groups. Medications were administered orally, twice weekly for 3 weeks. Then, tumors were dissected, and sections were stained with hematoxylin-eosin (HE) while the other MC was used for measuring of cell death and inflammatory markers. Treatment with 5FU-PNPs suppressed the MC masses and pathologic scores based on HE-staining. Similarly, greater proapoptotic activity was recorded in 5FU-PNPs groups compared to free 5FU groups as shown by significant upregulation in tumoral p53 immunostaining. The current results encourage the utility of PNPs for improving the antitumor effect of 5FU. The chemotherapeutic potential was mediated through enhancement of tumoral p53-mediated p53 up-regulated modulator of apoptosis (PUMA) genes. Additional studies are warranted for testing the antitumor activity of this preparation in other mouse models of breast cancer.
Collapse
Affiliation(s)
- Sara T Alsharif
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Mohamed F Mandour
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Zood M Alaqais
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Lama K Alharbi
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha J Almarwani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Hatem I Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Fatma Azzahraa Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Mahmoud Abdellah
- Department of Pathology, Faculty of Medicine, Galala University, Suez, Egypt
- Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ghena M Mohamed
- Nutrition and Food Science Department, College of Home Economics, Tabuk University, Tabuk, Saudi Arabia
| | - Eman M Shorog
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Elsherbiny NM, Altemani R, Althagfi W, Albalawi M, Mohammedsaleh ZM, El-Sherbiny M, Abo El-Magd NF. Nifuroxazide repurposing for protection from diabetes-induced retinal injury in rats: Implication of oxidative stress and JAK/STAT3 axis. Biofactors 2024; 50:360-370. [PMID: 37737462 DOI: 10.1002/biof.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The prevalence of diabetes mellitus (DM) is alarmingly increasing worldwide. Diabetic retinopathy (DR) is a prevailing DM microvascular complication, representing the major cause of blindness in working-age population. Inflammation is a crucial player in DR pathogenesis. JAK/STAT3 axis is a pleotropic cascade that modulates diverse inflammatory events. Nifuroxazide (Nifu) is a commonly used oral antibiotic with reported JAK/STAT3 inhibition activity. The present study investigated the potential protective effect of Nifu against diabetes-induced retinal injury. Effect of Nifu on oxidative stress, JAK/STAT3 axis and downstream inflammatory mediators has been also studied. Diabetes was induced in Sprague Dawley rats by single intraperitoneal injection of streptozotocin (50 mg/kg). Animals were assigned into four groups: normal, Nifu control, DM, and DM + Nifu. Nifu was orally administrated at 25 mg/kg/day for 8 weeks. The effects of Nifu on oxidative stress, JAK/STAT3 axis proteins, inflammatory factors, tight junction proteins, histological, and ultrastructural alterations were evaluated using spectrophotometry, gene and protein analyses, and histological studies. Nifu administration to diabetic rats attenuated histopathological and signs of retinal injury. Additionally, Nifu attenuated retinal oxidative stress, inhibited JAK and STAT3 phosphorylation, augmented the expression of STAT3 signaling inhibitor SOCS3, dampened the expression of transcription factor of inflammation NF-κB, and inflammatory cytokine TNF-α. Collectively, the current study indicated that Nifu alleviated DR progression in diabetic rats, suggesting beneficial retino-protective effect. This can be attributed to blocking JAK/STAT3 axis in retinal tissues with subsequent amelioration of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Waad Althagfi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Salama RM, Omar MA. Anti-aging effect of nifuroxazide on skin changes of aged male rat models via modulating immunoreactivity of IL-6/NF-κB/Caspase-3. Morphologie 2023; 107:100605. [PMID: 37353466 DOI: 10.1016/j.morpho.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/25/2023]
