1
|
Zayas GA, Santos Rojas C, Rodriguez EE, Hernandez AS, Beard AM, Rafiq F, Sarlo Davila KM, Mateescu RG. Genetic architecture of thermotolerance traits in beef cattle: a novel integration of SNP and breed-of-origin effects. Front Genet 2025; 16:1576966. [PMID: 40370695 PMCID: PMC12075150 DOI: 10.3389/fgene.2025.1576966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Background Rising temperatures increasingly expose beef cattle to heat stress, reducing productivity and welfare, especially in tropical climates. Crossbreeding Bos t. taurus and Bos t. indicus has emerged as a critical strategy to balance the production efficiency of taurine breeds with the superior thermotolerance of indicine breeds. Understanding the genetic architecture of thermotolerance traits is essential for improving heat resilience in beef cattle populations. Methods Phenotypes for short hair length (SHL, undercoat) and long hair length (LHL, topcoat), sweat gland area (SGA), and thermal stress slope (TSS), a measure of body temperature fluctuations under heat stress, were collected from 3,962 crossbred Angus-Brahman heifers. Heifers were genotyped, and breed-of-origin (BOA) for each marker was determined using LAMP-LD. Genome-wide association studies were conducted using SNP-only, BOA-only, and integrated SNP + BOA models to identify quantitative trait loci (QTLs) associated with thermotolerance traits. Genes in QTL regions were used for functional enrichment analysis using Gene Ontology (GO) and KEGG pathways. Results Significant QTLs for SHL and LHL were identified on BTA20, overlapping the PRLR gene. A QTL on BTA19 for SHL and LHL was driven solely by BOA effects, with Brahman BOA associated with shorter hair lengths. For SGA, six suggestive QTLs were detected, predominantly linked to Angus-derived alleles associated with reduced sweat gland area. For TSS, a significant QTL on BTA1 exhibited a strong BOA effect, with Angus BOA associated with higher TSS values, indicative of reduced thermoregulatory efficiency. Integrated SNP + BOA models provided greater resolution and revealed novel QTLs compared to single-effect models. Functional enrichment using GO and KEGG identified MAPK and estrogen signaling pathways in both LHL and TSS, indicating potential overlap in the biological processes influencing hair length and thermoregulation. Conclusion This study demonstrates the value of integrating BOA with SNP-based models to uncover the genetic architecture of thermotolerance traits in beef cattle. By better capturing breed-specific contributions, these findings enhance our understanding of thermoregulation and provide actionable insights for improving heat resilience in cattle.
Collapse
Affiliation(s)
- Gabriel A. Zayas
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Camila Santos Rojas
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Eduardo E. Rodriguez
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Aakilah S. Hernandez
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Ashley M. Beard
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Fahad Rafiq
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Kaitlyn M. Sarlo Davila
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Huang Y, Mao J, Li Z, Wang W, Ni Z, Cai F, Tang J, Wang W, Zhang L, Zhou L, Jiang X, Wu J, Guo Q, Rui M, Huang Z, Jiang H, Wang L, Xi K, Gu Y, Chen L. Signal Converter-Based Therapy Platform Promoting Aging Bone Healing by Improving Permeability of the Mitochondrial Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500156. [PMID: 40289881 DOI: 10.1002/adma.202500156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Indexed: 04/30/2025]
Abstract
The aging microenvironment promotes persistent inflammation and loss of intrinsic regenerative capacity. These are major obstacles to effective bone tissue repair in older adults. This study aims to explore how physical thermal stimulation can effectively delay the bone marrow mesenchymal stem cells (BMSCs) aging process. Based on this, an implantable physical signal-converter platform is designed as a therapeutic system that enables stable heat signals at the bone injury site under ultrasound stimulation (US). It is found that the therapeutic platform controllably reduces the mitochondrial outer membrane permeabilization of aging BMSCs, bidirectionally inhibiting mitochondrial reactive oxygen species and mitochondrial DNA (mtDNA) leakage. The leakage ratio of mtDNA decreases by 22.7%. This effectively mitigates the activation of the cGAS-STING pathway and its downstream NF-κB signaling induced by oxidative stress in aging BMSCs, thereby attenuating the pathological advancement of chronic inflammation. Thus, it effectively restores the metabolism and osteogenic differentiation of aging BMSCs in vitro, which is further confirmed in a rat model. In the GMPG/US group, the bone mineral density increases 2-3 times at 4 weeks in the rats femoral defect model. Therefore, this ultrasound-based signal-conversion platform provides a promising strategy for aging bone defect repair.
