1
|
Budiarso FS, Leong YK, Chang JJ, Chen CY, Chen JH, Yen HW, Chang JS. Current advances in microalgae-based fucoxanthin production and downstream processes. BIORESOURCE TECHNOLOGY 2025:132455. [PMID: 40157580 DOI: 10.1016/j.biortech.2025.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Fucoxanthin, a marine carotenoid primarily found in brown algae and microalgae, offers significant health benefits, including antioxidant, anti-obesity, and anti-cancer effects. While brown algae remain the dominant commercial source, microalgae such as Phaeodactylum tricornutum are emerging as promising candidates for large-scale, sustainable fucoxanthin production. This review explores advancements in fucoxanthin biosynthesis, focusing on cultivation methods, extraction techniques, and genetic engineering strategies. Different cultivation systems - including autotrophic, heterotrophic, and mixotrophic approaches - have been assessed for their biomass yield, cost-effectiveness, and scalability, together with a quantitative meta-analysis to highlight specific trends or correlations in fucoxanthin production. The efficiency and environmental impact of extraction methods, such as supercritical fluid extraction, ultrasound-assisted extraction, and microwave-assisted extraction, have also been evaluated. In addition, synthetic biology and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genetic modifications show potential for enhancing fucoxanthin biosynthesis. However, challenges remain in terms of cost, scalability, and regulatory constraints. This review highlights the need for integrated biotechnological solutions to enhance commercial viability, combining metabolic engineering, efficient extraction techniques, and optimized cultivation strategies. As demand continues to grow in the nutraceutical, pharmaceutical, and cosmetic industries, ongoing advancements in microalgae-based fucoxanthin production will be critical for ensuring sustainable and cost-effective manufacturing.
Collapse
Affiliation(s)
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jih-Heng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
2
|
Elmorsy EM, Al Doghaither HA, Al-Ghafari AB, Amer S, Fawzy MS, Toraih EA. Fucoxanthin mitigates mercury-induced mitochondrial toxicity in the human ovarian granulosa cell line. Reprod Toxicol 2025; 132:108855. [PMID: 39947444 DOI: 10.1016/j.reprotox.2025.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025]
Abstract
Mercury (Hg) is known to be a hazardous toxin with a significant negative impact on female reproduction through mechanisms that remain unclear. The carotenoid fucoxanthin (FX) is an antioxidant with several positive effects on human health. This study aimed to examine the potential protective role of FX in reducing the Hg-induced bioenergetic disturbances in a human ovarian granulosa cell line model. (methods briefly) Hg was found to reduce the viability of granulosa cells in a concentration-dependent manner, with an estimated 72-hour EC50 of 10 µM. In contrast, FX (10 and 20 µM) improved cell viability. Hg (1 and 10 µM) significantly reduced cellular ATP levels, mitochondrial membrane potential, oxygen consumption rates, and lactate production. Additionally, Hg impaired the activities and kinetics of mitochondrial complexes I and III and reduced the expression of mitochondrial genes ND1, ND5, cytochrome B, cytochrome C oxidase, and ATP synthase subunits 6 and 8. According to tests on mitochondrial membranes, Hg increased membrane fluidity by reducing saturated fatty acid levels and increasing those of unsaturated fatty acids. Hg also promoted mitochondrial swelling and enhanced the inner mitochondrial membrane permeability to hydrogen and potassium ions. FX (10 µM) was shown to mitigate the negative effects of Hg on the viability of treated granulosa cells, bioenergetics parameters, and mitochondrial membrane integrity in a concentration-dependent manner. Based on these findings, bioenergetic disruption may be a key underlying cause of Hg-induced ovarian dysfunction. Furthermore, FX may have a potential therapeutic role in treating ovarian disorders caused by Hg-induced disruption of granulosa cell bioenergetics.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia.
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Saad Amer
- Translational Medical Sciences, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.
| | - Manal S Fawzy
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia.
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; Department of Cardiovascular Perfusion, Interprofessional Research, College of Health Professions, Upstate Medical University, New York 13210, USA; Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
3
|
Shokri-Mashhadi N, Baechle C, Schiemann T, Schaefer E, Barbaresko J, Schlesinger S. Effects of carotenoid supplementation on glycemic control: a systematic review and meta-analysis of randomized clinical trials. Eur J Clin Nutr 2025; 79:113-125. [PMID: 39327454 DOI: 10.1038/s41430-024-01511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES We conducted a systematic review and meta-analysis to assess the effects of carotenoid supplementation on glycemic indices, and the certainty of evidence. METHODS A systematic literature search in PubMed, SCOPUS, ISI-Web of Science, and Cochrane Library was conducted from inception up to Jun 17, 2024. Randomized controlled trials (RCTs) investigating the effect of carotenoid supplementation on circulating glycemic parameters were included. Records were excluded when studies reported the effect of co-interventions with other nutrients, did not provide mean differences (MDs) and standard deviations (SD) for outcomes, or administered whole food rather than supplements of carotenoids. Summary mean differences (MDs) and 95% CI between intervention and control groups were estimated using a random-effects model. The risk of bias of the included studies was assessed using the Risk of Bias 2.0 (RoB 2.0) tool. RESULTS Overall, 36 publications with 45 estimated effect sizes were included in the meta-analyses. The overall findings showed an improvement in fasting blood glucose (FBG) (MD = -4.54 mg/dl; 95% CI: -5.9, -3.2; n = 45), and hemoglobin A1C (HbA1C) (MD = -0.25% (95% CI: -0.4, -0.11; n = 22) in the intervention group in comparison with the control group. Moreover, in individuals with type 2 diabetes (T2D), interventions with astaxanthin and fucoxanthin led to a reduction in FBG by 4.36 mg/dl (95% CI: -6.13, -2.6; n = 10). The findings also showed that the intervention with crocin reduced FBG levels by 13.5 mg/dl (95% CI: -15.5, -7.8; n = 5), and HbA1C by 0.55% (95% CI: -0.77, -0.34; n = 5) in individuals with T2D. However, the certainty of evidence was very low. CONCLUSION Carotenoid's supplementation improved glycemic parameters especially in people with T2D. However. the certainty of evidence was very low, mainly due to small sample size, and indirectness. Therefore, no specific recommendations can be provided at present and well-designed RCTs are required. REGISTRY URL: https://www.crd.york.ac.uk/PROSPERO/ REGISTRY NUMBER: CRD42021285084 REGISTRY AND REGISTRY NUMBER FOR SYSTEMATIC REVIEWS OR META-ANALYSES: PROSPERO ID: CRD42021285084.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany.
| | - Christina Baechle
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany
| | - Tim Schiemann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Edyta Schaefer
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany
| | - Janett Barbaresko
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany
| |
Collapse
|
4
|
Huang S, Liu H, Xu R, Li W, Yang H, Bao X, Hang Y, Gong Y, Zhao Y. RNA Editing Analysis Reveals Methyl Jasmonic Acid Regulation of Fucoxanthin and Fatty Acid Metabolism in Phaeodactylum tricornutum. Mar Drugs 2025; 23:66. [PMID: 39997190 PMCID: PMC11857586 DOI: 10.3390/md23020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
Phaeodactylum tricornutum is a marine diatom with significant biotechnological potential, particularly in producing high-value bioactive compounds such as fucoxanthin and unsaturated fatty acids, which possess significant pharmaceutical and nutraceutical properties. However, the naturally low yields of these compounds present a major challenge for large-scale production. Methyl jasmonic acid (MeJA), a plant-derived signaling molecule, has been shown to enhance the biosynthesis of these metabolites in P. tricornutum. While transcriptional regulation has been extensively studied, the role of post-transcriptional modifications, such as RNA editing, in mediating MeJA-induced metabolic changes remains largely unexplored. RNA editing can alter nucleotide sequences, leading to functional changes in gene expression and protein activity, thus providing a potential regulatory mechanism for enhanced biosynthesis of target metabolites. In this study, we investigated the role of RNA editing in Phaeodactylum tricornutum under methyl jasmonic acid (MeJA) treatment, focusing on its impact on the accumulation of bioactive compounds such as fucoxanthin and fatty acids. We conducted a comprehensive comparative analysis of RNA editing events across MeJA-treated and control groups. Our findings reveal that MeJA treatment induces significant variations in RNA editing levels, affecting key metabolic pathways. Notably, two genes, Lhcr10 (Phatr3_J16481) and Phatr3_J43665, were identified as potential contributors to increased RNA editing enzyme activity and to energy metabolism and fatty acid biosynthesis under MeJA treatment. These results provide a foundation for the discovery of molecular mechanisms underlying adaptive responses in P. tricornutum and highlight RNA editing as a critical regulatory mechanism in MeJA-induced metabolic reprogramming.
