1
|
Guo C, Sun Y, Chen H, Yin G, Song Y. Identification and assessment of Pichia kudriavzevii YS711 isolated from "Jiangshui" with the capacity for uric acid metabolism. Microbiol Res 2025; 298:128200. [PMID: 40347632 DOI: 10.1016/j.micres.2025.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Hyperuricemia, a prevalent metabolic disorder, necessitates novel therapeutic strategies. This study reports the isolation and characterization of Pichia kudriavzevii YS711, a novel strain isolated from the traditional Chinese fermented food "Jiangshui", exhibiting exceptional uric acid (UA) degradation capabilities. In vitro studies demonstrated that YS711 degraded 31.2 % of UA within 24 h, converting it to ammonium. This end-product is significantly safer than urea, mitigating potential adverse effects associated with urea accumulation. Whole-genome sequencing revealed a complete UA metabolic pathway in YS711, the first such pathway elucidated in the phylum Ascomycota. This pathway encompasses key enzymes, including urate oxidase, allantoinase, allantoicase, ureidoglycolate lyase, and urea amidolyase. The identification of these genes provides a valuable resource for future metabolic engineering efforts to enhance UA degradation. This research underscores the potential of P. kudriavzevii YS711 as a promising probiotic-based therapeutic agent for hyperuricemia prevention and treatment, offering a safer and potentially more effective alternative to existing approaches.
Collapse
Affiliation(s)
- Chen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Hongjun Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China; Chongqing Guoke Medical Technology Development Co., Ltd., Chongqing 400799, China
| | - Guangyao Yin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yizhi Song
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
2
|
da Silva Costa N, de Araujo JR, da Silva Melo MF, da Costa Mota J, Almeida PP, Coutinho-Wolino KS, Da Cruz BO, Brito ML, de Souza Carvalho T, Barreto-Reis E, de Luca BG, Mafra D, Magliano D'AC, de Souza Abboud R, Rocha RS, da Cruz AG, de Toledo Guimarães J, Stockler-Pinto MB. Effects of Probiotic-Enriched Minas Cheese (Lactobacillus acidophilus La-05) on Cardiovascular Parameters in 5/6 Nephrectomized Rats. Probiotics Antimicrob Proteins 2025; 17:873-887. [PMID: 37917394 DOI: 10.1007/s12602-023-10173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Dairy foods have become an interest in chronic kidney disease (CKD) due to their nutritional profile, which makes them a good substrate for probiotics incorporation. This study evaluated the effect of probiotic-enriched Minas cheese with Lactobacillus acidophilus La-05 in an experimental rat model for CKD on cardiac, inflammatory, and oxidative stress parameters. Male Wistar rats were divided into 4 groups (n = 7/group): 5/6 nephrectomy + conventional Minas cheese (NxC); 5/6 nephrectomy + probiotic Minas cheese (NxPC); Sham + conventional Minas cheese (ShamC); Sham + probiotic Minas cheese (ShamPC). Offering 20 g/day of Minas cheese with Lact. acidophilus La-05 (108-109 log CFU/g) for 6 weeks. The cardiomyocyte diameter was determined. Superoxide dismutase (SOD) activity in plasma, heart, kidney, and colon tissue was performed. At the end of supplementation, no significant changes in lipid profile and renal parameters were found. The NxPC group showed a decrease in cardiomyocyte diameter compared to the NxC group (16.99 ± 0.85 vs. 19.05 ± 0.56 μm, p = 0.0162); also they showed reduced plasmatic SOD activity (502.8 ± 49.12 vs. 599.4 ± 94.69 U/mL, p < 0.0001). In summary, probiotic-enriched Minas cheese (Lact. acidophilus La-05) consumption suggests a promisor cardioprotective effect and was able to downregulate SOD activity in a rat model of CKD.
Collapse
Affiliation(s)
- Nathalia da Silva Costa
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Joana Ramos de Araujo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | | | | | | | - Beatriz Oliveira Da Cruz
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Thaís de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Emanuelle Barreto-Reis
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Gouvêa de Luca
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - D 'Angelo Carlo Magliano
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Renato de Souza Abboud
- Morphology Department, Laboratory of Cellular and Extracellular Biomorphology Biomedic Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ramon Silva Rocha
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Adriano Gomes da Cruz
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Jonas de Toledo Guimarães
- Food Technology Department, Veterinary College, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Nutrition Faculty, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
3
|
Cao X, Zhang Y, Xu Q, Yan H. Genome Analysis and In Vitro Assay of Probiotic Properties of Bacillus paranthracis YC03 with Urate-Lowering Potential. Microorganisms 2025; 13:798. [PMID: 40284634 PMCID: PMC12029181 DOI: 10.3390/microorganisms13040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hyperuricemia is a metabolic disorder owing to the underexcretion and/or overproduction of uric acid (UA). Recent studies have shown that probiotics have many potential applications as functional foods to ameliorate hyperuricemia. In this study, we have successfully isolated Bacillus paranthracis YC03 with urate-lowering potential from Jiangshui. The in vitro results indicated that YC03 exhibited strong biodegradation capacities toward UA and its precursors (inosine and guanosine). Meanwhile, the cell-free extracts of YC03 were also found to catalyze and remove inosine and guanosine. To further explore the application potential of this strain in developing functional foods, we evaluated its probiotic properties through in vitro assays and whole genome analysis. B. paranthracis YC03 has excellent abilities, with tolerance to acid and bile salt and good adhesion. In addition, hemolytic assays, along with antibiotic resistance and biogenic amine production tests, have also preliminarily confirmed the safety of using YC03 in food. We have also annotated the key enzyme genes, including auaG, hpt, rih, punA and deoD, which are involved in the biodegradation of UA and nucleosides. The results of nucleoside biodegradation product detection will be valuable for exploring the metabolic pathway for biodegrading nucleosides with YC03. These findings provide meaningful insights for the development of functional foods to improve hyperuricemia using B. paranthracis YC03.
Collapse
Affiliation(s)
| | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.C.)
| |
Collapse
|
4
|
Cheng M, Jin M, Yang S, Zhao L, Yu D, Lin Z, Li P, Huang C, Liu J, Wang J, Xue J, Ma H, Hu J, Yang K, Zhang T, Liu H. Effect of radiotherapy exposure on fruquintinib plus sintilimab treatment in refractory microsatellite stable metastatic colorectal cancer: a prospective observation study. J Immunother Cancer 2025; 13:e009415. [PMID: 39755582 PMCID: PMC11749590 DOI: 10.1136/jitc-2024-009415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear. This study aimed to investigate the association between RT exposure and clinical responses to fruquintinib (a highly selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor) plus sintilimab (an anti-programmed death 1 antibody; F&S) in previously treated patients with MSS-mCRC and to explore predictive biomarkers. METHODS In this prospective observational study, patients with mCRC receiving F&S as third-line or subsequent treatment were enrolled. Eligible patients were divided into the RT cohort (RTC) and the non-RT cohort (NRTC) according to their RT history. The primary endpoint was the objective response rate (ORR). Secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and safety. Pretreatment fecal and serum samples were collected for microbiome analysis, metabolome analysis, and immune signatures to identify biomarkers for treatment. RESULTS A total of 55 patients were included, of which 25 were in the RTC and 30 in the NRTC. Better ORR (28.0% vs 6.7%, p=0.048), DCR (80.0% vs 36.7%, p=0.002), median PFS (6.2 vs 2.7 months, p<0.001), and median OS (14.8 vs 5.9 months, p=0.019) were noted in patients with RTC than those with NRTC. The enrichment of Lactobacillus, Bifidobacterium, and PC(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)) in RTC significantly predicted better DCR and PFS, whereas guanosine and interleukin-10 predominated in patients with NRTC were negatively correlated with PFS and OS. CONCLUSIONS Patients with RT exposure benefited significantly from F&S in the third-line or subsequent treatment for MSS-mCRC. Gut microbiota, metabolites, and cytokines may help predict F&S outcomes for mCRC, which may be helpful in treatment decision-making. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier: NCT05635149.
Collapse
Affiliation(s)
- Mingxia Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pindong Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuying Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianli Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
5
|
Gao Y, Li C, Li J, Duan M, Li X, Zhao L, Wu Y, Gu S. Weizmannia coagulans BC99 alleviates hyperuricemia and oxidative stress via DAF-16/SKN-1 activation in Caenorhabditis elegan. Front Microbiol 2024; 15:1498540. [PMID: 39723130 PMCID: PMC11668962 DOI: 10.3389/fmicb.2024.1498540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Hyperuricemia (HUA) refers to the presence of excess uric acid (UA) in the blood, which increases the risk of chronic kidney disease and gout. Probiotics have the potential to alleviate HUA. Methods This study established a hyperuricemia model using Caenorhabditis elegans (C. elegans), and studied the anti-hyperuricemia activity and potential mechanisms of Weizmannella coagulans BC99 (W. coagulans) at different concentrations (107 CFU/mL BC99, 108 CFU/mL BC99). Subsequently, we utilized UPLC-Q-TOF/MS to investigate the impact of BC99 on endogenous metabolites in C. elegans and identified pathways and biomarkers through differential metabolomics analysis. Results The results of this study showed that BC99 treatment significantly reduced the expression of P151.2 and T22F3.3 (p < 0.05), reduced the levels of UA and xanthine oxidase (XOD) in nematodes (p < 0.05), while extending their lifespan and movement ability (p < 0.05). Mechanistically, BC99 activates the transcription factors DAF-16 and SKN-1, thereby inducing the expression of stress response genes, enhancing the activity of antioxidant enzymes and tolerance to heat stress in the body, and reducing the production of ROS (p < 0.001). This effect was most significant in the H-BC99 group. Furthermore, non-targeted metabolomics indicated that BC99 predominantly regulated pathways associated with amino acid metabolism (Carnosine), glycerophospholipid metabolism, and purine metabolism. Discussion These results underscore BC99 as an effective and economical adjunct therapeutic agent for hyperuricemia, providing a scientific basis for further development and application.