Abstract
PURPOSE To evaluate nifuroxazide's (NIF's) anti-aging characteristics in a skin-aging rat model for the first time in order to create effective preventive measures and anti-aging skin therapies. MATERIALS AND METHODS Thirty randomly selected aged male rats were assorted into three equal groups; aged control group, treated NIF I, aged rats were treated with NIF (10mg/kg, orally once daily for 14 consecutive days), and treated NIF II, aged rats were treated with NIF (20mg/kg, orally once daily for 14 consecutive days). Skin samples were obtained from the dorsal skin of the aged male rats and processed for tissue biochemical MDA, histological (Hx&E and Masson's Trichrome stains), and immunohistochemical (IL-6, NF-κB, and caspase-3) analysis. RESULTS Group I aged male albino rat skin illustrated evident distorted epidermis and dermis, disorganization of collagen fibers with marked multiple spaces of collagen fibers loss in the dermis, marked reduction of total epidermal thickness and mean area percent of collagen fibers, elevated tissue MDA level and strong positive IL-6, NF-κB, and caspase-3 immune reaction. The anti-aging benefits of NIF on skin aging are demonstrated by a marked improvement in histological alterations in the form of a well-organized epidermis and dermis, most collagen fibers in the dermis appear closely packed, significant elevation of total epidermal thickness and mean area percent of collagen fibers, a significant decrease of tissue MDA level, and immunoexpression of the inflammatory markers, IL-6, and NF-κB, and the apoptotic marker caspase-3. CONCLUSIONS This study found that group III, which received 20mg/kg of NIF, experienced more pronounced and noticeable improvements in skin aging than group II, which received 10mg/kg of NIF.
Collapse
Affiliation(s)
- R M Salama
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - M A Omar
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
6
|
Li D, Liu L, Li F, Ma C, Ge K. Nifuroxazide induces the apoptosis of human non‑small cell lung cancer cells through the endoplasmic reticulum stress PERK signaling pathway. Oncol Lett 2023; 25:248. [PMID: 37153034 PMCID: PMC10161345 DOI: 10.3892/ol.2023.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
The aim of the present study was to investigate the molecular mechanism of nifuroxazide (NFZ) in the induction of apoptosis of NCI-H1299 human non-small cell lung cancer (NSCLC) cells through the reactive oxygen species (ROS)/Ca2+/protein kinase R-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-DNA damage inducible transcript 3 (CHOP) signaling pathway. Morphological changes of cells were observed by microscopy, and the apoptosis and intracellular ROS levels of cells were observed by inverted fluorescence microscopy. Cell viability after the addition of the PERK inhibitor, GSK2606414, were detected by Cell Counting Kit-8 assay. Annexin V-FITC was used to detect cell apoptosis, Brite 670 was used to detect intracellular ROS and Fura Red AM was used to detect Ca2+ content. Western blotting was used to detect PERK, phosphorylated (P)-PERK, ATF4, CHOP, P-Janus kinase 2 and P-signal transducer and activator of transcription 3 expression levels. Compared with the dimethyl sulfoxide control group, NFZ inhibited the survival activity in the H1299 NSCLC cell line, in a time- and dose-dependent manner. However, GSK2606414 inhibited the NFZ-induced apoptosis of H1299 cells. GSK2606414 also inhibited the increase in ROS and Ca2+ in H1299 cells induced by NFZ. Western blotting results demonstrated that NFZ significantly increased the expression levels of P-PERK, ATF4 and CHOP, whereas GSK2606414 significantly reduced the NFZ-induced increase in these protein expression levels. In conclusion, NFZ may induce the apoptosis of H1299 NSCLC cells through the ROS/Ca2+/PERK-ATF4-CHOP signaling pathway.