Collapse
Affiliation(s)
- Sihui Huang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (S.H.); (H.Y.); (X.B.)
- Institute of Bioengineering, Biotrans technology Co., Ltd., Shanghai 201500, China; (H.L.); (R.X.); (W.L.)
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410000, China
| | - Hao Liu
- Institute of Bioengineering, Biotrans technology Co., Ltd., Shanghai 201500, China; (H.L.); (R.X.); (W.L.)
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China
| | - Ruihao Xu
- Institute of Bioengineering, Biotrans technology Co., Ltd., Shanghai 201500, China; (H.L.); (R.X.); (W.L.)
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China
| | - Wangchang Li
- Institute of Bioengineering, Biotrans technology Co., Ltd., Shanghai 201500, China; (H.L.); (R.X.); (W.L.)
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China
| | - Han Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (S.H.); (H.Y.); (X.B.)
| | - Xinlei Bao
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (S.H.); (H.Y.); (X.B.)
| | - Yuqing Hang
- Institute of Bioengineering, Biotrans technology Co., Ltd., Shanghai 201500, China; (H.L.); (R.X.); (W.L.)
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (S.H.); (H.Y.); (X.B.)
| | - Yuxiang Zhao
- Institute of Bioengineering, Biotrans technology Co., Ltd., Shanghai 201500, China; (H.L.); (R.X.); (W.L.)
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China
| |
Collapse
|
5
|
Wang K, Huang K, Li X, Wu H, Wang L, Bai F, Tan M, Su W. Kelp nanocellulose combined with fucoxanthin achieves lipid-lowering function by reducing oxidative stress with activation of Nrf2/HO-1/NQO1 pathway. Food Chem 2025; 464:141588. [PMID: 39406147 DOI: 10.1016/j.foodchem.2024.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
This study innovatively utilized kelp-derived nanocellulose and sodium caseinate (SC) to prepare fucoxanthin (Fx)-loaded nanoparticles, exploring their efficacy in reducing oxidative stress and inhibiting lipid accumulation. 2, 2, 6, 6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation produced well-dispersed, kelp-derived nanocellulose. When these celluloses were mixed with SC at varying mass ratios, the composite nanoparticles showed excellent stability. Specifically, at a TEMPO-oxidized kelp nanocellulose (TKNC) to SC mass ratio of 1:3, the encapsulation efficiency for Fx reached 82.2 %, with a retention of 56.12 % after 14 days of storage. In vitro, the nanoparticles demonstrated good biocompatibility and were efficiently absorbed by cells, significantly enhancing Fx bioavailability. This enhanced delivery efficiency alleviates oxidative stress by activating the Nrf2/HO-1/NQO1 signaling pathways and effectively inhibits lipid droplet formation induced by excessive free fatty acids (FFAs). Moreover, distribution studies in mice revealed effective accumulation of nanoparticles in the intestines and liver, indicating their potential for targeted drug delivery. These findings provide strong experimental support for the use of TKNC and SC as biocompatible materials in nanoparticles for drug delivery and treatment applications.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueqian Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hao Wu
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China.
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Fengyu Bai
- School of Fashion, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
6
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA. Fucoxanthin alleviates the cytotoxic effects of cadmium and lead on a human osteoblast cell line. Toxicol Res (Camb) 2024; 13:tfae218. [PMID: 39712643 PMCID: PMC11655842 DOI: 10.1093/toxres/tfae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Cadmium (Cd) and lead (Pb) are non-biodegradable heavy metals (HMs) that persistently contaminate ecosystems and accumulate in bones, where they exert harmful effects. This study aimed to investigate the protective effect of fucoxanthin (FX) against the chemical toxicity induced by Cd and Pb in human bone osteoblasts in vitro, using various biochemical and molecular assays. METHODS The effect of metals and FX on osteoblasts viability was assayed by MTT, then the effect of Pb, Cd, and FX on the cells' mitochondrial parameters was studied via assays for ATP, mitochondrial membrane potential (MMP), mitochondrial complexes, and lactate production. Also, the effect of metals on oxidative stress was assessed by reactive oxygen species, lipid peroxidation and antioxidant enzymes assays. Also the effect of FX and metals on apoptosis caspases and related genes was assessed. RESULTS When Cd and Pb were added to human osteoblast cultures at concentrations ranging from 1-20 μM for 72 h, they significantly reduced osteoblast viability in a time and concentration-dependent manner. The cytotoxic effect of Cd on osteoblasts was greater than that of Pb, with estimated EC50 of 8 and 12 μM, respectively, after 72 h of exposure. FX (10 and 20 μM) alleviated the cytotoxicity of the metals. Bioenergetics assays, including ATP, MMP, and mitochondrial complexes I and III activities, revealed that HMs at 1 and 10 μM concentrations inhibited cellular bioenergetics after 72 h of exposure. Cd and Pb also increased lipid peroxidation and reactive oxygen species while reducing catalase and superoxide dismutase antioxidant activities and oxidative stress-related genes. This was accompanied by increased caspases -3, -8, and - 9 and Bax/bCl-2 ratio. Co-treatment with FX (10 and 20 μM) mitigated the disruption of bioenergetics, oxidative damage, and apoptosis induced by the metals, showing a concentration-dependent pattern to varying extents. CONCLUSION These findings strongly support the role of FX in managing toxicities induced by environmental pollutants in bones and in addressing bone diseases associated with molecular bases of oxidative stress, apoptosis, and bioenergetic disruption.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Yadav R, Nigam A, Mishra R, Gupta S, Chaudhary AA, Khan SUD, almuqri EA, Ahmed ZH, Rustagi S, Singh DP, Kumar S. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med Sci (Basel) 2024; 12:55. [PMID: 39449411 PMCID: PMC11503287 DOI: 10.3390/medsci12040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of overweight and obesity is increasing worldwide. Common comorbidities related to obesity, significantly polygenic disorders, cardiovascular disease, and heart conditions affect social and monetary systems. Over the past decade, research in drug discovery and development has opened new paths for alternative and conventional medicine. With a deeper comprehension of its underlying mechanisms, obesity is now recognized more as a chronic condition rather than merely a result of lifestyle choices. Nonetheless, addressing it solely through lifestyle changes is challenging due to the intricate nature of energy regulation dysfunction. The Federal Drug Administration (FDA) has approved six medications for the management of overweight and obesity. Seaweed are plants and algae that grow in oceans, rivers, and lakes. Studies have shown that seaweed has therapeutic potential in the management of body weight and obesity. Seaweed compounds such as carotenoids, xanthophyll, astaxanthin, fucoidans, and fucoxanthin have been demonstrated as potential bioactive components in the treatment of obesity. The abundance of natural seaweed bioactive compounds has been explored for their therapeutic potential for treating obesity worldwide. Keeping this view, this review covered the latest developments in the discovery of varied anti-obese seaweed and its bioactive components for the management of obesity.
Collapse
Affiliation(s)
- Rajesh Yadav
- Department of Dialysis Technology, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Physiology, All India Institute of Medical Science, New Delhi 110029, India
| | - Ankita Nigam
- Department of Physiotherapy, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Eman Abdullah almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Zakir Hassain Ahmed
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11632, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Deependra Pratap Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
8
|
Lu X, Yang S, He Y, Zhao W, Nie M, Sun H. Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Mar Drugs 2024; 22:386. [PMID: 39330267 PMCID: PMC11433211 DOI: 10.3390/md22090386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae are considered promising sustainable feedstocks for the production of food, food additives, feeds, chemicals and various high-value products. Marine microalgae Phaeodactylum tricornutum, Isochrysis galbana and Nitzschia laevis are rich in fucoxanthin, which is effective for weight loss and metabolic diseases. The selection of microalgae species with outstanding nutritional profiles is fundamental for novel foods development, and the nutritional value of P. tricornutum, I. galbana and N. laevis are not yet fully understood. Hence, this study investigates and analyzes the nutritional components of the microalgae by chromatography and mass spectrometry, to explore their nutritional and industrial application potential. The results indicate that the three microalgae possess high nutritional value. Among them, P. tricornutum shows significantly higher levels of proteins (43.29%) and amino acids, while I. galbana has the highest content of carbohydrates (25.40%) and lipids (10.95%). Notwithstanding that P. tricornutum and I. galbana have higher fucoxanthin contents, N. laevis achieves the highest fucoxanthin productivity (6.21 mg/L/day) and polyunsaturated fatty acids (PUFAs) productivity (26.13 mg/L/day) because of the competitive cell density (2.89 g/L) and the advantageous specific growth rate (0.42/day). Thus, compared with P. tricornutum and I. galbana, N. laevis is a more promising candidate for co-production of fucoxanthin and PUFAs.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Shufang Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Man Nie
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Han Sun
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Wu C, Zhang C, Li F, Yan Y, Wu Y, Li B, Tong H, Lang J. Fucoxanthin Mitigates High-Fat-Induced Lipid Deposition and Insulin Resistance in Skeletal Muscle through Inhibiting PKM1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18013-18026. [PMID: 39088205 DOI: 10.1021/acs.jafc.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid β-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid β-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.