Collapse
Affiliation(s)
- Yinyin Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Junfei Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
6
|
Singh AK, Durairajan SSK, Iyaswamy A, Williams LL. Elucidating the role of gut microbiota dysbiosis in hyperuricemia and gout: Insights and therapeutic strategies. World J Gastroenterol 2024; 30:4404-4410. [PMID: 39494101 PMCID: PMC11525862 DOI: 10.3748/wjg.v30.i40.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/16/2024] Open
Abstract
Hyperuricemia (HUA) is a condition associated with a high concentration of uric acid (UA) in the bloodstream and can cause gout and chronic kidney disease. The gut microbiota of patients with gout and HUA is significantly altered compared to that of healthy people. This article focused on the complex interconnection between alterations in the gut microbiota and the development of this disorder. Some studies have suggested that changes in the composition, diversity, and activity of microbes play a key role in establishing and progressing HUA and gout pathogenesis. Therefore, we discussed how the gut microbiota contributes to HUA through purine metabolism, UA excretion, and intestinal inflammatory responses. We examined specific changes in the composition of the gut microbiota associated with gout and HUA, highlighting key bacterial taxa and the metabolic pathways involved. Additionally, we discussed the effect of conventional gout treatments on the gut microbiota composition, along with emerging therapeutic approaches that target the gut microbiome, such as the use of probiotics and prebiotics. We also provided insights into a study regarding the gut microbiota as a possible novel therapeutic intervention for gout treatment and dysbiosis-related diagnosis.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, TN 610005, India
| | - Siva Sundara Kumar Durairajan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, TN 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Leonard L Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| |
Collapse
|
7
|
Shen Y, Miao C, Ma M, Zhen Z, He J, Pei X, Zhang Y, Man C, Zhao Q, Jiang Y. Mechanistic insights into the changes of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei fortified milk powder during storage. Food Chem 2024; 452:139501. [PMID: 38728887 DOI: 10.1016/j.foodchem.2024.139501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zizhu Zhen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
8
|
Zhu W, Bi S, Fang Z, Iddrisu L, Deng Q, Sun L, Gooneratne R. Priestia megaterium ASC-1 Isolated from Pickled Cabbage Ameliorates Hyperuricemia by Degrading Uric Acid in Rats. Microorganisms 2024; 12:832. [PMID: 38674776 PMCID: PMC11052324 DOI: 10.3390/microorganisms12040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Pickled cabbage, a traditional fermented food rich in functional microorganisms, can effectively control hyperuricemia and gout. In this study, a Priestia megaterium ASC-1 strain with strong uric acid (UA) degradation ability was isolated from pickled cabbage. After oral administration for 15 days, ASC-1 was stably colonized in the rats in this study. ASC-1 significantly reduced UA levels (67.24%) in hyperuricemic rats. Additionally, ASC-1 alleviated hyperuricemia-related inflammatory response, oxidative stress, and blood urea nitrogen. Intestinal microbial diversity results showed that ASC-1 restored intestinal injury and gut flora dysbiosis caused by hyperuricemia. These findings suggest that P. megaterium ASC-1 may be used as a therapeutic adjuvant for the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.Z.); (S.B.); (L.I.); (Q.D.); (L.S.)
| | - Siyuan Bi
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.Z.); (S.B.); (L.I.); (Q.D.); (L.S.)
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.Z.); (S.B.); (L.I.); (Q.D.); (L.S.)
| | - Lukman Iddrisu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.Z.); (S.B.); (L.I.); (Q.D.); (L.S.)
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.Z.); (S.B.); (L.I.); (Q.D.); (L.S.)
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.Z.); (S.B.); (L.I.); (Q.D.); (L.S.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand;
| |
Collapse
|
9
|
Hussain A, Rui B, Ullah H, Dai P, Ahmad K, Yuan J, Liu Y, Li M. Limosilactobacillus reuteri HCS02-001 Attenuates Hyperuricemia through Gut Microbiota-Dependent Regulation of Uric Acid Biosynthesis and Excretion. Microorganisms 2024; 12:637. [PMID: 38674582 PMCID: PMC11052267 DOI: 10.3390/microorganisms12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Hyperuricemia is a prevalent metabolic disorder that arises from abnormal purine metabolism and reduced excretion of uric acid (UA). The gut microbiota plays a significant role in the biosynthesis and excretion of UA. Probiotics capable of purine degradation possess the potential to prevent hyperuricemia. Our study aimed to screen probiotics in areas with abundant dairy products and longevity populations in China, which could attenuate the level of UA and explore the underlying mechanism. In this study, twenty-three lactic acid bacteria isolated from healthy Chinese infant feces and traditional fermented foods such as hurood and lump milk were evaluated for the ability to tolerance acid, bile, artificial gastric juice, and artificial intestinal juice to determine the potential of the candidate strains as probiotics. Eight strains were identified as possessing superior tolerance to simulated intestinal conditions and were further analyzed by high-performance liquid chromatography (HPLC), revealing that Limosilactobacillus reuteri HCS02-001 (Lact-1) and Lacticaseibacillus paracasei HCS17-040 (Lact-2) possess the most potent ability to degrade purine nucleosides. The effect of Lact-1 and Lact-2 on hyperuricemia was evaluated by intervening with them in the potassium oxonate and adenine-induced hyperuricemia Balb/c mice model in vivo. Our results showed that the level of serum UA in hyperuricemic mice can be efficiently reduced via the oral administration of Lact-1 (p < 0.05). It significantly inhibited the levels of liver inflammatory cytokines and hepatic xanthine oxidase through a TLR4/MyD88/NF-κB pathway across the gut-liver axis. Furthermore, UA transporters ABCG2 and SLC2A9 were substantially upregulated by the intervention of this probiotic. Fecal ATP levels were significantly induced, while fecal xanthine dehydrogenase and allantoinase levels were increased following probiotics. RNA sequencing of HT-29 cells line treated with Lact-1 and its metabolites demonstrated significant regulation of pathways related to hyperuricemia. In summary, these findings demonstrate that Limosilactobacillus reuteri HCS02-001 possesses a capacity to ameliorate hyperuricemia by inhibiting UA biosynthesis via enhancing gastrointestinal barrier functions and promoting UA removal through the upregulation of urate transporters, thereby providing a basis for the probiotic formulation by targeting the gut microbiota.
Collapse
Affiliation(s)
- Akbar Hussain
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Binqi Rui
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Hayan Ullah
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Panpan Dai
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Kabir Ahmad
- Department of Physiology, Dalian Medical University, Dalian 116041, China;
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| |
Collapse
|
10
|
Chen S, Mei H, Xu L, Zhan L, Yang Y, Zhao D, Bao G, Li X, Cao Z. Impact of fermented feed of soybean hulls and rapeseed cake on immunity, antioxidant capacity, and gut microbiota in Chahua chicken. Poult Sci 2024; 103:103451. [PMID: 38301497 PMCID: PMC10847688 DOI: 10.1016/j.psj.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024] Open
Abstract
The present study investigated the effects of replacing part of the basal diet with 2-stage fermented feed (FF) (soybean hulls:rapeseed cake (2:1, m/m)) on the growth performance, immunity, antioxidant capacity, and intestinal health of Chahua chicken. A total of 160 Chahua chickens were randomly divided into 4 groups to receive a control diet or diet with 5%, 10%, or 15% of the basal diet replaced by FF, respectively for 56 d. The results showed that FF significantly improved the average daily gain (ADG) and average daily feed intake (ADFI) of Chahua chickens (P < 0.05). Furthermore, the serum immunoglobulin (Ig) A, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) in Chahua chicken receiving the diet added with 15% FF significantly increased (P < 0.05). Chahua chicken in both the 10% and 15% groups showed increased serum IgG and IgM and decreased malondialdehyde. Serum interleukin-2 and interferon-gamma significantly increased in all FF groups. Compared with the CON group, higher ileal villus height (VH) was found in the 10% FF group. Treatment with FF significantly increased the ileal villus height/crypt depth (VH/CD) ratio, jejunal VH, and jejunal VH/CD ratio while reducing ileal and jejunal CD. The modified gut microbiota composition was observed in the Chahua chicken fed a diet containing FF, in particular, with the increased abundance of Faecalibacterium and Lactobacillus. The abundance of Lactobacillus significantly increased in the 10% and 15% FF groups (all P < 0.05). Correlation analysis revealed a positive correlation between Lactobacillus and VH (R = 0.38, P = 0.10, Figure 3B), AH/CD ratio (R = 0.63, P = 0.003), and a negative correlation with CD (R = -0.72, P = 0.001). These results indicate that FF improves immunity, antioxidant capacity, and intestinal health and consequently enhances growth performance in Chahua chicken.