Collapse
Affiliation(s)
- Deliang Li
- The First Clinical Medical College, Medicine College, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Emergency Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Liping Liu
- The First Clinical Medical College, Medicine College, Qingdao University, Qingdao, Shandong 266023, P.R. China
| | - Feng Li
- Traditional Chinese Medicine Department, Zibo Wanjie Cancer Hospital, Zibo, Shandong 255200, P.R. China
| | - Chengshan Ma
- Orthopedic SurgeryDepartment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
- Dr Chengshan Ma, Orthopedic Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Lixia, Jinan, Shandong 250000, P.R. China, E-mail:
| | - Keli Ge
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Correspondence to: Dr Keli Ge, School of Basic Medicine, Medical College, Qingdao University, 38 Dengzhou Road, Qingdao, Shandong 266023, P.R. China, E-mail:
| |
Collapse
|
7
|
Althagafy HS, El-Aziz MA, Ibrahim IM, Abd-Alhameed EK, Hassanein EM. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol 2023; 951:175776. [PMID: 37192715 DOI: 10.1016/j.ejphar.2023.175776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and β-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1β, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - EmadH M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
8
|
α-Hederin Saponin Augments the Chemopreventive Effect of Cisplatin against Ehrlich Tumors and Bioinformatic Approach Identifying the Role of SDF1/CXCR4/p-AKT-1/NFκB Signaling. Pharmaceuticals (Basel) 2023; 16:ph16030405. [PMID: 36986504 PMCID: PMC10056433 DOI: 10.3390/ph16030405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF1) and its C-X-C chemokine receptor type 4 receptor (CXCR4) are significant mediators for cancer cells’ proliferation, and we studied their expression in Ehrlich solid tumors (ESTs) grown in mice. α-Hederin is a pentacyclic triterpenoid saponin found in Hedera or Nigella species with biological activity that involves suppression of growth of breast cancer cell lines. The aim of this study was to explore the chemopreventive activity of α-hederin with/without cisplatin; this was achieved by measuring the reduction in tumor masses and the downregulation in SDF1/CXCR4/pAKT signaling proteins and nuclear factor kappa B (NFκB). Ehrlich carcinoma cells were injected in four groups of Swiss albino female mice (Group1: EST control group, Group2: EST + α-hederin group, Group3: EST + cisplatin group, and Group4: EST+α-hederin/cisplatin treated group). Tumors were dissected and weighed, one EST was processed for histopathological staining with hematoxylin and eosin (HE), and the second MC was frozen and processed for estimation of signaling proteins. Computational analysis for these target proteins interactions showed direct-ordered interactions. The dissected solid tumors revealed decreases in tumor masses (~21%) and diminished viable tumor regions with significant necrotic surrounds, particularly with the combination regimens. Immunohistochemistry showed reductions (~50%) in intratumoral NFκβ in the mouse group that received the combination therapy. The combination treatment lowered the SDF1/CXCR4/p-AKT proteins in ESTs compared to the control. In conclusion, α-hederin augmented the chemotherapeutic potential of cisplatin against ESTs; this effect was at least partly mediated through suppressing the chemokine SDF1/CXCR4/p-AKT/NFκB signaling. Further studies are recommended to verify the chemotherapeutic potential of α-hederin in other breast cancer models.
Collapse
|
9
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
10
|
Luan Y, Bao Y, Wang F. Artesunate regulates the proliferation and differentiation of neural stem cells by activating the JAK‑2/STAT‑3 signaling pathway in ischemic stroke. Exp Ther Med 2022; 25:2. [PMID: 36561626 PMCID: PMC9748661 DOI: 10.3892/etm.2022.11701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke is one of the most common causes of disability and death globally; therefore, the repair and reconstruction of the central nervous system (CNS) after stroke is very important. Neural stem/progenitor cells (NSPCs) may be the key to cell replacement therapy to treat CNS damage. It has previously been reported that artesunate (ART) is involved in the regulation of the biological functions of NSPCs; however, the mechanism of action of ART remains unclear. In the present study, different concentrations of ART were used to treat NSPCs following oxygen-glucose deprivation (OGD). Cell viability and apoptosis were analyzed using Cell Counting Kit-8 assay and flow cytometry, respectively, whereas immunofluorescence analysis was used to measure the expression levels of the differentiation-related molecule doublecortin (DCX) and proliferating cell nuclear antigen (PCNA). Western blotting was performed to analyze the expression levels of molecules related to the JAK-2/STAT-3 signaling pathway. The present results indicated that treatment with ART following OGD significantly promoted the viability of NSPCs, inhibited the apoptosis of NSPCs, and promoted the expression of PCNA and DCX. Moreover, ART significantly downregulated the protein expression levels of phosphorylated (p)-JAK-2 and p-STAT-3. Furthermore, activation of the JAK-2/STAT-3 signaling pathway and treatment with ART reversed the effects of ART on the proliferation, apoptosis and differentiation of NSPCs. In conclusion, the present data suggested that ART may promote the proliferation and differentiation of NSPCs, and reduce the apoptosis of NSPCs, by inhibiting the JAK-2/STAT-3 signaling pathway. ART may potentially be used for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yumin Luan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanan Bao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Fei Wang