Collapse
Affiliation(s)
- Congcong Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Yawei Yan
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Yoshida E, Kato Y, Kanamoto A, Kondo A, Hasunuma T. Mixotrophic culture enhances fucoxanthin production in the haptophyte Pavlova gyrans. Appl Microbiol Biotechnol 2024; 108:352. [PMID: 38819468 PMCID: PMC11143061 DOI: 10.1007/s00253-024-13199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Fucoxanthin is a versatile substance in the food and pharmaceutical industries owing to its excellent antioxidant and anti-obesity properties. Several microalgae, including the haptophyte Pavlova spp., can produce fucoxanthin and are potential industrial fucoxanthin producers, as they lack rigid cell walls, which facilitates fucoxanthin extraction. However, the commercial application of Pavlova spp. is limited owing to insufficient biomass production. In this study, we aimed to develop a mixotrophic cultivation method to increase biomass and fucoxanthin production in Pavlova gyrans OPMS 30543X. The effects of culturing OPMS 30543X with different organic carbon sources, glycerol concentrations, mixed-nutrient conditions, and light intensities on the consumption of organic carbon sources, biomass production, and fucoxanthin accumulation were analyzed. Several organic carbon sources, such as glycerol, glucose, sucrose, and acetate, were examined, revealing that glycerol was well-consumed by the microalgae. Biomass and fucoxanthin production by OPMS 30543X increased in the presence of 10 mM glycerol compared to that observed without glycerol. Metabolomic analysis revealed higher levels of the metabolites related to the glycolytic, Calvin-Benson-Bassham, and tricarboxylic acid cycles under mixotrophic conditions than under autotrophic conditions. Cultures grown under mixotrophic conditions with a light intensity of 100 µmol photons m-2 s-1 produced more fucoxanthin than autotrophic cultures. Notably, the amount of fucoxanthin produced (18.9 mg/L) was the highest reported thus far for Pavlova species. In conclusion, the use of mixotrophic culture is a promising strategy for increasing fucoxanthin production in Pavlova species. KEY POINTS: • Glycerol enhances biomass and fucoxanthin production in Pavlova gyrans • Metabolite levels increase under mixotrophic conditions • Mixotrophic conditions and medium-light intensity are appropriate for P. gyrans.
Collapse
Affiliation(s)
- Erina Yoshida
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kanamoto
- OP Bio Factory Co., Ltd, 5-8 Aza-Suzaki, Uruma, 904-2234, Okinawa, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Kanagawa, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Kanagawa, Japan.
| |
Collapse
|
11
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
12
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
13
|
Zhao H, Liu Y, Zhu Z, Feng Q, Ye Y, Zhang J, Han J, Zhou C, Xu J, Yan X, Li X. Mediator subunit MED8 interacts with heat shock transcription factor HSF3 to promote fucoxanthin synthesis in the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1574-1591. [PMID: 38062856 DOI: 10.1111/nph.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
Fucoxanthin, a natural carotenoid that has substantial pharmaceutical value due to its anticancer, antioxidant, antiobesity, and antidiabetic properties, is biosynthesized from glyceraldehyde-3-phosphate (G3P) via a series of enzymatic reactions. However, our understanding of the transcriptional mechanisms involved in fucoxanthin biosynthesis remains limited. Using reverse genetics, the med8 mutant was identified based on its phenotype of reduced fucoxanthin content, and the biological functions of MED8 in fucoxanthin synthesis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Gene-editing mutants of MED8 exhibited decreased fucoxanthin content as well as reduced expression levels of six key genes involved in fucoxanthin synthesis, namely DXS, PSY1, ZDS-like, CRTISO5, ZEP1, and ZEP3, when compared to the wild-type (WT) strain. Furthermore, we showed that MED8 interacts with HSF3, and genetic analysis revealed their shared involvement in the genetic pathway governing fucoxanthin synthesis. Additionally, HSF3 was required for MED8 association with the promoters of the six fucoxanthin synthesis genes. In conclusion, MED8 and HSF3 are involved in fucoxanthin synthesis by modulating the expression of the fucoxanthin synthesis genes. Our results increase the understanding of the molecular regulation mechanisms underlying fucoxanthin synthesis in the diatom P. tricornutum.
Collapse
Affiliation(s)
- Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhengjiang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qingkai Feng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
14
|
Wieczorkiewicz PA, Shahamirian M, Kupka T, Makieieva N, Krygowski TM, Szatylowicz H. Unraveling the Push-Pull Effect in Acenes, Polyenes and Polyynes. Chemistry 2024; 30:e202303207. [PMID: 37955341 DOI: 10.1002/chem.202303207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Substituent effects (SEs) are fundamental for predicting molecular reactivity, while polyene, polyyne and acene derivatives are precursors to compounds with diverse applications. Computations were performed for Y-R-X systems, where reaction sites Y=NO2 and O- , substituents X=NO2 , CN, Cl, H, OH, NH2 , and spacers R=polyene, polyyne (n=1-5, 10 repeating units) and acene (up to tetracene). The cSAR (charge of the substituent active region) approach allowed to present, for the first time, quantitative relations describing the spacer's electron-donating and withdrawing properties as a function of n and the spacer type. The electronic properties of the X substituents depend on the type of spacer, its length and the Y group, which is an example of the reverse SE. To describe how the SE between Y and X weakens with n, two approaches were compared: cSAR and SESE (SE stabilization energy). The EDDB (electron density of delocalized bonds) characterize changes in electron delocalization in spacers due to the SE. A new approach - EDDB differential maps - allow to extract the effect of X substitution on the electron delocalization. The charges at spacer's C atoms correlate with cSAR; changes in the slopes confirm the charge transfer by resonance.
Collapse
Affiliation(s)
- Paweł A Wieczorkiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Mozhgan Shahamirian
- Department of Chemistry, Faculty of Science, Sarvestan Branch, Islamic Azad University, 73451-173, Sarvestan, Iran
| | - Teobald Kupka
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Natalina Makieieva
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Tadeusz M Krygowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
15
|
An SM, Cho K, Kim ES, Ki H, Choi G, Kang NS. Description and Characterization of the Odontella aurita OAOSH22, a Marine Diatom Rich in Eicosapentaenoic Acid and Fucoxanthin, Isolated from Osan Harbor, Korea. Mar Drugs 2023; 21:563. [PMID: 37999387 PMCID: PMC10671887 DOI: 10.3390/md21110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Third-generation biomass production utilizing microalgae exhibits sustainable and environmentally friendly attributes, along with significant potential as a source of physiologically active compounds. However, the process of screening and localizing strains that are capable of producing high-value-added substances necessitates a significant amount of effort. In the present study, we have successfully isolated the indigenous marine diatom Odontella aurita OAOSH22 from the east coast of Korea. Afterwards, comprehensive analysis was conducted on its morphological, molecular, and biochemical characteristics. In addition, a series of experiments was conducted to analyze the effects of various environmental factors that should be considered during cultivation, such as water temperature, salinity, irradiance, and nutrients (particularly nitrate, silicate, phosphate, and iron). The morphological characteristics of the isolate were observed using optical and electron microscopes, and it exhibited features typical of O. aurita. Additionally, the molecular phylogenetic inference derived from the sequence of the small-subunit 18S rDNA confirmed the classification of the microalgal strain as O. aurita. This isolate has been confirmed to contain 7.1 mg g-1 dry cell weight (DCW) of fucoxanthin, a powerful antioxidant substance. In addition, this isolate contains 11.1 mg g-1 DCW of eicosapentaenoic acid (EPA), which is one of the nutritionally essential polyunsaturated fatty acids. Therefore, this indigenous isolate exhibits significant potential as a valuable source of bioactive substances for various bio-industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.M.A.); (K.C.); (E.S.K.); (H.K.); (G.C.)