Collapse
Affiliation(s)
- Shiyu Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Huiyou Mei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Heilongtan, Kunming 650201, People's Republic of China
| | - Limei Zhan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Yuhao Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Dexuan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Guoying Bao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Xiaoye Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Heilongtan, Kunming 650201, People's Republic of China.
| |
Collapse
|
11
|
Kim D, Moon JS, Kim JE, Jang YJ, Choi HS, Oh I. Evaluation of purine-nucleoside degrading ability and in vivo uric acid lowering of Streptococcus thermophilus IDCC 2201, a novel antiuricemia strain. PLoS One 2024; 19:e0293378. [PMID: 38386624 PMCID: PMC10883578 DOI: 10.1371/journal.pone.0293378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
This study evaluated 15 lactic acid bacteria with a focus on their ability to degrade inosine and hypo-xanthine-which are the intermediates in purine metabolism-for the management of hyperuricemia and gout. After a preliminary screening based on HPLC, Lactiplantibacillus plantarum CR1 and Lactiplantibacillus pentosus GZ1 were found to have the highest nucleoside degrading rates, and they were therefore selected for further characterization. S. thermophilus IDCC 2201, which possessed the hpt gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and exhibited purine degradation, was also selected for further characterization. These three selected strains were examined in terms of their probiotic effect on lowering serum uric acid in a Sprague-Dawley (SD) rat model of potassium oxonate (PO)-induced hyperuricemia. Among these three strains, the level of serum uric acid was most reduced by S. thermophilus IDCC 2201 (p < 0.05). Further, analysis of the microbiome showed that administration of S. thermophlilus IDCC 2201 led to a significant difference in gut microbiota composition compared to that in the group administered with PO-induced hyperuricemia. Moreover, intestinal short-chain fatty acids (SCFAs) were found to be significantly increased. Altogether, the results of this work indicate that S. thermophilus IDCC 2201 lowers uric acid levels by degrading purine-nucleosides and also restores intestinal flora and SCFAs, ultimately suggesting that S. thermophilus IDCC 2201 is a promising candidate for use as an adjuvant treatment in patients with hyperuricemia.
Collapse
Affiliation(s)
- Dayoung Kim
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, Korea
| | - Jin Seok Moon
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, Korea
| | - Ji Eun Kim
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, Korea
| | - Ye-Ji Jang
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, Korea
| | - Han Sol Choi
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, Korea
| | - Ikhoon Oh
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, Korea
| |
Collapse
|
12
|
Ferdiansyah MK, Kang HS, Kim GY, Park B, Kularathna RMRE, Abraha HB, Kim KP. Purine nucleosidase (PNase) activity, probiotics potential, and food applicability of a newly-isolated Levilactobacillus brevis LAB42. FOOD SCI TECHNOL INT 2023:10820132231219859. [PMID: 38115801 DOI: 10.1177/10820132231219859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hyperuricemia, a condition characterized by elevated levels of uric acid in the blood, is known as a risk factor for gout disease. In this study, we isolated a total of 72 MRS-grown colonies and evaluated their purine nucleosidase (PNase) activity. Among the isolated bacteria, Levilactobacillus (L.) brevis LAB42 displayed the highest PNase activity. Our findings also indicate that PNase activity can vary among lactic acid bacterial strains and during different growth phases. Based on the kinetics study, LAB42 consistently exhibits the highest PNase activity. Due to its ability to attach to Caco-2 cells and its resistance to acidic environments and bile exposure, L. brevis LAB42 was chosen for further studies and showed that with the right combination of additives, it has the potential to be an appropriate starter for milk fermentation.
Collapse
Affiliation(s)
- Mokhammad Khoiron Ferdiansyah
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Hai-Seong Kang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea
| | - Ga Yeong Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Beomseok Park
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Ramesha M R E Kularathna
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Haftom Baraki Abraha
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
13
|
Sen CK. Human Wound and Its Burden: Updated 2022 Compendium of Estimates. Adv Wound Care (New Rochelle) 2023; 12:657-670. [PMID: 37756368 PMCID: PMC10615092 DOI: 10.1089/wound.2023.0150] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023] Open
Abstract
Significance: Chronic wounds affect 10.5 million (up 2.3 million from the 2014 update) of U.S. Medicare beneficiaries. Chronic wounds impact the quality of life of nearly 2.5% of the total population of the United States. This fraction is larger in the elderly. These wounds can lead to a range of complications and health care costs. Given the aging population, the continued threat of diabetes and obesity worldwide, and the persistent problem of infection, it is expected that chronic wounds will continue to be a substantial clinical, social, and economic challenge. Disparities in the prevalence and management of chronic wounds exist, with underserved communities and marginalized populations often facing greater challenges in accessing quality wound care. These disparities exacerbate the public health burden. Recent Advances: U.S. Centers for Medicare and Medicaid Services had proposed revision of its local coverage determination limiting the use of skin substitute grafts/cellular and/or tissue-based products for the treatment of diabetic foot ulcers and venous leg ulcers in the U.S. Medicare population. In response to the comment phase, this proposal has been put on hold. The U.S. Food and Drug Administration (FDA) has renewed its focus on addressing nonhealing chronic wounds and has outlined efforts to address identified barriers to product development for nonhealing chronic wounds. The new approach places emphasis on engaging key wound healing stakeholders, including academia, professional associations, patient groups, reimbursement organizations, and industry. Finally, recent advances demonstrating that wounds closed by current FDA definition of wound closure may remain functionally open because of deficiencies in restoration of barrier function warrant revisiting the wound closure endpoint. Such "closed" wounds that are functionally open, also known as invisible wounds, are likely to be associated with high wound recurrence. Future Directions: Addressing the public health problem of chronic wounds will require a multifaceted approach that includes prevention, improved wound care management, and addressing the underlying risk factors.
Collapse
Affiliation(s)
- Chandan K. Sen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Medical Center Health System Wound Care Service, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Liu Q, Bian Y, Mu S, Chen M, Liu S, Yang G, Huang Y, Hou X, Fang Y. Genomic and phenotypic-based safety assessment and probiotic properties of Streptococcus thermophilus FUA329, a urolithin A-producing bacterium of human milk origin. Genomics 2023; 115:110724. [PMID: 37820823 DOI: 10.1016/j.ygeno.2023.110724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.
Collapse
Affiliation(s)
- Qitong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yingying Bian
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shuting Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Meng Chen
- Lianyungang Inspection and Testing Center for Food and Drug Control, Lianyungang, Jiangsu 222005, PR China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yichen Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
15
|
Luo D, Yang BY, Qin K, Shi CY, Wei NS, Li H, Qin YX, Liu G, Qin XL, Chen SY, Guo XJ, Gan L, Xu RL, Dong BQ, Li J. Untargeted Metabolomics of Feces Reveals Diagnostic and Prognostic Biomarkers for Active Tuberculosis and Latent Tuberculosis Infection: Potential Application for Precise and Non-Invasive Identification. Infect Drug Resist 2023; 16:6121-6138. [PMID: 37719654 PMCID: PMC10505020 DOI: 10.2147/idr.s422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Distinguishing latent tuberculosis infection (LTBI) from active tuberculosis (ATB) is important to control the prevalence of tuberculosis; however, there is currently no effective method. The aim of this study was to discover specific metabolites through fecal untargeted metabolomics to discriminate ATB, individuals with LTBI, and healthy controls (HC) and to probe the metabolic perturbation associated with the progression of tuberculosis. Patients and Methods Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to comprehensively detect compounds in fecal samples from HC, LTBI, and ATB patients. Differential metabolites between the two groups were screened, and their underlying biological functions were explored. Candidate metabolites were selected and enrolled in LASSO regression analysis to construct diagnostic signatures for discriminating between HC, LTBI, and ATB. A receiver operating characteristic (ROC) curve was applied to evaluate diagnostic value. A nomogram was constructed to predict the risk of progression of LTBI. Results A total of 35 metabolites were found to exist differentially in HC, LTBI, and ATB, and eight biomarkers were selected. Three diagnostic signatures based on the eight biomarkers were constructed to distinguish between HC, LTBI, and ATB, demonstrating excellent discrimination performance in ROC analysis. A nomogram was successfully constructed to evaluate the risk of progression of LTBI to ATB. Moreover, 3,4-dimethylbenzoic acid has been shown to distinguish ATB patients with different responses to etiological tests. Conclusion This study constructed diagnostic signatures based on fecal metabolic biomarkers that effectively discriminated HC, LTBI, and ATB, and established a predictive model to evaluate the risk of progression of LTBI to ATB. The results provide scientific evidence for establishing an accurate, sensitive, and noninvasive differential diagnosis scheme for tuberculosis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Bo-Yi Yang
- The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Kai Qin
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Chong-Yu Shi
- The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Nian-Sa Wei
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yi-Xiang Qin
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xiao-Ling Qin
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Shi-Yi Chen
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xiao-Jing Guo
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Ruo-Lan Xu
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Bai-Qing Dong
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jing Li
- Deparment of Physiology, School of Basic Medical Sciences of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
16
|
Cao X, Cai J, Zhang Y, Liu C, Song M, Xu Q, Liu Y, Yan H. Biodegradation of Uric Acid by Bacillus paramycoides-YC02. Microorganisms 2023; 11:1989. [PMID: 37630550 PMCID: PMC10460076 DOI: 10.3390/microorganisms11081989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
High serum uric acid levels, known as hyperuricemia (HUA), are associated with an increased risk of developing gout, chronic kidney disease, cardiovascular disease, diabetes, and other metabolic syndromes. In this study, a promising bacterial strain capable of biodegrading uric acid (UA) was successfully isolated from Baijiu cellar mud using UA as the sole carbon and energy source. The bacterial strain was identified as Bacillus paramycoides-YC02 through 16S rDNA sequence analysis. Under optimal culture conditions at an initial pH of 7.0 and 38 °C, YC02 completely biodegraded an initial UA concentration of 500 mg/L within 48 h. Furthermore, cell-free extracts of YC02 were found to catalyze and remove UA. These results demonstrate the strong biodegradation ability of YC02 toward UA. To gain further insight into the mechanisms underlying UA biodegradation by YC02, the draft genome of YC02 was sequenced using Illumina HiSeq. Subsequent analysis revealed the presence of gene1779 and gene2008, which encode for riboflavin kinase, flavin mononucleotide adenylyl transferase, and flavin adenine dinucleotide (FAD)-dependent urate hydroxylase. This annotation was based on GO or the KEEG database. These enzymes play a crucial role in the metabolism pathway, converting vitamin B2 to FAD and subsequently converting UA to 5-hydroxyisourate (HIU) with the assistance of FAD. Notably, HIU undergoes a slow non-enzymatic breakdown into 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and (S)-allantoin. The findings of this study provide valuable insights into the metabolism pathway of UA biodegradation by B. paramycoides-YC02 and offer a potential avenue for the development of bacterioactive drugs against HUA and gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.C.); (J.C.)