- Department of Intensive Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China,Correspondence to: Professor Fei Wang, Department of Intensive Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
11
|
Zheng W, Qian C, Tang Y, Yang C, Zhou Y, Shen P, Chen W, Yu S, Wei Z, Wang A, Lu Y, Zhao Y. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade. Front Immunol 2022; 13:1035323. [PMID: 36439137 PMCID: PMC9684196 DOI: 10.3389/fimmu.2022.1035323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Immunotherapy has been recognized as an effective and important therapeutic modality for multiple types of cancer. Nevertheless, it has been increasing recognized that clinical benefits of immunotherapy are less than expected as evidenced by the fact that only a small population of cancer patients respond favorably to immunotherapy. The structurally and functionally abnormal tumor vasculature is a hallmark of most solid tumors and contributes to an immunosuppressive microenvironment, which poses a major challenge to immunotherapy. In turn, multiple immune cell subsets have profound consequences on promoting neovascularization. Vascular normalization, a promising anti-angiogenic strategy, can enhance vascular perfusion and promote the infiltration of immune effector cells into tumors via correcting aberrant tumor blood vessels, resulting in the potentiation of immunotherapy. More interestingly, immunotherapies are prone to boost the efficacy of various anti-angiogenic therapies and/or promote the morphological and functional alterations in tumor vasculature. Therefore, immune reprograming and vascular normalization appear to be reciprocally regulated. In this review, we mainly summarize how tumor vasculature propels an immunosuppressive phenotype and how innate and adaptive immune cells modulate angiogenesis during tumor progression. We further highlight recent advances of anti-angiogenic immunotherapies in preclinical and clinical settings to solidify the concept that targeting both tumor blood vessels and immune suppressive cells provides an efficacious approach for the treatment of cancer.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
The Use of Novel, Rapid Analytical Tools in the Assessment of the Stability of Tablets—A Pilot Analysis of Expired and Unexpired Tablets Containing Nifuroxazide. Processes (Basel) 2022. [DOI: 10.3390/pr10101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the analysis of finished pharmaceutical products, numerous innovative analytical techniques are often used, i.e., Raman spectroscopy, scanning electron microscopy, computer microtomography, directional hemispherical reflectance, and hyperspectral analyses. These techniques allow for the identification of changes in solid phases. Many advantages over other techniques can be attributed to these techniques, e.g., they are rapid, non-destructive, and comprehensive. They allow for the identification of changes occurring in solid phases. However, the above-mentioned methods are still not standard procedures in pharmaceutical research. The present study aimed to assess the possible usefulness of total directional hemispherical reflectance (THR), hyperspectral imaging, and computer microtomography to evaluate the stability of tablets containing nifuroxazide during storage. In the study, expired and unexpired coating tablets containing nifuroxazide (n = 10 each) were analyzed. In addition, four unexpired tablets were stored at 40°C over 3 months (stressed tablets). Reflectance was determined with seven wavelength bands from 335 nm to 2500 nm using an SOC-410 Directional Hemispherical Reflectometer (Surface Optics Corporation, San Diego, CA, USA). A Specim IQ hyperspectral camera (Spectral Imaging Ltd., Oulu, Finland) was used with a wavelength range of 400–1030 nm. Tablets were also scanned using X-ray microtomography (Phoenix vǀtomeǀx, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany). The results indicated that total reflectance was lower in expired tablets than in unexpired tablets in all spectral bands, except for 700–1100 nm and 1700–2500 nm. In turn, the stressed tablets showed higher THR values than expired tablets in all spectral bands, except for 1000–1700 nm. In addition, hyperspectral analysis of the homogeneity of the tablets, as well as X-ray microtomographic analysis of tablet density and coating thickness, indicated that these parameters differed significantly between the analyzed tablets.
Collapse
|