| |
Collapse
|
16
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
17
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera-Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Poulsen M, Prieto Maradona M, Siskos A, Schlatter JR, van Loveren H, Muñoz González A, Rossi A, Ververis E, Knutsen HK. Safety of an ethanolic extract of the dried biomass of the microalga Phaeodactylum tricornutum as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08072. [PMID: 37448447 PMCID: PMC10336653 DOI: 10.2903/j.efsa.2023.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on an ethanolic extract of the dried biomass of the microalga Phaeodactylum tricornutum as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is an ethanolic extract of the dried biomass of the microalga P. tricornutum diluted in a medium-chain triglyceride oil carrier, with standardised fucoxanthin and tocopherol content. The main component of the NF is fat (78% on average), followed by crude protein (10% on average). The Panel is of the view that a consistent and safe production process has not been demonstrated. Additionally, the Panel considers that the information provided on the composition of the NF is not complete and may raise safety concerns. The applicant proposed to use the NF as a food supplement at the use level of 437 mg/day, with the target population being adults, excluding pregnant and breastfeeding women. There is no history of use of the NF or of its source, i.e. P. tricornutum. The Panel notes that the source of the NF, P. tricornutum, was not granted the qualified presumption of safety (QPS) status by the EFSA Panel on Biological Hazards (BIOHAZ), due to the lack of a safe history of use in the food chain and on its potential for production of bioactive compounds with toxic effects. There were no concerns regarding genotoxicity of the NF. In the 90-day study provided, a number of adverse effects were observed, some of them seen already at the lowest dose tested (750 mg/kg body weight (bw) day), which was identified by the Panel as the lowest-observed-adverse-effect-level (LOAEL). The potential phototoxicity of pheophorbide A and pyropheophorbide A in the NF was not addressed in this study. Although noting the uncertainties identified by the Panel regarding the analytical determination of these substances in the NF and the limitations in the publicly available toxicity data, a low margin of exposure (MoE) was calculated for these substances at the proposed use levels. The Panel concludes that the safety of the NF under the proposed uses and use levels has not been established.
Collapse
|
18
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
19
|
Dini I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023; 28:molecules28104032. [PMID: 37241773 DOI: 10.3390/molecules28104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Seaweeds or algae are marine autotrophic organisms. They produce nutrients (e.g., proteins, carbohydrates, etc.) essential for the survival of living organisms as they participate in biochemical processes and non-nutritive molecules (such as dietary fibers and secondary metabolites), which can improve their physiological functions. Seaweed polysaccharides, fatty acids, peptides, terpenoids, pigments, and polyphenols have biological properties that can be used to develop food supplements and nutricosmetic products as they can act as antibacterial, antiviral, antioxidant, and anti-inflammatory compounds. This review examines the (primary and secondary) metabolites produced by algae, the most recent evidence of their effect on human health conditions, with particular attention to what concerns the skin and hair's well-being. It also evaluates the industrial potential of recovering these metabolites from biomass produced by algae used to clean wastewater. The results demonstrate that algae can be considered a natural source of bioactive molecules for well-being formulations. The primary and secondary metabolites' upcycling can be an exciting opportunity to safeguard the planet (promoting a circular economy) and, at the same time, obtain low-cost bioactive molecules for the food, cosmetic, and pharmaceutical industries from low-cost, raw, and renewable materials. Today's lack of methodologies for recovering bioactive molecules in large-scale processes limits practical realization.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
20
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
21
|
Magwaza SN, Islam MS. Roles of Marine Macroalgae or Seaweeds and Their Bioactive Compounds in Combating Overweight, Obesity and Diabetes: A Comprehensive Review. Mar Drugs 2023; 21:md21040258. [PMID: 37103396 PMCID: PMC10142144 DOI: 10.3390/md21040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity and diabetes are matters of serious concern in the health sector due to their rapid increase in prevalence over the last three decades. Obesity is a severe metabolic problem that results in energy imbalance that is persistent over a long period of time, and it is characterized by insulin resistance, suggesting a strong association with type 2 diabetes (T2D). The available therapies for these diseases have side effects and some still need to be approved by the Food and Drug Administration (FDA), and they are expensive for underdeveloped countries. Hence, the need for natural anti-obesity and anti-diabetic drugs has increased in recent years due to their lower costs and having virtually no or negligible side effects. This review thoroughly examined the anti-obesity and anti-diabetic effects of various marine macroalgae or seaweeds and their bioactive compounds in different experimental settings. According to the findings of this review, seaweeds and their bioactive compounds have been shown to have strong potential to alleviate obesity and diabetes in both in vitro and in vivo or animal-model studies. However, the number of clinical trials in this regard is limited. Hence, further studies investigating the effects of marine algal extracts and their bioactive compounds in clinical settings are required for developing anti-obesity and anti-diabetic medicines with better efficacy but lower or no side effects.
Collapse
Affiliation(s)
- S'thandiwe Nozibusiso Magwaza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
22
|
Sayuti NH, Muhammad Nawawi KN, Goon JA, Mokhtar NM, Makpol S, Tan JK. A Review of the Effects of Fucoxanthin on NAFLD. Nutrients 2023; 15:1954. [PMID: 37111187 PMCID: PMC10146066 DOI: 10.3390/nu15081954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease. Fucoxanthin, a red-orange marine carotenoid, is found in natural marine seaweeds with high antioxidant activity and several other remarkable biological features. The aim of this review is to gather evidence of the positive benefits of fucoxanthin on NAFLD. Fucoxanthin provides an extensive list of physiological and biological properties, such as hepatoprotective, anti-obesity, anti-tumor, and anti-diabetes properties, in addition to antioxidant and anti-inflammatory properties. This review focuses on published research on the preventative effects of fucoxanthin on NAFLD from the perspective of human clinical trials, animal experiments in vivo, and in vitro cell investigations. Using a variety of experimental designs, including treatment dosage, experiment model, and experimental periods, the positive effects of fucoxanthin were demonstrated. Fucoxanthin's biological activities were outlined, with an emphasis on its therapeutic efficacy in NAFLD. Fucoxanthin showed beneficial effects in modulating lipid metabolism, lipogenesis, fatty acid oxidation, adipogenesis, and oxidative stress on NAFLD. A deeper comprehension of NAFLD pathogenesis is essential for the development of novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Nor Hafiza Sayuti
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
23
|
Střížek A, Přibyl P, Lukeš M, Grivalský T, Kopecký J, Galica T, Hrouzek P. Hibberdia magna (Chrysophyceae): a promising freshwater fucoxanthin and polyunsaturated fatty acid producer. Microb Cell Fact 2023; 22:73. [PMID: 37076862 PMCID: PMC10116740 DOI: 10.1186/s12934-023-02061-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Algae are prominent producers of carotenoids and polyunsaturated fatty acids which are greatly prized in the food and pharmaceutic industry. Fucoxanthin represents a notable high-value carotenoid produced exclusively by algae. Its benefits range far beyond just antioxidant activity and include cancer prevention, anti-diabetes, anti-obesity, and many other positive effects. Accordingly, large-scale microalgae cultivation to produce fucoxanthin and polyunsaturated fatty acids is still under intensive development in the commercial and academic sectors. Industrially exploitable strains are predominantly derived from marine species while comparable freshwater fucoxanthin producers have yet to be explored. RESULTS In this study, we searched for freshwater fucoxanthin producers among photoautotrophic flagellates including members of the class Chrysophyceae. The initial screening turned our attention to the chrysophyte alga Hibberdia magna. We performed a comprehensive cultivation experiments using a temperature × light cross-gradient to assess the impact of these conditions on the target compounds productivity. Here we present the observations that H. magna simultaneously produces fucoxanthin (max. 1.2% dry biomass) and polyunsaturated fatty acids (max. ~ 9.9% dry biomass) and is accessible to routine cultivation in lab-scale conditions. The highest biomass yields were 3.73 g L-1 accompanied by maximal volumetric productivity of 0.54 g L-1 d-1 which are comparable values to marine microalgae fucoxanthin producers in phototrophic mode. H. magna demonstrated different optimal conditions for biomass, fucoxanthin, and fatty acid accumulation. While maximal fucoxanthin productivities were obtained in dim light and moderate temperatures (23 °C× 80 µmol m-2 s-1), the highest PUFA and overall biomass productivities were found in low temperature and high light (17-20 °C × 320-480 µmol m-2 s-1). Thus, a smart biotechnology setup should be designed to fully utilize H. magna biotechnological potential. CONCLUSIONS Our research brings pioneer insight into the biotechnology potential of freshwater autotrophic flagellates and highlights their ability to produce high-value compounds. Freshwater fucoxanthin-producing species are of special importance as the use of sea-water-based media may increase cultivation costs and prohibits inland microalgae production.