| |
Collapse
|
17
|
Li M, Wu X, Guo Z, Gao R, Ni Z, Cui H, Zong M, Van Bockstaele F, Lou W. Lactiplantibacillus plantarum enables blood urate control in mice through degradation of nucleosides in gastrointestinal tract. MICROBIOME 2023; 11:153. [PMID: 37468996 PMCID: PMC10354915 DOI: 10.1186/s40168-023-01605-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Lactobacillus species in gut microbiota shows great promise in alleviation of metabolic diseases. However, little is known about the molecular mechanism of how Lactobacillus interacts with metabolites in circulation. Here, using high nucleoside intake to induce hyperuricemia in mice, we investigated the improvement in systemic urate metabolism by oral administration of L. plantarum via different host pathways. RESULTS Gene expression analysis demonstrated that L. plantarum inhibited the activity of xanthine oxidase and purine nucleoside phosphorylase in liver to suppress urate synthesis. The gut microbiota composition did not dramatically change by oral administration of L. plantarum over 14 days, indicated by no significant difference in α and β diversities. However, multi-omic network analysis revealed that increase of L. plantarum and decrease of L. johnsonii contributed to a decrease in serum urate levels. Besides, genomic analysis and recombinant protein expression showed that three ribonucleoside hydrolases, RihA-C, in L. plantarum rapidly and cooperatively catalyzed the hydrolysis of nucleosides into nucleobases. Furthermore, the absorption of nucleobase by intestinal epithelial cells was less than that of nucleoside, which resulted in a reduction of urate generation, evidenced by the phenomenon that mice fed with nucleobase diet generated less serum urate than those fed with nucleoside diet over a period of 9-day gavage. CONCLUSION Collectively, our work provides substantial evidence identifying the specific role of L. plantarum in improvement of urate circulation. We highlight the importance of the enzymes RihA-C existing in L. plantarum for the urate metabolism in hyperuricemia mice induced by a high-nucleoside diet. Although the direct connection between nucleobase transport and host urate levels has not been identified, the lack of nucleobase transporter in intestinal epithelial cells might be important to decrease its absorption and metabolization for urate production, leading to the decrease of serum urate in host. These findings provide important insights into urate metabolism regulation. Video Abstract.
Collapse
Affiliation(s)
- Mengfan Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zewang Guo
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zifu Ni
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hualing Cui
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Minhua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Filip Van Bockstaele
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
18
|
Ameliorative effect of Lacticaseibacillus rhamnosus Fmb14 from Chinese yogurt on hyperuricemia. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Wang Z, Song L, Li X, Xiao Y, Huang Y, Zhang Y, Li J, Li M, Ren Z. Lactiplantibacillus pentosus P2020 protects the hyperuricemia and renal inflammation in mice. Front Nutr 2023; 10:1094483. [PMID: 36891165 PMCID: PMC9987516 DOI: 10.3389/fnut.2023.1094483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Hyperuricemia (HUA) is a common metabolic disease, and its prevalence has been increasing worldwide. Pharmaceutical drugs have been used for controlling HUA but they all have certain side effects, which thus calls for discovering alternative options including using treatment of probiotics to prevent the development of HUA. Methods We established HUA mice model induced by potassium oxonate and adenine and performed in vivo experiments to verify the ability to lower serum uric acid of Lactiplantibacillus pentosus P2020 (LPP), a probiotics stain extracted from Chinese pickle. We also tried to discussed the underlying mechanisms. Results Oral administration with LPP significantly decreased serum uric acid and reduced renal inflammatory response by downregulating multiple inflammation pathways including NK-kB, MAPK, and TNFα. We also found that LPP administration significantly promoted uric acid excretion by regulating expression of transporters in the kidney and ileum. In addition, LPP intake improved intestinal barrier function and modulated the composition of gut microbiota. Discussion These results suggest that probiotics LPP may have a promising potential to protect against development of HUA and HUA-related renal damage, and its working mechanisms involve regulation of inflammation pathways and expression of transporters in the kidney and ileum.
Collapse
Affiliation(s)
- Zhihuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Liqiong Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchun Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanming Huang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jintong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingding Li
- Maiyata Institute for Beneficial Bacteria, Shaoxing, Zhejiang, China
| | - Zhihong Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Rodríguez JM, Garranzo M, Segura J, Orgaz B, Arroyo R, Alba C, Beltrán D, Fernández L. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Front Microbiol 2023; 14:1111652. [PMID: 36865781 PMCID: PMC9971985 DOI: 10.3389/fmicb.2023.1111652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Hyperuricemia and gout are receiving an increasing scientific and medical attention because of their relatively high prevalence and their association with relevant co-morbidities. Recently, it has been suggested that gout patients have an altered gut microbiota. The first objective of this study was to investigate the potential of some Ligilactobacillus salivarius strains to metabolize purine-related metabolites. The second objective was to evaluate the effect of administering a selected potential probiotic strain in individuals with a history of hyperuricemia. Methods Inosine, guanosine, hypoxanthine, guanine, xanthine, and uric acid were identified and quantified by high-performance liquid chromatography analysis. The uptake and biotransformation of these compounds by a selection of L. salivarius strains were assessed using bacterial whole cells and cell-free extracts, respectively. The efficacy of L. salivarius CECT 30632 to prevent gout was assessed in a pilot randomized controlled clinical trial involving 30 patients with hyperuricemia and a history of recurrent gout episodes. Half of the patients consumed L. salivarius CECT 30632 (9 log10 CFU/day; probiotic group; n = 15) for 6 months while the remaining patients consumed allopurinol (100-300 mg/daily; control group; n = 15) for the same period. The clinical evolution and medical treatment received by the participants were followed, as well as the changes in several blood biochemical parameters. Results L. salivarius CECT 30632 was the most efficient strain for inosine (100%), guanosine (100%) and uric acid (50%) conversion and, therefore, it was selected for the pilot clinical trial. In comparison with the control group, administration of L. salivarius CECT 30632 resulted in a significant reduction in the number of gout episodes and in the use of gout-related drugs as well as an improvement in some blood parameters related to oxidative stress, liver damage or metabolic syndrome. Conclusion Regular administration of L. salivarius CECT 30632 reduced serum urate levels, the number of gout episodes and the pharmacological therapy required to control both hyperuricemia and gout episodes in individuals with a history of hyperuricemia and suffering from repeated episodes of gout.
Collapse
Affiliation(s)
- Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain,Juan M. Rodríguez, ✉
| | - Marco Garranzo
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - José Segura
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Belén Orgaz
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - David Beltrán
- Centro de Diagnóstico Médico, Ayuntamiento de Madrid, Madrid, Spain
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain,*Correspondence: Leónides Fernández, ✉
| |
Collapse
|
21
|
Sen A, Nishimura T, Yoshimoto S, Yoshida K, Gotoh A, Katoh T, Yoneda Y, Hashimoto T, Xiao JZ, Katayama T, Odamaki T. Comprehensive analysis of metabolites produced by co-cultivation of Bifidobacterium breve MCC1274 with human iPS-derived intestinal epithelial cells. Front Microbiol 2023; 14:1155438. [PMID: 37125172 PMCID: PMC10133457 DOI: 10.3389/fmicb.2023.1155438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo.
Collapse
Affiliation(s)
- Akira Sen
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
- *Correspondence: Akira Sen,
| | - Tatsuki Nishimura
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Shin Yoshimoto
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Aina Gotoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuko Yoneda
- Technology Research Laboratory, Shimadzu Corp., Kyoto, Japan
| | | | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| |
Collapse
|
22
|
Liu J, Sun X, Yue Z, Ye J, Sun L, Chai X, Dan W, Lin S, Zhao L. The impact of different fermenting microbes on residual purine content in fermented lamb jerky following in vitro digestion. Food Chem 2022; 405:134997. [DOI: 10.1016/j.foodchem.2022.134997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
23
|
Zhu J, Li Y, Chen Z, Gao K, Lin G, Chen S, Li L, Ge H. Screening of lactic acid bacteria strains with urate-lowering effect from fermented dairy products. J Food Sci 2022; 87:5118-5127. [PMID: 36250495 DOI: 10.1111/1750-3841.16351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
Hyperuricemia is a well-known cause of gout and also a risk factor for various comorbidities. Current agents like xanthine oxidase inhibitors prevent hyperuricemia, but usually induce severe side effects. Alternative strategies, such as novel dietary supplementations, are necessary for the management of hyperuricemia. Lactic acid bacteria (LAB) have been used in human diet for a long time with a good safety record. In this study, 345 LAB strains isolated from traditional fermented dairy products were tested for assimilating abilities of guanosine. Two LAB strains, Lacticaseibacillus rhamnosus 1155 (LR1155) and Limosilactobacillus fermentum 2644 (LF2644), showing great capacities of guanosine transformation and degradation were selected. Compared to LR1155, LF2644 showed a better effect with 100.00% transforming rate and 55.10% degrading rate. In an in vivo test, a hyperuricemic rat model was established and the results showed that administration of LR1155 (p < 0.01) or LF2644 (p < 0.01) prevented the rise of serum uric acid with more than 20% decrease when compared with the hyperuricemia rats. In addition, an increased fecal uric acid level was observed in LF2644 or LR1155 treated rats (LR1155-M p < 0.05, others p < 0.01). This study proved that LR1155 and LF2644 can be promising candidates of dietary supplements for prevention or improvement of hyperuricemia. PRACTICAL APPLICATION: The LAB strains tested in this study could be considered as good potential probiotic candidates for dietary supplements because of their urate-lowering effects, which provide a novel antihyperuricemic strategy with advantages of safety and sustainability.