Collapse
Affiliation(s)
- Yiyang Huang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiang Yin, 214400, P. R. China
| | - Ziang Li
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenbo Wang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhengxia Ni
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Feng Cai
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lichen Zhang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xinzhao Jiang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Wu
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Qiangqiang Guo
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Min Rui
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiang Yin, 214400, P. R. China
| | - Ziyan Huang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Haochen Jiang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lingjun Wang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
3
|
Zhang B, Qi R. The dual-function of HSP70 in immune response and tumor immunity: from molecular regulation to therapeutic innovations. Front Immunol 2025; 16:1587414. [PMID: 40297581 PMCID: PMC12034705 DOI: 10.3389/fimmu.2025.1587414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Heat shock protein 70 (HSP70) is a highly conserved molecular chaperone that plays a core role in assisting protein folding and maintaining cellular homeostasis. In recent years, studies have revealed that HSP70 has dual functions in immune regulation: on the one hand, it enhances immune responses by activating non-specific immunity (such as Toll-like receptor 2/4 (TLR2/4) signaling pathways) and specific immunity (such as cross-presentation of antigens, T helper 1 (Th1)/T helper 17 (Th17) differentiation); on the other hand, it inhibits excessive immune reactions by inducing the differentiation of regulatory T cells (Treg) and promoting the secretion of anti-inflammatory factors [such as interleukin-10 (IL-10)]. In cancer, the duality of HSP70 is also very prominent: it can drive tumor progression through pathways such as inhibiting apoptosis, promoting angiogenesis, and tumor metastasis, and it can also inhibit tumor growth by activating immunogenic cell death (ICD), enhancing antigen presentation, and natural killer (NK) cell activity. This review aims to systematically analyze the immune regulatory functions of HSP70, focusing on its dual regulatory mechanisms and the "double-edged sword" nature of HSP70 in tumor immunotherapy and the innovative nature of targeted strategies, as well as providing a theoretical basis and research directions for precision medicine in the treatment strategies of related diseases.
Collapse
Affiliation(s)
- Beining Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education, and National Health Commission; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| |
Collapse
|
4
|
Zou Y, Xie Q, Lin J, Dong H, Zhuang X, Xian R, Liang Y, Li S. Immunomodulatory Effects and Mechanisms of Two-Dimensional Black Phosphorus on Macrophage Polarization and Bone Regeneration. Int J Nanomedicine 2025; 20:4337-4355. [PMID: 40230543 PMCID: PMC11994470 DOI: 10.2147/ijn.s508309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
The repair of bone defects poses a significant challenge within the realm of clinical medicine. However, with the advent of various emerging biotechnologies, bone tissue engineering (BTE) has emerged as a promising discipline that offers innovative therapeutic strategies to address bone defects. Among the novel biomaterials being explored, two-dimensional (2D) black phosphorus (BP) has attracted considerable attention due to its advantageous properties, which include antimicrobial activity, drug delivery capabilities, and effective photothermal conversion. These properties render BP an excellent candidate for BTE applications. Recent studies have indicated that BP possesses remarkable immunomodulatory properties that influence bone regeneration, profoundly impacting the transformation of the osteoimmune microenvironment, thereby guiding the process of bone remodeling. Macrophage is a principal component of the osteoimmune microenvironment, and evidence suggests that BP significantly influences the polarization of macrophage M1 and M2 phenotypes. This review aims to present the regulatory effects and underlying mechanisms of 2D BP on macrophage polarization in the immune microenvironment. It highlights the ability of BP to systematically modulate the inflammatory environment and to facilitate the metabolic reprogramming of macrophages. The review concludes with a discussion of the potential applications and limitations of BP nanomaterials in the field of BTE.