Collapse
Affiliation(s)
- Antonín Střížek
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Trebon, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Přibyl
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Trebon, Czech Republic
| | - Martin Lukeš
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Tomáš Grivalský
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Tomáš Galica
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic.
| |
Collapse
|
24
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
25
|
Xu J, Liao W, Liu Y, Guo Y, Jiang S, Zhao C. An overview on the nutritional and bioactive components of green seaweeds. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [PMCID: PMC10026244 DOI: 10.1186/s43014-023-00132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
AbstractGreen seaweed, as the most abundant species of macroseaweeds, is an important marine biological resource. It is a rich source of several amino acids, fatty acids, and dietary fibers, as well as polysaccharides, polyphenols, pigments, and other active substances, which have crucial roles in various biological processes such as antioxidant activity, immunoregulation, and anti-inflammatory response. In recent years, attention to marine resources has accelerated the exploration and utilization of green seaweeds for greater economic value. This paper elaborates on the main nutrients and active substances present in different green seaweeds and provides a review of their biological activities and their applications for high-value utilization.
Graphical abstract
Collapse
|
26
|
Shirouchi B, Kawahara Y, Kutsuna Y, Higuchi M, Okumura M, Mitsuta S, Nagao N, Tanaka K. Oral Administration of Chaetoceros gracilis—A Marine Microalga—Alleviates Hepatic Lipid Accumulation in Rats Fed a High-Sucrose and Cholesterol-Containing Diet. Metabolites 2023; 13:metabo13030436. [PMID: 36984876 PMCID: PMC10051878 DOI: 10.3390/metabo13030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microalgae are attracting attention as a next-generation alternative source of protein and essential fatty acids that do not consume large amounts of water or land. Chaetoceros gracilis (C. gracilis)—a marine microalga—is rich in proteins, fucoxanthin, and eicosapentaenoic acid (EPA). Growing evidence indicates that dietary fucoxanthin and EPA have beneficial effects in humans. However, none of these studies have shown that dietary C. gracilis has beneficial effects in mammals. In this study, we investigated the effects of dietary C. gracilis on lipid abnormalities in Sprague-Dawley rats fed a high-sucrose cholesterol-containing diet. Dried C. gracilis was added to the control diet at a final dose of 2 or 5% (w/w). After four weeks, the soleus muscle weights were found to be dose-responsive to C. gracilis and showed a tendency to increase. The hepatic triglyceride and total cholesterol levels were significantly reduced by C. gracilis feeding compared to those in the control group. The activities of FAS and G6PDH, which are related to fatty acid de novo synthesis, were found to be dose-responsive to C. gracilis and tended to decrease. The hepatic glycerol content was also significantly decreased by C. gracilis feeding, and the serum HDL cholesterol levels were significantly increased, whereas the serum levels of cholesterol absorption markers (i.e., campesterol and β-sitosterol) and the hepatic mRNA levels of Scarb1 were significantly decreased. Water-soluble metabolite analysis showed that the muscular contents of several amino acids, including leucine, were significantly increased by C. gracilis feeding. The tendency toward an increase in the weight of the soleus muscle as a result of C. gracilis feeding may be due to the enhancement of muscle protein synthesis centered on leucine. Collectively, these results show that the oral administration of C. gracilis alleviates hepatic lipid accumulation in rats fed a high-sucrose and cholesterol-containing diet, indicating the potential use of C. gracilis as a food resource.
Collapse
Affiliation(s)
- Bungo Shirouchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
- Correspondence: ; Tel.: +81-95-813-5734
| | - Yuri Kawahara
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Yuka Kutsuna
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mina Higuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mai Okumura
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Sarasa Mitsuta
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Norio Nagao
- Blue Scientific Shinkamigoto Co., Ltd., 770 Kogushi, Shin-Kamigoto, Minami-Matsuura, Nagasaki 857-4601, Japan
| | - Kazunari Tanaka
- Regional Partnership Center, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
27
|
Melloni M, Sergi D, Simioni C, Passaro A, Neri LM. Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. BIOLOGY 2023; 12:449. [PMID: 36979141 PMCID: PMC10044993 DOI: 10.3390/biology12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Microalgae represent a growing innovative source of nutraceuticals such as carotenoids and phenolic compound which are naturally present within these single-celled organisms or can be induced in response to specific growth conditions. The presence of the unfavourable allelic variant in genes involved in the control of oxidative stress, due to one or more SNPs in gene encoding protein involved in the regulation of redox balance, can lead to pathological conditions such as insulin resistance, which, in turn, is directly involved in the pathogenesis of type 2 diabetes mellitus. In this review we provide an overview of the main SNPs in antioxidant genes involved in the promotion of insulin resistance with a focus on the potential role of microalgae-derived antioxidant molecules as novel nutritional tools to mitigate oxidative stress and improve insulin sensitivity.
Collapse
Affiliation(s)
- Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
28
|
Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The food industry has increasingly added nutrients and other ingredients to products to enhance their health benefits. Fucoxanthin is recognized for its benefits in mitigating obesity, diabetes, hypertension, and inflammation. Therefore, addition of fucoxanthin into goat milk yogurt, its stability, and the physicochemical properties of yogurt during processing and storage was investigated. Yogurts with and without fucoxanthin were manufactured by mixing goat whole milk (82.85%, w/w), powdered goat milk (10.68%, w/w), and sugar (6.47%, w/w). Fucoxanthin (0.052 mg/g of yogurt mix) was added to the treatment. The mix was heated at 80 °C for 30 min, cooled, inoculated with a culture, and incubated at 43 °C for 5 h. Fucoxanthin in the yogurt mix and yogurt was quantified by an HPLC method. The recoveries of fucoxanthin from the mix before and after heating were 98.25% and 98.83%, respectively. However, less fucoxanthin (90.13%) was recovered from the freshly prepared yogurt than from the mix. Heating the yogurt mix did not affect the concentration of fucoxanthin but adding the inoculum to the mix reduced its concentration during fermentation. During the storage period, the concentration of fucoxanthin in yogurt remained the same. Fucoxanthin did not adversely affect the chemical composition and physicochemical properties of yogurt, but it influenced the color, decreasing lightness (81.47 ± 0.09), and increasing redness (7.67 ± 0.09) and yellowness (38.24 ± 0.09). Thus, goat milk yogurt can be an effective food matrix to deliver fucoxanthin to human diet.
Collapse
|
29
|
Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int J Biol Macromol 2023; 235:123867. [PMID: 36870664 DOI: 10.1016/j.ijbiomac.2023.123867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The anti-obesity activity of encapsulated fucoxanthin in fucoidan-based nanoemulsion was investigated. Then, high-fat diet (HFD) induced-obese rats were fed along with different treatments including administration of encapsulated fucoxanthin (10 mg/kg and 50 mg/kg/day), fucoidan (70 mg/kg), Nigella sativa oil (250 mg/kg), metformin (200 mg/kg), and free form of fucoxanthin (50 mg/kg) by oral gavage daily for 7 weeks. The study discovered that fucoidan-based nanoemulsions with a low and high dose of fucoxanthin had droplet size in the range of 181.70-184.87 nm and encapsulation efficacy of 89.94-91.68 %, respectively. Also exhibited 75.86 % and 83.76 % fucoxanthin in vitro release. The TEM images and FTIR spectera confirmed the particle size and encapsulation of fucoxanthin, respectively. Moreover, in vivo results revealed that encapsulated fucoxanthin reduced body and liver weight compared with a HFD group (p < 0.05). Biochemical parameters (FBS, TG, TC, HDL, LDL) and liver enzymes (ALP, AST, and ALT) were decreased after fucoxanthin and fucoidan administration. According to the histopathological analysis, fucoxanthin and fucoidan attenuated lipid accumulation in the liver.