Collapse
Affiliation(s)
- Jun Zhu
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Zuoguo Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| | - Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| | - Guodong Lin
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| | - Li Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| | - Hongjuan Ge
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, P.R. China.,Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
24
|
Lin JX, Xiong T, Peng Z, Xie M, Peng F. Novel lactic acid bacteria with anti-hyperuricemia ability: Screening and in vitro probiotic characteristics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Li Y, Zhu J, Lin G, Gao K, Yu Y, Chen S, Chen L, Chen Z, Li L. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats. Front Nutr 2022; 9:993951. [PMID: 36245501 PMCID: PMC9562091 DOI: 10.3389/fnut.2022.993951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperuricemia is the main cause of gout and involved in the occurrence of multiple diseases, such as hypertension, metabolic disorders and chronic kidney disease. Emerging evidence suggests that lactic acid bacteria (LAB) have shown the beneficial effects on the prevention or treatment of hyperuricemia. In this study, the urate-lowering effect of two LAB strains, Lacticaseibacillus rhamnosus 1155 (LR1155) and Limosilactobacillus fermentum 2644 (LF2644) on hyperuricemic rats were investigated. A hyperuricemic rat model was induced by the intragastric treatment of potassium oxonate, combined with a high purine diet. The oral administration of LR1155, LF2644, or a combination of LR1155 and LF2644 for 4 weeks significantly prevented the rise of the serum uric acid (UA) induced by hyperuricemia. LR1155 and LF2644 significantly elevated the fecal UA levels, increased the UA content and up-regulated gene expression of UA transporter, ATP-binding cassette subfamily G-2 (ABCG2), in colon and jejunum tissues, suggesting the accelerated UA excretion from the intestine. Besides, LR1155 significantly inhibited the activity of xanthine oxidase (XOD) in liver and serum, benefited the reduce of UA production. In addition, LF2644 strengthened the gut barrier functions through an up-regulation of the gene expressions for occluding and mucin2, accompanied with the reduced inflammatory indicators of lipopolysaccharide (LPS) and interleukin-1β (IL-1β) in hyperuricemic rat. Moreover, using 16s rDNA high-throughput sequencing of feces, LR1155 was shown to improve the hyperuricemia induced gut microbial dysbiosis. The genera Roseburia, Butyricicoccus, Prevotella, Oscillibacter, and Bifidobacterium may associate with the effect of LR1155 on microbiota in hyperuricemic rats. Collectively, the results indicated that LR1155 and LF2644 exhibit urate-lowering effects and could be used alone or in combination as a new adjuvant treatment for hyperuricemia.
Collapse
Affiliation(s)
- Yanjun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Jun Zhu
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- *Correspondence: Jun Zhu,
| | - Guodong Lin
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Kan Gao
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Yunxia Yu
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Su Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Lie Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Zuoguo Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Li Li
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
26
|
Sun L, Ni C, Zhao J, Wang G, Chen W. Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia: a review. Crit Rev Food Sci Nutr 2022; 64:2016-2031. [PMID: 36073759 DOI: 10.1080/10408398.2022.2119934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyperuricemia is closely linked with an increased risk of developing hypertension, diabetes, renal failure and other metabolic syndromes. Probiotics, bioactive compounds and dietary patterns are safe cost-efficient ways to control hyperuricemia, whereas comprehensive reviews of their anti-hyperuricemic mechanisms are limited. This review summarizes the roles of probiotics, bioactive compounds and dietary patterns in treating hyperuricemia and critically reviews the possible mechanisms by which these interventions exert their activities. The dietary patterns are closely related to the occurrence of hyperuricemia through the indirect action of gut microbiota or the direct effects of host purine metabolism. The Mediterranean and Dietary Approaches to Stop Hypertension diets help reduce serum uric acid concentrations and thus prevent hyperuricemia. Meanwhile, probiotics alleviate hyperuricemia by ways of absorbing purine, restoring gut microbiota dysbiosis and inhibiting xanthine oxidase (XO) activity. Bioactive compounds such as polyphenols, peptides and alkaloids exert various anti-hyperuricemic effects, by regulating urate transporters, blocking the active sites of XO and inhibiting the toll-like receptor 4/nuclear factor kappa B signaling pathway and NOD-, LRR- and pyrin domain-containing protein 3 signaling pathway. This review will assist people with hyperuricemia to adopt a healthy diet and contribute to the application of natural products with anti-hyperuricemic activity.
Collapse
Affiliation(s)
- Lei Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Caixin Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
27
|
张 瑾, 徐 欣. [Research Progress in the Relationship Between Lactobacillus and Dental Caries]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:929-934. [PMID: 36224699 PMCID: PMC10408808 DOI: 10.12182/20220960103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 06/16/2023]
Abstract
Lactobacillus is the first microorganism found to be closely associated with dental caries. It demonstrates acidogenicity, aciduricity, and the ability to bind with collagen and to synthesize extracellular polysaccharides to promote bacterial adhesion. Some lactobacilli inhibit the growth of cariogenic bacteria by producing antibacterial compounds or metabolites, competing with cariogenic bacteria for adhesion sites or co-aggregation, or regulating the expression of genes related to cariogenic virulence. Therefore, researchers have, in recent years, experimented with applying Lactobacillusas probiotics in the prevention and control of caries. However, the cariogenic mechanism of Lactobacillus is still not fully understood, and the potential effects, presumably beneficial, of specific Lactobacillus on oral and intestinal microecology remain unknown. More research needs to be done to combine both the cariogenic and probiotic properties of Lactobacillus, and to comprehensively evaluate the effects of Lactobacillus on oral and systemic health. We, herein, summarized research progress in the cariogenicity and caries prevention effect of Lactobacillus, focusing on a discussion of the role of Lactobacillus in cariogenesis, the development of dental caries, and clinical prevention and control of dental caries, in order to provide new ideas and references for the prevention and control of dental caries.
Collapse
Affiliation(s)
- 瑾 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 欣 徐
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res 2022; 182:106350. [PMID: 35843568 DOI: 10.1016/j.phrs.2022.106350] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Hyperuricemia is a critical threat to human health, and conventional medical treatment only aims to treat acute gouty arthritis. Purine diet-mediated chronic hyperuricemia and related syndromes are neglected in clinical therapeutics. In this study, the prevention ability of Lacticaseibacillus rhamnosus Fmb14, screened from Chinese yogurt, was evaluated in chronic purine-induced hyperuricemia (CPH) mice. After 12 weeks of Fmb14 administration, serum uric acid (SUA) in CPH mice decreased by 36.8 %, from 179.1 to 113.2 µmol/L, and the mortality rate decreased from 30 % to 10 %. The prevention role of Fmb14 in CPH was further investigated, and the reduction of uric acid by Fmb14 was attributed to the reduction of XOD (xanthine oxidase) in the liver and URAT1 in the kidney, as well the promotion of ABCG2 in the colon. Fmb14 administration Increased ZO-1 and Occludin expression in the colon and decreased fibrosis degree in the kidney indicated that Fmb14 administration had preventive effects through the gut-kidney axis in CPH. In specific, Fmb14 administration upregulated the diversity of gut microbiota, increased short-chain fatty acids (SCFA) by 35 % in colon materials and alleviated the inflammatory response by reducing biomarkers levels of IL-1β, IL-18 and TNF-α at 11.6 %, 21.7 % and 26.5 % in serum, compared to CPH group, respectively. Additionally, 16 S rRNA sequencing showed 31.5 % upregulation of Prevotella, 20.5 % and 21.6 % downregulation of Ruminococcus and Suterella at the genus level, which may be a new gut microbial marker in hyperuricemia. In conclusion, Fmb14 ameliorated CPH through the gut-kidney axis, suggesting a new strategy to prevent hyperuricemia.
Collapse
|
29
|
Potential Probiotic Lacticaseibacillus paracasei MJM60396 Prevents Hyperuricemia in a Multiple Way by Absorbing Purine, Suppressing Xanthine Oxidase and Regulating Urate Excretion in Mice. Microorganisms 2022; 10:microorganisms10050851. [PMID: 35630296 PMCID: PMC9146106 DOI: 10.3390/microorganisms10050851] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperuricemia is a metabolic disorder caused by increased uric acid (UA) synthesis or decreased UA excretion. Changes in eating habits have led to an increase in the consumption of purine-rich foods, which is closely related to hyperuricemia. Therefore, decreased purine absorption, increased UA excretion, and decreased UA synthesis are the main strategies to ameliorate hyperuricemia. This study aimed to screen the lactic acid bacteria (LAB) with purine degrading ability and examine the serum UA-lowering effect in a hyperuricemia mouse model. As a result, Lacticaseibacillus paracasei MJM60396 was selected from 22 LAB isolated from fermented foods for 100% assimilation of inosine and guanosine. MJM60396 showed probiotic characteristics and safety properties. In the animal study, the serum uric acid was significantly reduced to a normal level after oral administration of MJM60396 for 3 weeks. The amount of xanthine oxidase, which catalyzes the formation of uric acid, decreased by 81%, and the transporters for excretion of urate were upregulated. Histopathological analysis showed that the damaged glomerulus, Bowman’s capsule, and tubules of the kidney caused by hyperuricemia was relieved. In addition, the impaired intestinal barrier was recovered and the expression of tight junction proteins, ZO-1 and occludin, was increased. Analysis of the microbiome showed that the relative abundance of Muribaculaceae and Lachnospiraceae bacteria, which were related to the intestinal barrier integrity, was increased in the MJM60396 group. Therefore, these results demonstrated that L. paracasei MJM60396 can prevent hyperuricemia in multiple ways by absorbing purines, decreasing UA synthesis by suppressing xanthine oxidase, and increasing UA excretion by regulating urate transporters.