Collapse
Affiliation(s)
- Yue Zou
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qinkai Xie
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Youde Liang
- Department of stomatology center, The People’s Hospital of Baoan Shenzhen, Shenzhen, People’s Republic of China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Nowakowska A, Marchelek-Myśliwiec M, Skórka-Majewicz M, Żwierełło W, Grzeszczak K, Gutowska I. The Impact of Recreational Diving to a Depth of 40 m on Selected Intracellular DAMPs. Int J Mol Sci 2025; 26:3061. [PMID: 40243713 PMCID: PMC11989067 DOI: 10.3390/ijms26073061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in divers' bodies, which may modulate damage-associated molecular pattern (DAMPs), their receptors and the antioxidant response. This study involved 21 divers who descended to a depth of 40 metres. Determinations of selected intracellular DAMPs (high-mobility group box protein 1,HMGB1, S100 calcium-binding proteins A9 and A8, S100A8 and S100A9, heat shock protein family A member 1A, HSPA1A (Hsp70), heat shock protein family B, (small) member 1, HSPB1(Hsp27), thioredoxin, TXN), their receptors (Toll-like receptor 4, TLR4 and receptors for advanced glycation end products, RAGE), nuclear factor-κB (NF-κB) and antioxidant defence markers were performed before, after and 1 h after the dive. A significant transient reduction in HMGB1 expression was observed immediately after the dive at both the mRNA and protein levels. We noted an increase in S100A9 expression, which occurred 1 h post-dive compared to the post-dive time point, and a post-dive decrease in TLR4 expression only at the mRNA level. Diving also influenced the expression of genes encoding key enzymes associated with glutathione synthesis, (glutamate-cysteine ligase, catalytic subunit, GCLC and glutathione synthetase, GSS), and reduced plasma glutathione levels. However, no significant changes were observed in the expression of NF-κB, nitric oxide synthase 2 (NOS2) or circulating DAMP receptors (TLR4 and RAGE). The findings suggest an adaptive response to diving-induced oxidative stress, which appears to be a protective mechanism against an excessive inflammatory response. To our knowledge, this is the first study to analyse the role of intracellular DAMPs in recreational divers.
Collapse
Affiliation(s)
- Anna Nowakowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Małgorzata Marchelek-Myśliwiec
- Clinical Department of Nephrology, Transplantology & Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Konrad Grzeszczak
- Department of Laboratory Diagnostics, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| |
Collapse
|
6
|
Qi R, Cheng X, Chen S, Fan J. Extracellular HSP70 facilitated β-glucan induced trained immunity in macrophages to suppress sepsis via TLR2-NF-κB axis. Cytokine 2025; 187:156861. [PMID: 39823994 DOI: 10.1016/j.cyto.2025.156861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Sepsis is a common systemic infectious disease followed by extremely high incidence and mortality with no effective treatment and clinical drugs. As a key mediator involved in infection and immunity, it has been reported that sepsis patients are accompanied by increased heat shock protein 70 (HSP70). Trained immunity is a novel innate immunity approach that can be activated by β-glucan to fight against sepsis. The mechanism of HSP70 activating trained macrophages against sepsis needs further elucidation. Trained immunity and sepsis models were established by β-glucan and LPS individually both in vivo and in vitro. We demonstrated that HSP70 was significantly upregulated in septic mice serum, and HSP70 could protect mice from sepsis by activating β-glucan-trained macrophages as an ideal secondary inducer via TLR2-NF-κB pathway. Additionally, the sepsis resistant effects of HSP70 could be blocked by its antibody. In summary, more than a molecular chaperone to maintain homeostasis, HSP70 could be an important trained immunity inducer to help the body fighting against sepsis, which provided new stimuli for trained immunity and novel therapeutic solutions for sepsis.