Collapse
|
30
|
Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain Res Bull 2023; 193:11-21. [PMID: 36435362 DOI: 10.1016/j.brainresbull.2022.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder affecting the elderly. The exact pathology of AD is not yet fully understood and several hallmarks such as the deposition of amyloid-β, tau hyperphosphorylation, and neuroinflammation, as well as mitochondrial, metal ions, autophagy, and cholinergic dysfunctions are known as pathologic features of AD. Since no definitive treatment has been proposed to target AD to date, many natural products have shown promising preventive potentials and contributed to slowing down the disease progression. Algae is a promising source of novel bioactive substances known to prevent neurodegenerative disorders including AD. In this context, fucoxanthin and astaxanthin, natural carotenoids abundant in algae, has shown to possess neuroprotective properties through antioxidant, and anti-inflammatory characteristics in modulating the symptoms of AD. Fucoxanthin and astaxanthin exhibit anti-AD activities by inhibition of AChE, BuChE, BACE-1, and MAO, suppression of Aβ accumulation. Also, fucoxanthin and astaxanthin inhibit apoptosis induced by Aβ1-42 and H2O2-induced cytotoxicity, and modulate the antioxidant enzymes (SOD and CAT), through inhibition of the ERK pathway. Moreover, cellular and animal studies on the beneficial effects of fucoxanthin and astaxanthin against AD were also reviewed. The potential role of fucoxanthin and astaxanthin exhibits great efficacy for the management of AD by acting on multiple targets.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Wu Y, Jin X, Zhang Y, Liu J, Wu M, Tong H. Bioactive Compounds from Brown Algae Alleviate Nonalcoholic Fatty Liver Disease: An Extensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1771-1787. [PMID: 36689477 DOI: 10.1021/acs.jafc.2c06578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The increasing NAFLD incidences are associated with unhealthy lifestyles. Currently, there are no effective therapeutic options for NAFLD. Thus, there is a need to develop safe, efficient, and economic treatment options for NAFLD. Brown algae, which are edible, contain abundant bioactive compounds, including polysaccharides and phlorotannins. They have been shown to ameliorate insulin resistance, as well as hepatic steatosis, and all of these biological functions can potentially alleviate NAFLD. Accumulating reports have shown that increasing dietary consumption of brown algae reduces the risk for NAFLD development. In this review, we summarized the animal experiments and clinical proof of brown algae and their bioactive compounds for NAFLD treatment within the past decade. Our findings show possible avenues for further research into the pathophysiology of NAFLD and brown algae therapy.
Collapse
Affiliation(s)
- Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
32
|
Pharmacological Treatments and Natural Biocompounds in Weight Management. Pharmaceuticals (Basel) 2023; 16:ph16020212. [PMID: 37139804 PMCID: PMC9962258 DOI: 10.3390/ph16020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The obesity pandemic is one of society’s most urgent public health concerns. One-third of the global adult population may fall under obese or overweight by 2025, suggesting a rising demand for medical care and an exorbitant cost of healthcare expenditure in the coming years. Generally, the treatment strategy for obese patients is largely patient-centric and needs dietary, behavioral, pharmacological, and sometimes even surgical interventions. Given that obesity cases are rising in adults and children and lifestyle modifications have failed to produce the desired results, the need for medical therapy adjunct to lifestyle modifications is vital for better managing obesity. Most existing or past drugs for obesity treatment target satiety or monoamine pathways and induce a feeling of fullness in patients, while drugs such as orlistat are targeted against intestinal lipases. However, many medications targeted against neurotransmitters showed adverse events in patients, thus being withdrawn from the market. Alternatively, the combination of some drugs has been successfully tested in obesity management. However, the demand for novel, safer, and more efficacious pharmaceutical medicines for weight management does exist. The present review elucidates the current understanding of the available anti-obesity medicines of synthetic and natural origin, their main mechanisms of action, and the shortcomings associated with current weight management drugs.
Collapse
|
33
|
Undaria pinnatifida (Wakame) Intake Ameliorates High-Fat Diet-Induced Glucose Intolerance via Promoting GLUT4 Expression and Membrane Translocation in Muscle. J Nutr Metab 2023; 2023:9774157. [PMID: 36660406 PMCID: PMC9845039 DOI: 10.1155/2023/9774157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a lifestyle-related disease, is developed due to eating habits and decreased physical activity. Diabetes also increases the risk of cancer and major neurodegenerative diseases; controlling the onset of diabetes helps prevent various illnesses. Eating seaweed, such as Undaria pinnatifida (wakame), is a part of the Asian food culture. Therefore, we analyzed the antidiabetic effect of wakame intake using the high-fat diet-induced diabetes mouse model. Furthermore, we analyzed the effect of wakame extract on the cell membrane translocation of glucose transporter-4 (GLUT4) and activation of insulin signal molecules, such as AKT and AMPK, in insulin-sensitive tissues. Differentiated C2C12 cells were incubated with wakame components. The membrane translocation of GLUT4 and phosphorylation of AKT and AMPK were investigated with immunofluorescence staining and Western blotting, respectively. Also, male C57BL/6J mice were fed the normal diet (ND), high-fat diet (HFD), ND with 1% wakame powder (ND + W), or HFD with 1% wakame powder (HFD + W). We evaluated the effect of wakame intake on high-fat diet-induced glucose intolerance using an oral glucose tolerance test. Moreover, we analyzed insulin signaling molecules, such as GLUT4, AKT, and AMPK, in muscle using Western blotting. GLUT4 membrane translocation was promoted by wakame components. Also, GLUT4 levels and AKT and AMPK phosphorylation were significantly elevated by wakame components in C2C12 cells. In addition, the area under the curve (AUC) of the HFD + W group was significantly smaller than that of the HFD group. Furthermore, the level of GLUT4 in the muscle was increased in the wakame intake group. This study revealed that various wakame components exerted antidiabetic effects on the mice on a high-fat diet by promoting glucose uptake in the skeletal muscle, enhancing GLUT4 levels, and activating AKT and AMPK.
Collapse
|
34
|
Rodríguez IA, Serafini M, Alves IA, Lang KL, Silva FRMB, Aragón DM. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics 2022; 15:85. [PMID: 36678714 PMCID: PMC9867152 DOI: 10.3390/pharmaceutics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome that can be considered a growing health problem in the world. High blood glucose levels are one of the most notable clinical signs. Currently, new therapeutic alternatives have been tackled from clinicians' and scientists' points of view. Natural products are considered a promising source, due to the huge diversity of metabolites with pharmaceutical applications. Therefore, this review aimed to uncover the latest advances in this field as a potential alternative to the current therapeutic strategies for the treatment of DM. This purpose is achieved after a patent review, using the Espacenet database of the European Patent Office (EPO) (2016-2022). Final screening allowed us to investigate 19 patents, their components, and several technology strategies in DM. Plants, seaweeds, fungi, and minerals were used as raw materials in the patents. Additionally, metabolites such as tannins, organic acids, polyphenols, terpenes, and flavonoids were found to be related to the potential activity in DM. Moreover, the cellular transportation of active ingredients and solid forms with special drug delivery profiles is also considered a pharmaceutical technology strategy that can improve their safety and efficacy. From this perspective, natural products can be a promissory source to obtain new drugs for DM therapy.
Collapse
Affiliation(s)
- Ingrid Andrea Rodríguez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| | - Mairim Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, Sao Cristovao 49100-000, SE, Brazil
| | - Izabel Almeida Alves
- Department of Medicines, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| | - Karen Luise Lang
- Departamento de Farmácia, Campus Governador Valadares, Universidade Federal de Juiz de Fora, Governador Valadares, Juiz de Fora 36038-330, MG, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica—Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, Florianópolis 88037-000, SC, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| |
Collapse
|
35
|
Wu J, Wang H, Liu Y, Xu B, Du B, Yang Y. Effect of Ultrasonic Irradiation on the Physicochemical and Structural Properties of Laminaria japonica Polysaccharides and Their Performance in Biological Activities. Molecules 2022; 28:8. [PMID: 36615204 PMCID: PMC9822460 DOI: 10.3390/molecules28010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the large molecular weight and complex structure of Laminaria japonica polysaccharides (LJP), which limit their absorption and utilization by the body, methods to effectively degrade polysaccharides had received more and more attention. In the present research, hot water extraction coupled with three-phase partitioning (TPP) was developed to extract and isolate LJP. Ultrasonic L. japonica polysaccharides (ULJP) were obtained by ultrasonic degradation. In addition, their physicochemical characteristics and in vitro biological activities were investigated. Results indicated that ULJP had lower weight-average molecular weight (153 kDa) and looser surface morphology than the LJP. The primary structures of LJP and ULJP were basically unchanged, both contained α-hexo-pyranoses and were mainly connected by 1,4-glycosidic bonds. Compared with LJP, ULJP had stronger antioxidant activity, α-amylase inhibitory effect and anti-inflammatory effect on RAW264.7 macrophages. The scavenging rate of DPPH free radicals by ULJP is 35.85%. Therefore, ultrasonic degradation could effectively degrade LJP and significantly improve the biological activity of LJP, which provided a theoretical basis for the in-depth utilization and research and development of L. japonica in the fields of medicine and food.