Collapse
|
30
|
Lee Y, Kim N, Werlinger P, Suh DA, Lee H, Cho JH, Cheng J. Probiotic Characterization of Lactobacillus brevis MJM60390 and In Vivo Assessment of Its Antihyperuricemic Activity. J Med Food 2022; 25:367-380. [PMID: 35438552 DOI: 10.1089/jmf.2021.k.0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Uric acid is the final product of purine metabolism in human. The increase of serum uric acid is tightly related to the incidence of hyperuricemia and gout. Also, it has been reported that the intake of purine-rich foods like meat and seafood is associated with an increased risk of gout. Therefore, the reduction of purine absorption is one of therapeutic approaches to prevent hyperuricemia and gout. Currently, probiotics are being studied for the management of hyperuricemia and gout. In this study, we aimed to investigate the effect of Lactobacillus brevis MJM60390 on hyperuricemia induced by a high-purine diet and potassium oxonate in a mouse model. L. brevis MJM60390 among 24 lactic acid bacteria isolated from fermented foods showed the highest ability to assimilate inosine and guanosine in vitro and typical probiotic characteristics, like the absence of bioamine production, D-lactate production, hemolytic activity, as well as tolerance to simulated orogastrointestinal conditions and adherence to Caco-2 cells. In an in vivo animal study, the uric acid level in serum was significantly reduced to a normal level after oral administration of L. brevis MJM60390 for 2 weeks. The activity of xanthine oxidase catalyzing the formation of uric acid was also inhibited by 30%. Interestingly, damage to the glomerulus, Bowman's capsule, and tubules in the hyperuricemia model were reversed by supplementation with this strain. Fecal microbiome analysis revealed that L. brevis MJM60390 supplementation enhanced the relative abundance of the Rikenellaceae family, which produces the short-chain fatty acid butyrate and helps to maintain good gut condition. Therefore, these results demonstrated that L. brevis MJM60390 can be a probiotic candidate to prevent hyperuricemia.
Collapse
Affiliation(s)
- Youjin Lee
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Neagawooridwimeu Kim
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Pia Werlinger
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Dong-A Suh
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Hanki Lee
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Joo-Hyung Cho
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea
| | - Jinhua Cheng
- Graduate School of Interdisciplinary Program of Biomodulation, and Myongji University, Yongin-si, Gyeonggi-Do, Korea.,Myongji Bioefficacy Research Center, Myongji University, Yongin-si, Gyeonggi-Do, Korea
| |
Collapse
|
31
|
Zhao H, Lu Z, Lu Y. The potential of probiotics in the amelioration of hyperuricemia. Food Funct 2022; 13:2394-2414. [PMID: 35156670 DOI: 10.1039/d1fo03206b] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperuricemia is a common disease caused by metabolic disorders or the excessive intake of high-purine foods. Persistent hyperuricemia in extreme cases induces gout, and asymptomatic hyperuricemia is probably linked to other metabolic diseases, such as hypertension. The typical damage caused by asymptomatic hyperuricemia includes inflammation, oxidative stress and gut dysbiosis. Probiotics have broad potential applications as food additives, not as drug therapies, in the amelioration of hyperuricemia. In this review, we describe novel methods for potential hyperuricemia amelioration with probiotics. The pathways through which probiotics may ameliorate hyperuricemia are discussed, including the decrease in uric acid production through purine assimilation and XOD (xanthine oxidase) inhibition as well as enhanced excretion of uric acid production by promoting ABCG2 (ATP binding cassette subfamily G member 2) activity, respectively. Three possible probiotic-related therapeutic pathways for alleviating the syndrome of hyperuricemia are also summarized. The first mechanism is to alleviate the oxidation and inflammation induced by hyperuricemia through the inhibition of NLRP3 inflammasome, the second is to restore damaged intestinal epithelium barriers and prevent gut microbiota dysbiosis, and the third is to enhance the innate immune system by increasing the secretion of immunoglobulin A (sIgA) to resist the stimulus by hyperuricemia. We propose that future research should focus on superior strain resource isolation and insight into the cause-effect mechanisms of probiotics for hyperuricemia amelioration. The safety and effects of the application of probiotics in clinical use also need verification.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
32
|
Wu Y, Ye Z, Feng P, Li R, Chen X, Tian X, Han R, Kakade A, Liu P, Li X. Limosilactobacillus fermentum JL-3 isolated from "Jiangshui" ameliorates hyperuricemia by degrading uric acid. Gut Microbes 2022; 13:1-18. [PMID: 33764849 PMCID: PMC8007157 DOI: 10.1080/19490976.2021.1897211] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent studies into the beneficial effects of fermented foods have shown that this class of foods are effective in managing hyperuricemia and gout. In this study, the uric acid (UA) degradation ability of Limosilactobacillus fermentum JL-3 strain, isolated from "Jiangshui" (a fermented Chinese food), was investigated. In vitro results showed that JL-3 strain exhibited high degradation capacity and selectivity toward UA. After oral administration to mice for 15 days, JL-3 colonization was continuously detected in the feces of mice. The UA level in urine of mice fed with JL-3 was similar with the control group mice. And the serum UA level of the former was significantly lower (31.3%) than in the control, further confirmed the UA-lowering effect of JL-3 strain. Limosilactobacillus fermentum JL-3 strain also restored some of the inflammatory markers and oxidative stress indicators (IL-1β, MDA, CRE, blood urea nitrogen) related to hyperuricemia, while the gut microbial diversity results showed that JL-3 could regulate gut microbiota dysbiosis caused by hyperuricemia. Therefore, the probiotic Limosilactobacillus fermentum JL-3 strain is effective in lowering UA levels in mice and could be used as a therapeutic adjunct agent in treating hyperuricemia.
Collapse
Affiliation(s)
- Ying Wu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiao Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaozhu Tian
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China,CONTACT Xiangkai Li Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Ni C, Li X, Wang L, Li X, Zhao J, Zhang H, Wang G, Chen W. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct 2021; 12:7054-7067. [PMID: 34152353 DOI: 10.1039/d1fo00198a] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Globally, the incidence of hyperuricaemia is steadily increasing. The evidence increasingly suggests an association between hyperuricaemia and the gut microbiota, which may enable the development of a novel therapeutic approach. We studied the effects of treatment with lactic acid bacteria (LAB) on hyperuricaemia and their potential underlying mechanisms. A mouse model of hyperuricaemia was generated by oral gavage with hypoxanthine and intraperitoneal injections of potassium oxonate for 2 weeks. The anti-hyperuricaemic activities of 10 LAB strains relative to allopurinol as a positive drug control were investigated in the mouse model. Lactobacillus rhamnosus R31, L. rhamnosus R28-1 and L. reuteri L20M3 effectively reduced the uric acid (UA) concentrations in serum and urine and the xanthine oxidase (XOD) activity levels in serum and hepatic tissue in mice with hyperuricaemia. These strains also reversed the elevated lipopolysaccharide (LPS) concentration, hepatic inflammation and slight renal injury associated with hyperuricaemia. A correlation analysis revealed that UA-reducing LAB strains promoted short-chain fatty acid (SCFA) production to suppress serum and hepatic XOD activity by increasing the abundances of SCFA production-related gut bacterial taxa. However, the UA-reducing effects of LAB strains might not be mediated by purine degradation. In summary, L. rhamnosus R31, L. rhamnosus R28-1 and L. reuteri L20M3 relieved hyperuricaemia in our mouse model by promoting SCFA production in a purine degradation-independent manner. Our findings suggest a novel therapeutic approach involving LAB strains for hyperuricaemia.
Collapse
Affiliation(s)
- Caixin Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang A, Zhang Z, Zhang K, Liu X, Lin X, Zhang Z, Bao T, Feng Z. Nutrient consumption patterns of Lactobacillus plantarum and their application in suancai. Int J Food Microbiol 2021; 354:109317. [PMID: 34225032 DOI: 10.1016/j.ijfoodmicro.2021.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to control the fermentation time and nitrite content of suancai prepared with Lactobacillus plantarum. According to analyses of the consumption amount and rate of nutrients, growth-stimulating nutrients, essential nutrients and nutrients accelerating the fermentation process of suancai, Asp, Thr, Glu, Cys, Tyr, Mg2+, Mn2+ and inosine were selected as additions to suancai prepared with L. plantarum. The fermentation time and nitrite content of suancai supplemented with nutrients and prepared with L. plantarum were shortened by 2 days and 5 days and reduced by approximately 0.1-fold and 0.7-fold, respectively, compared with unsupplemented suancai prepared with L. plantarum at 25 °C and 10 °C. The fermentation time and nitrite content of suancai supplemented with nutrients and prepared with L. plantarum were shortened by 6 days and 15 days and reduced by approximately 0.17-fold and 0.8-fold, respectively, compared with suancai undergoing spontaneous fermentation at 25 °C and 10 °C. Furthermore, no significant differences were observed in sensory properties in suancai. The results of this study indicated that certain nutrients accelerated the growth of L. plantarum and reduced the fermentation time and nitrite content of suancai prepared with L. plantarum. These findings help to establish a foundation for the practical use of nutrients to control the fermentation of suancai.