Collapse
Affiliation(s)
- Ran Qi
- Department of Clinical Laboratory, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong, China
| | - Xin Cheng
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan, Shandong, China
| | - Shan Chen
- Department of Clinical Laboratory, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong, China
| | - Jinjun Fan
- Department of Clinical Laboratory, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong, China.
| |
Collapse
|
7
|
Molinari G, Ribeiro SS, Müller K, Mayer BE, Rohde M, Arce‐Rodriguez A, Vargas‐Guerrero JJ, Avetisyan A, Wissing J, Tegge W, Jänsch L, Brönstrup M, Danchin A, Jahn M, Timmis KN, Ebbinghaus S, Jahn D, Borrero‐de Acuña JM. Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK. Microb Biotechnol 2025; 18:e70096. [PMID: 39937155 PMCID: PMC11816700 DOI: 10.1111/1751-7915.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
The DnaK (Hsp70) protein is an essential ATP-dependent chaperone foldase and holdase found in most organisms. In this study, combining multiple experimental approaches we determined FliC as major interaction partner of DnaK in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Implementing immunofluorescence microscopy and electron microscopy techniques DnaK was found extracellularly associated to the assembled filament in a regular pattern. dnaK repression led to intracellular FliC accumulation and motility impairment, highlighting DnaK essentiality for FliC export and flagellum assembly. SPOT-membrane peptide arrays coupled with artificial intelligence analyses suggested a highly dynamic DnaK-FliC interaction landscape involving multiple domains and transient complexes formation. Remarkably, in vitro fast relaxation imaging (FReI) experiments mimicking ATP-deprived extracellular environment conditions exhibited DnaK ATP-independent holdase activity, regardless of its co-chaperone DnaJ and its nucleotide exchange factor GrpE. We present a model for the DnaK-FliC interactions involving dynamic states throughout the flagellum assembly stages. These results expand the classical view of DnaK chaperone functioning and introduce a new participant in the Pseudomonas flagellar system, an important trait for bacterial colonisation and virulence.
Collapse
Affiliation(s)
- Gabriella Molinari
- Central Facility for MicroscopyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Sara S. Ribeiro
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Katrin Müller
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Benjamin E. Mayer
- Computational Biology and SimulationTechnische Universität DarmstadtDarmstadtGermany
| | - Manfred Rohde
- Central Facility for MicroscopyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | | | | | - Albert Avetisyan
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Josef Wissing
- Department Cellular Proteome ResearchHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Werner Tegge
- Department of Chemical BiologyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lothar Jänsch
- Department Cellular Proteome ResearchHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of MedicineThe University of Hong KongSAR Hong KongChina
| | - Martina Jahn
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Kenneth N. Timmis
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Dieter Jahn
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
- Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigBraunschweigGermany
| | - José Manuel Borrero‐de Acuña
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
- Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
8
|
Wang J, Mao H, Liu R, Zeng Z, Xie L, Yang Y, He Y. LL37-DNA Complex Drives Vitiligo Progression Through TLR9-MyD88 Signaling Pathways. Pigment Cell Melanoma Res 2025; 38:e13202. [PMID: 39344705 DOI: 10.1111/pcmr.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Vitiligo is an autoimmune disorder characterized by chronic depigmentation and milk-white patches on the skin. Skin infiltration by autoreactive CD8+ T cells causes melanocyte destruction in vitiligo. Multiple risk factors, particularly immune-related inflammatory factors, are involved in the disappearance of melanocytes. LL37 is a classic damage-associated molecular pattern molecule that is involved in the development of various autoimmune diseases. An enhanced expression of LL37 in vitiligo is known; however, the exact role of LL37 in melanocyte loss has not yet been elucidated. In the present study, we detected increased LL37 expression in vitiligo serum and lesions. Furthermore, we confirmed that cultured keratinocytes released LL37 after treatment with H2O2. Moreover, the LL37-DNA complex enhanced the secretion of CXCL9, CXCL10, and CXCL16 from keratinocytes via the TLR9-MyD88 signaling pathway and facilitated the migration of CD8+ T cells. Altogether, our study demonstrates that LL37 released from keratinocytes binds to DNA and contributes to melanocyte destruction under oxidative stress-induced autoimmunity in vitiligo.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, Medical Center Hospital of Qionglai City, Qionglai, Sichuan, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ziyuan Zeng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lvsha Xie