Collapse
Affiliation(s)
- Jinhui Wu
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Huiying Wang
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yanfei Liu
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU–HKBU United International College, Zhuhai 519087, China
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yuedong Yang
- Food Science and Technology Program, Department of Life Sciences, BNU–HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
36
|
Chen S, Zhu L, Li J. Fucoxanthin ameliorates oxidative injury and inflammation of human bronchial epithelial cells induced by cigarette smoke extract via the PPARγ/NF‑κB signaling pathway. Exp Ther Med 2022; 25:69. [PMID: 36605523 PMCID: PMC9798150 DOI: 10.3892/etm.2022.11768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and long-term airway disease. It has been reported that fucoxanthin (FX) exhibits anti-inflammatory and antioxidant effects. However, the underlying mechanism of FX in COPD remains unknown. Therefore, to investigate the effect of FX on COPD, BEAS-2B cells were treated with cigarette smoke extract (CSE). The viability of BEAS-2B cells treated with increasing doses of FX was assessed by Cell Counting Kit-8. Lactate dehydrogenase (LDH) levels were measured using a corresponding kit. In addition, ELISA was carried out to detect the content of TNF-α, IL-1β and IL-6. Additionally, a TUNEL assay and western blot analysis were performed to assess the cell apoptosis rate. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species levels, while the contents of oxidative stress-associated indexes were determined using the corresponding kits. Bioinformatics analysis using the search tool for interactions of chemicals database predicted that peroxisome proliferator-activated receptor γ (PPARγ) may be a target of FX. The binding capacity of FTX with PPARγ was confirmed by molecular docking. The protein expression levels of the PPARγ/NF-κB signaling-associated factors were detected by western blot analysis. Finally, the regulatory mechanism of FX in COPD was revealed following cell treatment with the PPARγ inhibitor, T0070907. The results demonstrated that FX enhanced CSE-induced BEAS-2B cell viability and attenuated CSE-induced BEAS-2B cell inflammation and oxidative damage, possibly via triggering PPARγ/NF-κB signaling. Pre-treatment of BEAS-2B cells with the PPARγ inhibitor, T0070907, could reverse the protective effects of FX on CSE-induced BEAS-2B cells. Overall, the present study suggested that FX could ameliorate oxidative damage as well as inflammation in CSE-treated human bronchial epithelial in patients with COPD via modulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaolei Chen
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, P.R. China
| | - Lin Zhu
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, P.R. China
| | - Jun Li
- Department of General Medicine, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China,Correspondence to: Dr Jun Li, Department of General Medicine The Third Affiliated Hospital of Nantong University, 60 Qingnian Middle Road, Nangtong, Jiangsu 226000, P.R. China
| |
Collapse
|
37
|
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
39
|
BONETTI GABRIELE, HERBST KARENL, DONATO KEVIN, DHULI KRISTJANA, KIANI AYSHAKARIM, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, BERTELLI MATTEO. Dietary supplements for obesity. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E160-E168. [PMID: 36479472 PMCID: PMC9710396 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity and associated complications including diabetes, cardiometabolic dysfunction, disability, malignancy and premature mortality are considered epidemic. Research on obesity is therefore of worldwide importance. The development of obesity is a multifactorial phenomenon with contributions from biological, behavioral, genetic and environmental factors. Obesity and its associated issues require various lifestyle modifications and treatment options such medication, exercise, diet, surgery, pharmacological therapy and dietary supplements. Dietary supplements are considered an attractive alternative to traditional therapy due to their low toxicity profile and their accessibility to the general population. Dietary supplements may include one or more dietary ingredients. In this narrative review, we analyze the effects on obesity and obesity-related issues of various natural components. For example, there are a myriad of supplements that have been used as dietary supplements for weight loss such as minerals, vitamins, amino acids, metabolites, herbs, and plant extracts. This narrative review aims to present the benefits and side-effects of several ingredients of dietary supplements for weight loss and treatment of obesity. In particular, the mechanism of action, results of clinical trials, and possible side effects will be presented for the following ingredients: β-Glucans, bitter orange, calcium, vitamin D, chitosan, chromium, cocoa, coleus forskohlii, conjugate linoleic acid, ephedra sinica, fucoxanthin, garcinia cambogia, glucomannan, green coffee, green tea, guar gum, raspberry, hoodia gordonii, irvingia gabonensis, phenylpropylamine, pyruvate, white kidney bean.
Collapse
Affiliation(s)
- GABRIELE BONETTI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Gabriele Bonetti, MAGI’S LAB, Rovereto (TN) 38068, Italy. E-mail:
| | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills (California) and Tucson (Arizona), USA
| | | | | | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI’S LAB, Rovereto (TN), Italy
- MAGI EUREGIO, Bolzano, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
40
|
Carotenoids from Marine Microalgae as Antimelanoma Agents. Mar Drugs 2022; 20:md20100618. [PMID: 36286442 PMCID: PMC9604797 DOI: 10.3390/md20100618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma cells are highly invasive and metastatic tumor cells and commonly express molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conventional treatment is not effective in a long term, requiring an exhaustive search for new alternatives. Recently, carotenoids from microalgae have been investigated as adjuvant in antimelanoma therapy due to their safety and acceptable clinical tolerability. Many of them are currently used as food supplements. In this review, we have compiled several studies that show microalgal carotenoids inhibit cell proliferation, cell migration and invasion, as well as induced cell cycle arrest and apoptosis in various melanoma cell lines. MAPK and NF-ĸB pathway, MMP and apoptotic factors are frequently affected after exposure to microalgal carotenoids. Fucoxanthin, astaxanthin and zeaxanthin are the main carotenoids investigated, in both in vitro and in vivo experimental models. Preclinical data indicate these compounds exhibit direct antimelanoma effect but are also capable of restoring melanoma cells sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine).
Collapse
|
41
|
Han B, Ma Y, Liu Y. Fucoxanthin Prevents the Ovalbumin-Induced Food Allergic Response by Enhancing the Intestinal Epithelial Barrier and Regulating the Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10229-10238. [PMID: 35947424 DOI: 10.1021/acs.jafc.2c04685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to determine whether fucoxanthin alleviated ovalbumin (OVA)-induced food allergy (FA) and explored the possible mechanisms. The results indicated that supplementation with fucoxanthin at 10.0-20.0 mg/kg per day for 7 weeks inhibited food anaphylaxis and the production of immunoglobulin (Ig) E, IgG, histamine, and related cytokines while alleviating allergic symptoms in sensitized mice. Fucoxanthin enhanced the intestinal epithelial barrier by up-regulating tight junction (TJ) protein expression and promoting regenerating islet-derived protein III-gamma (RegIIIγ) and secretory IgA (sIgA) secretion. In addition, fucoxanthin induced the secretion of anti-inflammatory factors (interleukin (IL)-10 and transforming growth factor β (TGF-β)) by regulatory T (Treg) cells and decreased the pro-inflammatory factor levels (IL-4, tumor necrosis factor-α (TNF-α), IL-17, and IL-1β), ameliorating intestinal inflammation. Compared with the model group, beneficial bacteria, such as Lactobacillaceae, increased in the intestinal flora, while pathogenic bacteria like Helicobacteraceae, Desulfovibrionaceae, and Streptococcaceae decreased. Therefore, fucoxanthin may effectively prevent FA by enhancing the intestinal epithelial barrier and reshaping the intestinal flora.
Collapse
Affiliation(s)
- Bing Han
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yu Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
42
|
Wibowo AA, Elim PE, Heriyanto, Prihastyanti MNU, Yoewono JR, Shioi Y, Limantara L, Brotosudarmo THP. Effect of drying on the production of fucoxanthin isomers from brown seaweeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arif Agung Wibowo
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry Universitas Ma Chung Malang Indonesia
| | - Philip Estera Elim
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry Universitas Ma Chung Malang Indonesia
| | - Heriyanto
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry Universitas Ma Chung Malang Indonesia
| | - Monika Nur Utami Prihastyanti
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry Universitas Ma Chung Malang Indonesia
| | - Jessica Renata Yoewono
- Department of Food Technology Universitas Ciputra, Citraland CBD Boulevard Surabaya Indonesia
| | - Yuzo Shioi
- Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry Universitas Ma Chung Malang Indonesia
| | - Leenawaty Limantara
- Center for Urban Studies Universitas Pembangunan Jaya South Tangerang Indonesia
| | | |
Collapse
|
43
|
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Mar Drugs 2022; 20:md20080524. [PMID: 36005527 PMCID: PMC9410494 DOI: 10.3390/md20080524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.