Collapse
Affiliation(s)
- Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Xin Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Xue Lin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zhen Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Tianyu Bao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
35
|
James A, Ke H, Yao T, Wang Y. The Role of Probiotics in Purine Metabolism, Hyperuricemia and Gout: Mechanisms and Interventions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Armachius James
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Centre, The University of North Carolina, Chapel Hill, USA
| | - Ting Yao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, China
| | - Yousheng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, China
| |
Collapse
|
36
|
Koyanagi I, Sonomura K, Naoi T, Ohnishi T, Kaneko N, Sawamoto K, Sato TA, Sakaguchi M. Metabolic fingerprints of fear memory consolidation during sleep. Mol Brain 2021; 14:30. [PMID: 33568175 PMCID: PMC7874630 DOI: 10.1186/s13041-021-00733-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Metabolites underlying brain function and pathology are not as well understood as genes. Here, we applied a novel metabolomics approach to further understand the mechanisms of memory processing in sleep. As hippocampal dentate gyrus neurons are known to consolidate contextual fear memory, we analyzed real-time changes in metabolites in the dentate gyrus in different sleep-wake states in mice. Throughout the study, we consistently detected more than > 200 metabolites. Metabolite profiles changed dramactically upon sleep-wake state transitions, leading to a clear separation of phenotypes between wakefulness and sleep. By contrast, contextual fear memory consolidation induced less obvious metabolite phenotypes. However, changes in purine metabolites were observed upon both sleep-wake state transitions and contextual fear memory consolidation. Dietary supplementation of certain purine metabolites impaired correlations between conditioned fear responses before and after memory consolidation. These results point toward the importance of purine metabolism in fear memory processing during sleep.
Collapse
Affiliation(s)
- Iyo Koyanagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Neuroscience, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Sonomura
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Toshie Naoi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takaaki Ohnishi
- Graduate School of Artificial Intelligence and Science, Rikkyo University, Tokyo, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
- R&D Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Doctoral Program in Neuroscience, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
37
|
Yan S, Tian S, Meng Z, Yan J, Jia M, Li R, Zhou Z, Zhu W. Imbalance of gut microbiota and fecal metabolites in offspring female mice induced by nitenpyram exposure during pregnancy. CHEMOSPHERE 2020; 260:127506. [PMID: 32673867 DOI: 10.1016/j.chemosphere.2020.127506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitous exposure to the neonicotinoid insecticide nitenpyram has raised concerns about its potential toxicity. In this study, we explored its health effects on the female offspring of mice that had been exposed during pregnancy. We found that exposure of pregnant mice to nitenpyram resulted in decreased levels of serum triglycerides, total cholesterol, and glucose in female offspring, and additional research uncovered gut microbiota disturbances, accompanied by abnormal fecal metabolic profiles. Based on Pearson correlation analysis, we found that decreased abundance of Lactobacillus may play the most critical role, and changes in gut bacterial purine metabolism, BCAAs metabolism, and the TCA cycle are all closely related to the abundance of Lactobacillus. In summary, these results help explain the observed serum biochemical abnormalities and provide new insights into the intergenerational toxicity of nitenpyram.
Collapse
Affiliation(s)
- Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Yamada N, Saito C, Kano H, Fukuuchi T, Yamaoka N, Kaneko K, Asami Y. Lactobacillus gasseri PA-3 directly incorporates purine mononucleotides and utilizes them for growth. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 41:221-230. [PMID: 32954967 DOI: 10.1080/15257770.2020.1815768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactococcus lactis has been reported unable to directly incorporate mononucleotides but instead requires their external dephosphorylation by nucleotidases to the corresponding nucleosides prior to their incorporation. Although Lactobacillus gasseri PA-3 (PA-3), a strain of lactic acid bacteria, has been found to incorporate purine mononucleotides such as adenosine 5'-monophosphate (AMP), it remains unclear whether these bacteria directly incorporate these mononucleotides or incorporate them after dephosphorylation to the corresponding nucleosides. This study evaluated whether PA-3 incorporated radioactively-labeled mononucleotides in the presence or absence of the 5'-nucleotidase inhibitor α,β-methylene ADP (APCP). PA-3 took up 14C-AMP in the presence of APCP, as well as incorporating 32P-AMP. Furthermore, radioactivity was detected in the RNA/DNA of bacterial cells cultured in the presence of 32P-AMP. Taken together, these findings indicated that PA-3 incorporated purine mononucleotides directly rather than after their dephosphorylation to purine nucleosides and that PA-3 utilizes these purine mononucleotides in the synthesis of RNA and DNA. Although additional studies are required to identify purine mononucleotide transporters in PA-3, this study is the first to show that some lactic acid bacteria directly incorporate purine mononucleotides and use them for growth.
Collapse
Affiliation(s)
- N Yamada
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - C Saito
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - H Kano
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - T Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - N Yamaoka
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - K Kaneko
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Y Asami
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
39
|
Xiao Y, Zhang C, Zeng X, Yuan Z. Microecological treatment of hyperuricemia using Lactobacillus from pickles. BMC Microbiol 2020; 20:195. [PMID: 32631233 PMCID: PMC7336419 DOI: 10.1186/s12866-020-01874-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
Background Hyperuricemia is one of the important risk factors for gout, arteriosclerosis, cardiovascular and cerebrovascular disease. Lactobacillus has attracted much attention due to its role in the regulation of intestinal function and tumor resistance, but its ability to reduce uric acid is unclear. Pickles are a traditional fermented food rich in lactic acid bacteria (LAB). Results LAB strains were isolated from 18 pickles and their tolerance to acid bile salts, trypsin, pepsin were evaluated after screening by nucleoside degradation. 16S rDNA sequence analysis was used to identify LAB strains. Furthermore, we established rat model of hyperuricemia and demonstrated that Lactobacillus could alleviate hyperuricemia and reduce kidney injury. Conclusion This study suggests that microecological treatment with Lactobacillus represents a feasible option for patients with chronic hyperuricemia.
Collapse
Affiliation(s)
- Yuanxun Xiao
- Department of LiWan Hospital, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Congxin Zhang
- Department of LiWan Hospital, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Xianli Zeng
- Department of LiWan Hospital, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Zhichao Yuan
- Department of LiWan Hospital, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| |
Collapse
|
40
|
Morais AHA, Passos TS, Maciel BLL, da Silva-Maia JK. Can Probiotics and Diet Promote Beneficial Immune Modulation and Purine Control in Coronavirus Infection? Nutrients 2020; 12:E1737. [PMID: 32532069 PMCID: PMC7352643 DOI: 10.3390/nu12061737] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Infection caused by the SARS-CoV-2 coronavirus worldwide has led the World Health Organization to declare a COVID-19 pandemic. Because there is no cure or treatment for this virus, it is emergingly urgent to find effective and validated methods to prevent and treat COVID-19 infection. In this context, alternatives related to nutritional therapy might help to control the infection. This narrative review proposes the importance and role of probiotics and diet as adjunct alternatives among the therapies available for the treatment of this new coronavirus. This review discusses the relationship between intestinal purine metabolism and the use of Lactobacillus gasseri and low-purine diets, particularly in individuals with hyperuricemia, as adjuvant nutritional therapies to improve the immune system and weaken viral replication, assisting in the treatment of COVID-19. These might be promising alternatives, in addition to many others that involve adequate intake of vitamins, minerals and bioactive compounds from food.
Collapse
Affiliation(s)
- Ana H. A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (B.L.L.M.); (J.K.d.S.-M.)
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
| | - Thais S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
| | - Bruna L. L. Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (B.L.L.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
| | - Juliana K. da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (B.L.L.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
| |
Collapse
|
41
|
Kano H, Saito C, Yamada N, Fukuuchi T, Yamaoka N, Kaneko K, Asami Y. Species-dependent patterns of incorporation of purine mononucleotides and nucleosides by lactic acid bacteria. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1440-1448. [PMID: 32397874 DOI: 10.1080/15257770.2020.1733604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although most lactic acid bacteria do not directly incorporate purine nucleotides, the strain Lactobacillus gasseri PA-3 was found to incorporate purine mononucleotides. To determine whether the direct uptake of purine mononucleotides is dependent on the species or strain of lactic acid bacteria, incorporation of purine mononucleotides was assessed in L. gasseri, Lactcoccus lactis sbsp. lactis, Streptococcus thermophilus and other species of lactic acid bacteria. Each bacterial strain was incubated with 32P-AMP or 14C-adenosine and the incorporation of each purine was evaluated by measuring their radioactivity. All investigated strains of L. gasseri incorporated 32P-AMP, whereas strains of S. thermophilus and most strains of L. lactis did not. Incorporation of 32P-AMP into strains of Pediococcus was dependent on the strain or species of that genus of bacteria. All investigated strains, except for one strain of L. gasseri, incorporated 14C-adenosine, with S. thermophilus, L. lactis and Pediococcus generally displaying greater incorporation of 14C-adenosine than L. gasseri. Although most lactic acid bacteria such as S. thermophiles and L. lactis do not incorporate purine mononucleotides, some species such as L. gasseri directly incorporate purine mononucleotides. These findings indicate that the preferential incorporation of purine mononucleotides or nucleosides by lactic acid bacteria is dependent on the species or strain.