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- Department of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Rizzi A, Li Pomi F, Inchingolo R, Viola M, Borgia F, Gangemi S. Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives. Biomedicines 2024; 12:2765. [PMID: 39767672 PMCID: PMC11673798 DOI: 10.3390/biomedicines12122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the world, approximately 1% of the population suffers from chronic spontaneous urticaria (CSU), burdening patients' quality of life and challenging clinicians in terms of treatment. Recent scientific evidence has unveiled the potential role of a family of molecules known as "alarmins" in the pathogenesis of CSU. Methods: Papers focusing on the potential pathogenetic role of alarmins in CSU with diagnostic (as biomarkers) and therapeutic implications, in English and published in PubMed, Scopus, Web of Science, as well as clinical studies registered in ClinicalTrials.gov and the EudraCT Public website, were reviewed. Results: The epithelial-derived alarmins thymic stromal lymphopoietin and IL-33 could be suitable diagnostic and prognostic biomarkers and possible therapeutic targets in CSU. The evidence on the role of non-epithelial-derived alarmins (heat shock proteins, S-100 proteins, eosinophil-derived neurotoxin, β-defensins, and acid uric to high-density lipoproteins ratio) is more heterogeneous and complex. Conclusions: More homogeneous studies on large cohorts, preferably supported by data from international registries, will be able to elucidate the intriguing and complex pathogenetic world of CSU.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Inchingolo
- UOC Pneumologia, Dipartimento Neuroscienze, Organi di Senso e Torace; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Marinella Viola
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
10
|
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem 2024; 479:3273-3291. [PMID: 38427167 DOI: 10.1007/s11010-024-04948-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Sitko K, Mantej J, Bednarek M, Tukaj S. Detection of autoantibodies to heat shock protein 70 in the saliva and urine of normal individuals. Front Immunol 2024; 15:1454018. [PMID: 39136018 PMCID: PMC11317234 DOI: 10.3389/fimmu.2024.1454018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Cells exposed to stressors of various origin activate protective mechanisms that include the expression of heat shock proteins (Hsps)/molecular chaperones belonging to several families. Well-characterized inducible Hsp70 is present in all human cell-types and biological fluids, including blood, urine, and saliva. The presence of anti-Hsp70 autoantibodies in the serum of healthy individuals has already been confirmed, and their elevated titers positively correlated with the severity of several pathological conditions, including coeliac disease and dermatitis herpetiformis - a cutaneous manifestation of coeliac disease. Here, using an indirect enzyme-linked immunosorbent assay, we demonstrate, for the first time, that anti-Hsp70 autoantibodies are present in the saliva and urine of healthy individuals. Although the occurrence of anti-Hsp70 autoantibodies in the biological fluids of healthy individuals is intriguing, their physiological role is currently unknown. It is believed that antibodies reacting with self-molecules present in the serum of healthy individuals are part of natural autoantibody pool with multiple regulatory functions. On the other hand, some autoantibodies (e.g., typical of autoimmune bullous skin diseases or systemic lupus erythematosus) may be present before the onset of the disease and serve as specific predictive biomarkers. Therefore, we would like to initiate a discussion or future research direction on the use of anti-Hsp70 autoantibodies as a potential "biomarker" in the diagnosis or prediction of autoimmune diseases. Our findings can be considered in biomedical research to develop noninvasive, inexpensive and easy-to-use tests. Nevertheless, large-scale comparative studies should be initiated, involving the collection and analysis of biological samples such as saliva or urine from patients suffering from autoimmune diseases or other inflammatory or neoplastic diseases, to determine whether the levels of anti-Hsp70 autoantibodies are indeed elevated and whether they correlate with the clinical picture of any disease or established biomarkers.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Lai PF, Mahendran R, Tsai BCK, Lu CY, Kuo CH, Lin KH, Lu SY, Wu YL, Chang YM, Kuo WW, Huang CY. Calycosin Enhances Heat Shock Related-Proteins in H9c2 Cells to Modulate Survival and Apoptosis against Heat Shock. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1173-1193. [PMID: 38938156 DOI: 10.1142/s0192415x24500472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Heat shock proteins (HSPs), which function as chaperones, are activated in response to various environmental stressors. In addition to their role in diverse aspects of protein production, HSPs protect against harmful protein-related stressors. Calycosin exhibits numerous beneficial properties. This study aims to explore the protective effects of calycosin in the heart under heat shock and determine its underlying mechanism. H9c2 cells, western blot, TUNEL staining, flow cytometry, and immunofluorescence staining were used. The time-dependent effects of heat shock analyzed using western blot revealed increased HSP expression for up to 2[Formula: see text]h, followed by protein degradation after 4[Formula: see text]h. Hence, a heat shock damage duration of 4[Formula: see text]h was chosen for subsequent investigations. Calycosin administered post-heat shock demonstrated dose-dependent recovery of cell viability. Under heat shock conditions, calycosin prevented the apoptosis of H9c2 cells by upregulating HSPs, suppressing p-JNK, enhancing Bcl-2 activation, and inhibiting cleaved caspase 3. Calycosin also inhibited Fas/FasL expression and activated cell survival markers (p-PI3K, p-ERK, p-Akt), indicating their cytoprotective properties through PI3K/Akt activation and JNK inhibition. TUNEL staining and flow cytometry confirmed that calycosin reduced apoptosis. Moreover, calycosin reversed the inhibitory effects of quercetin on HSF1 and Hsp70 expression, illustrating its role in enhancing Hsp70 expression through HSF1 activation during heat shock. Immunofluorescence staining demonstrated HSF1 translocation to the nucleus following calycosin treatment, emphasizing its cytoprotective effects. In conclusion, calycosin exhibits pronounced protective effects against heat shock-induced damages by modulating HSP expression and regulating key signaling pathways to promote cell survival in H9c2 cells.
Collapse
Affiliation(s)
- Pei-Fang Lai
- Department of Emergency Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ramasamy Mahendran
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei 111, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei 111, Taiwan
- School of Physical Education and Sports Science, Soochow University, Suzhou 215021, China
- Department of Kinesiology and Health, College of William and Mary, Williamsburg, VA 23185, USA
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 406, Taiwan
| | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung 406, Taiwan
- Division of Cardiovascular Medicine, Department of Internal, Medicine China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ling Wu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, 840, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, 824, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
- School of Pharmacy, China Medical University, Taichung 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
13
|
Yang X, Li K, Li M, Chen C, Yang X, Li J, Zhang H. Ultrashort wave diathermy inhibits pulmonary inflammation in mice with acute lung injury in a HSP70 independent way: a pilot study. Mol Biol Rep 2024; 51:750. [PMID: 38874700 DOI: 10.1007/s11033-024-09686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a clinical syndrome characterized by pulmonary inflammation. Ultrashort wave diathermy (USWD) has been shown to be effective at in inhibiting ALI inflammation, although the underlying mechanism remains unclear. Previous studies have demonstrated that USWD generates a therapeutic thermal environment that aligns with the temperature required for heat shock protein 70 (HSP70), an endogenous protective substance. In this study, we examined the correlation between HSP70 and USWD in alleviating lung inflammation in ALI. METHODS Forty-eight male C57BL/6 mice were randomly divided into control, model, USWD intervention (LU) 1, 2, and 3, and USWD preintervention (UL) 1, 2, and 3 groups (n = 6 in each group). The mice were pretreated with LPS to induce ALI. The UL1, 2, and 3 groups received USWD treatment before LPS infusion, while the LU1, 2, and 3 groups received USWD treatment after LPS infusion. Lung function and structure, inflammatory factor levels and HSP70 protein expression levels were detected. RESULTS USWD effectively improved lung structure and function, and significantly reduced IL-1β, IL-10, TGF-β1, and TNF-α levels in both the USWD preintervention and intervention groups. However, HSP70 expression did not significantly differ across the experimental groups although the expression of TLR4 was significantly decreased, suggesting that USWD may have anti-inflammatory effects through multiple signaling pathways or that the experimental conditions should be restricted. CONCLUSIONS Both USWD intervention and preintervention effectively reduced the inflammatory response, alleviated lung injury symptoms, and played a protective role in LPS-pretreated ALI mice. HSP70 was potentially regulated by USWD in this process, but further studies are urgently needed to elucidate the correlation and mechanism.