Collapse
|
44
|
Cheng A, Lim WY, Lim PE, Yang Amri A, Poong SW, Song SL, Ilham Z. Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics. BIOLOGY 2022; 11:biology11081209. [PMID: 36009834 PMCID: PMC9405220 DOI: 10.3390/biology11081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Invasive species are a leading hazard to marine ecosystems worldwide, coupled with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are generally regarded as biological agents that restrict invasive species, and their efficiency depends on their dietary habits, especially the autotrophs they eat. Many researchers have found contradicting findings on the effects of nutritional attributes and novelty of autotrophs on herbivore eating behaviour. In light of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we provide a comprehensive review to fill knowledge gaps about synergies based on macroalgae, an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also analyse macroalgal defence measures against herbivores, underlining unique features and potential roles in maintaining marine ecosystems. The nutritional qualities, shape, and novelty of autotrophs can alter herbivore feeding behaviour. Future research should explore aspects that can alter marine autotroph-herbivore interactions to resolve inconsistent results of specific features and the uniqueness of the organisms involved. Abstract Species invasion is a leading threat to marine ecosystems worldwide, being deemed as one of the ultimate jeopardies for biodiversity along with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are often considered as biological agents that control the spread of invasive species, and their effectiveness depends largely on factors that influence their feeding preferences, including the specific attributes of their food–the autotrophs. While the marine autotroph-herbivore interactions have been substantially discussed globally, many studies have reported contradictory findings on the effects of nutritional attributes and novelty of autotrophs on herbivore feeding behaviour. In view of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we generate a comprehensive review to furnish insights into critical knowledge gaps about the synergies based largely on the characteristics of macroalgae; an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also discuss the key defence strategies of these macroalgae against the herbivores, highlighting their unique attributes and plausible roles in keeping the marine ecosystems intact. Overall, the feeding behaviour of herbivores can be affected by the nutritional attributes, morphology, and novelty of the autotrophs. We recommend that future research should carefully consider different factors that can potentially affect the dynamics of the marine autotroph-herbivore interactions to resolve the inconsistent results of specific attributes and novelty of the organisms involved.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wai Yin Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Phaik-Eem Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Affendi Yang Amri
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sze-Looi Song
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.-L.S.); (Z.I.); Tel.: +60-37967-4014 (Z.I.)
| | - Zul Ilham
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (S.-L.S.); (Z.I.); Tel.: +60-37967-4014 (Z.I.)
| |
Collapse
|
45
|
Das R, Rauf A, Mitra S, Emran TB, Hossain MJ, Khan Z, Naz S, Ahmad B, Meyyazhagan A, Pushparaj K, Wan CC, Balasubramanian B, Rengasamy KR, Simal-Gandara J. Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chem Biol Interact 2022; 365:110072. [PMID: 35952775 DOI: 10.1016/j.cbi.2022.110072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The sea is a vast ecosystem that has remained primarily unexploited and untapped, resulting in numerous organisms. Consequently, marine organisms have piqued the interest of scientists as an abundant source of natural resources with unique structural features and fascinating biological activities. Marine macrolide is a top-class natural product with a heavily oxygenated polyene backbone containing macrocyclic lactone. In the last few decades, significant efforts have been made to isolate and characterize macrolides' chemical and biological properties. Numerous macrolides are extracted from different marine organisms such as marine microorganisms, sponges, zooplankton, molluscs, cnidarians, red algae, tunicates, and bryozoans. Notably, the prominent macrolide sources are fungi, dinoflagellates, and sponges. Marine macrolides have several bioactive characteristics such as antimicrobial (antibacterial, antifungal, antimalarial, antiviral), anti-inflammatory, antidiabetic, cytotoxic, and neuroprotective activities. In brief, marine organisms are plentiful in naturally occurring macrolides, which can become the source of efficient and effective therapeutics for many diseases. This current review summarizes these exciting and promising novel marine macrolides in biological activities and possible therapeutic applications.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, 94640, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Bashir Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruit &Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit & Vegetables, College of Agronomy, Jiangxi Agricultural University Nanchang, 330045, Jiangxi, China.
| | | | - Kannan Rr Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
46
|
Blanco-Llamero C, Fonseca J, Durazzo A, Lucarini M, Santini A, Señoráns FJ, Souto EB. Nutraceuticals and Food-Grade Lipid Nanoparticles: From Natural Sources to a Circular Bioeconomy Approach. Foods 2022; 11:2318. [PMID: 35954085 PMCID: PMC9367884 DOI: 10.3390/foods11152318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Nutraceuticals have gained increasing attention over the last years due to their potential value as therapeutic compounds formulated from natural sources. For instance, there is a wide range of literature about the cardioprotective properties of omega-3 lipids and the antioxidant value of some phenolic compounds, which are related to antitumoral activity. However, the value of nutraceuticals can be limited by their instability under gastric pH and intestinal fluids, their low solubility and absorption. That is why encapsulation is a crucial step in nutraceutical design. In fact, pharmaceutical nanotechnology improves nutraceutical stability and bioavailability through the design and production of efficient nanoparticles (NPs). Lipid nanoparticles protect the bioactive compounds from light and external damage, including the gastric and intestinal conditions, providing a retarded delivery in the target area and guaranteeing the expected therapeutic effect of the nutraceutical. This review will focus on the key aspects of the encapsulation of bioactive compounds into lipid nanoparticles, exploring the pharmaceutical production methods available for the synthesis of NPs containing nutraceuticals. Moreover, the most common nutraceuticals will be discussed, considering the bioactive compounds, their natural source and the described biological properties.
Collapse
Affiliation(s)
- Cristina Blanco-Llamero
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.B.-L.); (J.F.)
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Joel Fonseca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.B.-L.); (J.F.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Francisco J. Señoráns
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.B.-L.); (J.F.)
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
47
|
Mumu M, Das A, Emran TB, Mitra S, Islam F, Roy A, Karim MM, Das R, Park MN, Chandran D, Sharma R, Khandaker MU, Idris AM, Kim B. Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022; 13:929442. [PMID: 35983376 PMCID: PMC9379326 DOI: 10.3389/fphar.2022.929442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (FX) is a special carotenoid having an allenic bond in its structure. FX is extracted from a variety of algae and edible seaweeds. It has been proved to contain numerous health benefits and preventive effects against diseases like diabetes, obesity, liver cirrhosis, malignant cancer, etc. Thus, FX can be used as a potent source of both pharmacological and nutritional ingredient to prevent infectious diseases. In this review, we gathered the information regarding the current findings on antimicrobial, antioxidant, anti-inflammatory, skin protective, anti-obesity, antidiabetic, hepatoprotective, and other properties of FX including its bioavailability and stability characteristics. This review aims to assist further biochemical studies in order to develop further pharmaceutical assets and nutritional products in combination with FX and its various metabolites.
Collapse
Affiliation(s)
- Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Talha Bin Emran, ; Abubakr M. Idris, ; Bonglee Kim,
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Md. Mobarak Karim
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rajib Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- *Correspondence: Talha Bin Emran, ; Abubakr M. Idris, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Talha Bin Emran, ; Abubakr M. Idris, ; Bonglee Kim,
| |
Collapse
|
48
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
49
|
Fang X, Zhu Y, Zhang T, Li Q, Fan L, Li X, Jiang D, Lin J, Zou L, Ren J, Huang Z, Ye H, Liu Y. Fucoxanthin Inactivates the PI3K/Akt Signaling Pathway to Mediate Malignant Biological Behaviors of Non-Small Cell Lung Cancer. Nutr Cancer 2022; 74:3747-3760. [PMID: 35838029 DOI: 10.1080/01635581.2022.2091149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although lung cancer treatment strategies have improved in recent years, the 5-year overall survival of non-small cell lung cancer (NSCLC) remains less than 15%. Chemotherapy is considered the most promising option in the comprehensive treatment of NSCLC. Fucoxanthin (FX) is a natural product derived from brown algae and has extensive applications in medicine. Previous studies reported that FX effectively inhibits the growth of NSCLC cells in vitro and in vivo. However, the mechanism underlying the anti-NSCLC effect of FX remains unknown. In this study, NSCLC cell lines and a xenograft nude mouse model were used to examine the anti-NSCLC activities of FX in vitro and in vivo. Network pharmacology analysis and inhibitors or activators of the PI3K/Akt signaling pathway were used to explore the anti-NSCLC mechanisms of FX. The results indicated that FX could inhibit proliferation, migration, and invasion, arrest cell cycle at the G0/G1 phase, and induce apoptosis of NSCLC cells in vitro. Additionally, FX suppressed tumor growth in vivo. The PI3K/Akt signaling pathway was found to be involved in the anti-NSCLC activity of FX. In conclusion, FX inhibits malignant biological behaviors of NSCLC by suppressing the phosphorylation of both PI3K and AKT, and subsequently inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuehong Fang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Taomin Zhang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qian Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Lvhua Fan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Xiaodan Li
- People's Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Daishun Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Jie Lin
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianwei Ren
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, China
| | - Zunnan Huang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| |
Collapse
|
50
|
Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23147641. [PMID: 35886989 PMCID: PMC9325132 DOI: 10.3390/ijms23147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body’s metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.
Collapse
|