Collapse
Affiliation(s)
- H Kano
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - C Saito
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - N Yamada
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - T Fukuuchi
- Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - N Yamaoka
- Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - K Kaneko
- Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Y Asami
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
42
|
Xiang S, Fu J, Ye K, Zheng Y, Zhu X, Chen J, Chen Y. Effect of Lactobacillus gasseri PA3 on gut microbiota in an in vitro colonic simulation. Food Sci Nutr 2019; 7:3883-3891. [PMID: 31890166 PMCID: PMC6924308 DOI: 10.1002/fsn3.1236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
It has been reported that Lactobacillus gasseri PA3 has an ability to absorb exogenous purines in the intestine to reduce a risk of gout and hyperuricemia. However, influences of this strain on gut microbiota and their metabolisms remain unclear. Herein, we aimed to investigate the effect of L. gasseri PA3 on microbiota composition and metabolisms. L. gasseri PA3 was isolated from yogurt and supplemented into a single-stage colonic fermentation in a culture volume of 30 ml and subjected to in vitro colonic simulation for 8 days. Microbiota composition was determined with 16S rRNA (V3 + V4) sequencing, and their metabolisms were predicted by PICRUSt. Short-chain fatty acids were measured by GC-MS. We found that L. gasseri PA3 reduced the diversity of microbiota, increased the relative abundances of Lactobacillus (73.5%) and Escherichia (36.5%), and decreased Bacterioides and Phascolarctobacterium. Total amount of short-chain fatty acids was found to decline. Fundamental metabolisms, especially nucleotide, was significantly higher after intervention with L. gasseri PA3, but the purine metabolism was lower, which means that PA3 might reduce uric acid concentrations by weakening purine metabolism. Our results indicated that L. gasseri PA3 can survive and play a role in the ascending colon environment. Therefore, the evaluation of the effect of L. gasseri PA3 on intestinal microbes and their metabolisms has great guiding significance for the development of treatment to prevent gout.
Collapse
Affiliation(s)
- Shasha Xiang
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Jian Fu
- Eurofins Technology Service Qingdao Co., LtdQingdaoChina
| | - Kun Ye
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Yiqing Zheng
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Xuan Zhu
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Jie Chen
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Yuewen Chen
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|
43
|
Hsu CL, Hou YH, Wang CS, Lin SW, Jhou BY, Chen CC, Chen YL. Antiobesity and Uric Acid-Lowering Effect of Lactobacillus plantarum GKM3 in High-Fat-Diet-Induced Obese Rats. J Am Coll Nutr 2019; 38:623-632. [PMID: 30794474 DOI: 10.1080/07315724.2019.1571454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: Obesity has become one of the world's biggest issues. This condition has a great impact on several metabolic and chronic diseases. For example, obesity is often accompanied by hyperuricemia or gout. However, few drugs are available for the treatment of obesity. The present study is to evaluate the antiobesity effect of Lactobacillus plantarum GKM3 in high-fat-diet-induced obese rats and whether taking L plantarum GKM3 can effectively reduce uric acid accumulation caused by obesity and ameliorate other harmful factors. Method: Sixty male Wistar rats were divided into five groups as follows: ( 1 ) ND group, fed normal diet; ( 2 ) HFC group, fed AIN93G-based high-fat diet containing 65% solids, 7% soybean oil, and 25% lard; ( 3 ) HFL group, fed AIN93G-based high-fat diet supplemented with 102.7 mg/kg/d L plantarum GKM3; ( 4 ) HFM group, fed AIN93G-based high-fat diet supplemented with 205.4 mg/kg/d L plantarum GKM3; and ( 5 ) HFH group, fed AIN93G-based high-fat diet supplemented with 513.5 mg/kg/d L plantarum GKM3. After 6 weeks, the body, organ, and fat weights; food intake; blood serum levels; and adipocyte size were measured. Results: Results showed that rats fed on the high-fat diet showed more body weight, increased feed efficiency, higher fat deposition, higher total liver weight, elevated serum lipid levels, and increased adipocyte size compared with those on the normal diet. All these effects were reversed by supplementation of L plantarum GKM3. Conclusions: In conclusion, we suggest that the L plantarum GKM3 supplement may have beneficial antiobesity and uric acid-lowering effects.
Collapse
Affiliation(s)
- Chin-Lin Hsu
- School of Nutrition, Chung Shan Medical University , Taichung City , Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital , Taichung City , Taiwan
| | | | | | | | - Bo-Yi Jhou
- Grape King Bio Ltd , Taoyuan City , Taiwan
| | - Chin-Chu Chen
- Grape King Bio Ltd , Taoyuan City , Taiwan.,Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University , Taipei City , Taiwan.,Institute of Food Science and Technology, National Taiwan University , Taipei City , Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University , Taoyuan City , Taiwan
| | | |
Collapse
|
44
|
Kano H, Yamada N, Saito C, Murayama-Chiba Y, Asami Y, Ito H. Lactobacillus gasseri PA-3, but not L. gasseri OLL2996, reduces the absorption of purine nucleosides in rats. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:353-360. [PMID: 29842848 DOI: 10.1080/15257770.2018.1469760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Lactobacillus gasseri PA-3 (PA-3) is a bacterial strain with a strong ability to degrade purine nucleosides. We previously showed that PA-3 incorporates purines in vitro and that oral administration of PA-3 and purines to rats attenuated their absorption of purines. It remains unclear whether these effects of PA-3 depend on bacterial strains. This study therefore compared the abilities of PA-3 and another bacterial strain of L. gasseri, OLL2996, which has shown decreased ability to degrade purine nucleosides in vitro, to incorporate purine nucleosides and to inhibit the absorption of purines fed to rats. Each bacterial strain was incubated in the presence of 14C-adenosine or 14C-inosine and the incorporation of each purine was evaluated by measuring their radioactivity. In vivo, rats were fed 14C-labeled purines along with PA-3 or OLL2996 and the absorption of these 14C-labeled purines was evaluated by analyzing radioactivity of blood samples. PA-3 incorporated about twice as much 14C-adenosine and 14C-inosine as OLL2996. The elevation of radioactivity levels in blood was 10-20% lower in rats treated with PA-3 than in control rats, after feeding with both 14C-adenosine and 14C-inosine as purines. In contrast, treatment with OLL2996 did not have statistically significant effects on radioactivity compared with the control group. These results indicate that the magnitude of bacterial inhibition of purine absorption is dependent on bacterial strain, correlating at least partly with the ability to incorporate and degrade purines.
Collapse
Affiliation(s)
- H Kano
- a Food Microbiology Research Laboratories, R&D Division , Meiji Co., Ltd. Tokyo , Japan
| | - N Yamada
- a Food Microbiology Research Laboratories, R&D Division , Meiji Co., Ltd. Tokyo , Japan
| | - C Saito
- a Food Microbiology Research Laboratories, R&D Division , Meiji Co., Ltd. Tokyo , Japan
| | - Y Murayama-Chiba
- a Food Microbiology Research Laboratories, R&D Division , Meiji Co., Ltd. Tokyo , Japan
| | - Y Asami
- a Food Microbiology Research Laboratories, R&D Division , Meiji Co., Ltd. Tokyo , Japan
| | - H Ito
- a Food Microbiology Research Laboratories, R&D Division , Meiji Co., Ltd. Tokyo , Japan
| |
Collapse
|
45
|
Yamada N, Saito C, Murayama-Chiba Y, Kano H, Asami Y, Itoh H. Lactobacillus gasseri PA-3 utilizes the purines GMP and guanosine and decreases their absorption in rats. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:307-315. [PMID: 29723107 DOI: 10.1080/15257770.2018.1454949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Excessive intake of purine-rich foods elevates serum uric acid levels, making it a risk factor for hyperuricemia. We hypothesized that lactic acid bacteria ingested with food might utilize purines and contribute to their decreased absorption in the intestines, thereby preventing hyperuricemia. We previously reported that Lactobacillus gasseri PA-3 (PA-3) incorporates adenosine/inosine and related purines and that oral ingestion of PA-3 reduced the absorption of these purines in rats. However, it is unclear whether PA-3 also decreases the absorption of other purines, such as guanosine 5'-monophosphate (GMP) and guanosine. This study investigated whether PA-3 incorporates GMP and guanosine and reduces their absorption in rats. PA-3 incorporated both purines, with 14C-GMP uptake being greater than that of 14C-guanosine. Radioactivity in rat blood was significantly lower 30, 45, and 60 minutes after administration of 14C-GMP plus PA-3 than after administration of 14C-GMP alone and was significantly lower 15 minutes after administration of 14C-guanosine plus PA-3 than after administration of 14C-guanosine alone. PA-3 incorporates GMP and guanosine in vitro. Oral administration of PA-3 with GMP and guanosine reduces the intestinal absorption of these purines in vivo. These findings, together with those of previous studies, indicate that PA-3 reduces the absorption of major purines contained in foods. PA-3 may also attenuate the excessive absorption of dietary purines in humans, protecting these individuals against hyperuricemia.
Collapse
Affiliation(s)
- N Yamada
- a Food Microbiology Research Laboratories , R&D Division, Meiji Co., Ltd. Tokyo , Japan
| | - C Saito
- a Food Microbiology Research Laboratories , R&D Division, Meiji Co., Ltd. Tokyo , Japan
| | - Y Murayama-Chiba
- a Food Microbiology Research Laboratories , R&D Division, Meiji Co., Ltd. Tokyo , Japan
| | - H Kano
- a Food Microbiology Research Laboratories , R&D Division, Meiji Co., Ltd. Tokyo , Japan
| | - Y Asami
- a Food Microbiology Research Laboratories , R&D Division, Meiji Co., Ltd. Tokyo , Japan
| | - H Itoh
- a Food Microbiology Research Laboratories , R&D Division, Meiji Co., Ltd. Tokyo , Japan
| |
Collapse
|
46
|
Villena J, Kitazawa H. Probiotic Microorganisms: A Closer Look. Microorganisms 2017; 5:microorganisms5020017. [PMID: 28397750 PMCID: PMC5488088 DOI: 10.3390/microorganisms5020017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP 4000, Argentina.
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| |
Collapse
|