Collapse
Affiliation(s)
- Xiao Yang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
- Chengdu 363 Hospital affiliated to Southwest Medical University, Chengdu, 610000, P.R. China
| | - Kangxia Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Min Li
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Caitao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China
| | - Xuezhi Yang
- Chengdu 363 Hospital affiliated to Southwest Medical University, Chengdu, 610000, P.R. China
| | - Jian Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China.
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, P.R. China.
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P.R. China.
| |
Collapse
|
14
|
Tukaj S. Dual role of autoantibodies to heat shock proteins in autoimmune diseases. Front Immunol 2024; 15:1421528. [PMID: 38903496 PMCID: PMC11187000 DOI: 10.3389/fimmu.2024.1421528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens (autoantigens) by immune system cells. Loss of immunological tolerance may lead to the generation of autoantibodies and, consequently, tissue damage. It has already been proven that highly immunogenic bacterial and autologous extracellular heat shock proteins (eHsps) interact with immune cells of the innate and adaptive arms of the immune system. The latter interactions may stimulate a humoral (auto)immune response and lead to the generation of anti-Hsps (auto)antibodies. Although circulating levels of anti-Hsps autoantibodies are often elevated in patients suffering from multiple inflammatory and autoimmune diseases, their role in the development of pathological conditions is not fully established. This mini-review presents the dual role of anti-Hsps autoantibodies - protective or pathogenic - in the context of the development of selected autoimmune diseases.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
15
|
Drăgan A, Drăgan AŞ. The Preventive Role of Glutamine Supplementation in Cardiac Surgery-Associated Kidney Injury from Experimental Research to Clinical Practice: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:761. [PMID: 38792944 PMCID: PMC11123382 DOI: 10.3390/medicina60050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Acute kidney injury represents a significant threat in cardiac surgery regarding complications and costs. Novel preventive approaches are needed, as the therapeutic modalities are still limited. As experimental studies have demonstrated, glutamine, a conditionally essential amino acid, might have a protective role in this setting. Moreover, the levels of glutamine after the cardiopulmonary bypass are significantly lower. In clinical practice, various trials have investigated the effects of glutamine supplementation on cardiac surgery with encouraging results. However, these studies are heterogeneous regarding the selection criteria, timing, dose, outcomes studied, and way of glutamine administration. This narrative review aims to present the potential role of glutamine in cardiac surgery-associated acute kidney injury prevention, starting from the experimental studies and guidelines to the clinical practice and future directions.
Collapse
Affiliation(s)
- Anca Drăgan
- Department of Cardiovascular Anaesthesiology and Intensive Care, Emergency Institute for Cardiovascular Diseases “Prof Dr C C Iliescu”, 258 Fundeni Road, 022328 Bucharest, Romania
| | - Adrian Ştefan Drăgan
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| |
Collapse
|
16
|
Çamoğlu T, Yurttaş Z, Kına ÜY, Akkuş Süt P, Sahin F, Dursun E, Gezen-Ak D. Fibrillar Alpha-Synuclein Alters the Intracellular Chaperone Levels within Hours of Its Internalization. ACS OMEGA 2024; 9:17185-17194. [PMID: 38645348 PMCID: PMC11025075 DOI: 10.1021/acsomega.3c10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide. According to the Braak hypothesis, the disease spreads along specific neuroanatomical pathways. Studies indicate that fibrillar alpha-synuclein (F-αSyn) can propagate from cell-to-cell by following intercellular connections, leading to the selective death of certain cell groups like substantia nigra dopaminergic neurons and advancing the pathology. Internalized F-αSyn can be eliminated by lysosomes, proteasomes, or chaperones before it replicates inside the cell. Research has shown that F-αSyn can somehow escape from endosomes, lysosomes, and proteasomes and replicate itself. However, the impact of chaperones on intracellular levels during the initial hours of their internalization remains unknown. The present study investigates the effect of F-αSyn on chaperone levels within the first 6 and 12 h after internalization. Our findings showed that within the first 6 h, Hsc70 and Hsp90 levels were increased, while within 12 h, F-αSyn leads to a decrease or suppression of numerous intracellular chaperone levels. Exploring the pathological effects of PD on cells will contribute to identifying more targets for therapeutic interventions.
Collapse
Affiliation(s)
- Tugay Çamoğlu
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Zuhal Yurttaş
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Ümit Yaşar Kına
- Beykoz
Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Pınar Akkuş Süt
- Department
of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Fikrettin Sahin
- Department
of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Erdinç Dursun
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Duygu Gezen-Ak
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| |
Collapse
|
17
|
Du H, He K, Zhao J, You Q, Zhou X, Wang J. Co-differential genes between DKD and aging: implications for a diagnostic model of DKD. PeerJ 2024; 12:e17046. [PMID: 38435999 PMCID: PMC10909364 DOI: 10.7717/peerj.17046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Objective Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) that is closely related to aging. In this study, we found co-differential genes between DKD and aging and established a diagnostic model of DKD based on these genes. Methods Differentially expressed genes (DEGs) in DKD were screened using GEO datasets. The intersection of the DEGs of DKD and aging-related genes revealed DKD and aging co-differential genes. Based on this, a genetic diagnostic model for DKD was constructed using LASSO regression. The characteristics of these genes were investigated using consensus clustering, WGCNA, functional enrichment, and immune cell infiltration. Finally, the expression of diagnostic model genes was analyzed using single-cell RNA sequencing (scRNA-seq) in DKD mice (model constructed by streptozotocin (STZ) injection and confirmed by tissue section staining). Results First, there were 159 common differential genes between DKD and aging, 15 of which were significant. These co-differential genes were involved in stress, glucolipid metabolism, and immunological functions. Second, a genetic diagnostic model (including IGF1, CETP, PCK1, FOS, and HSPA1A) was developed based on these genes. Validation of these model genes in scRNA-seq data revealed statistically significant variations in FOS, HSPA1A, and PCK1 gene expression between the early DKD and control groups. Validation of these model genes in the kidneys of DKD mice revealed that Igf1, Fos, Pck1, and Hspa1a had lower expression in DKD mice, with Igf1 expression being statistically significant. Conclusion Our findings suggest that DKD and aging co-differential genes are significant in DKD diagnosis, providing a theoretical basis for novel research directions on DKD.
Collapse
Affiliation(s)
- Hongxuan Du
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jing Zhao
- Department of Pediatric Cardiology, nephrology, rheumatism and Immunology, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Qicai You
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jianqin Wang
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Xiao J, Guo W, Han Z, Xu Y, Xing Y, Phillips CJC, Shi B. The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions. Animals (Basel) 2024; 14:518. [PMID: 38338161 PMCID: PMC10854601 DOI: 10.3390/ani14030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Cold conditions in northern China during winter may reduce sheep growth and affect their health, especially if they are young, unless housing is provided. We allocated 45 two-month-old female lambs to be housed in an enclosed building, a polytunnel, or kept outdoors, for 28 days. The daily weight gain and scalp and ear skin temperature of outdoor lambs were less than those of lambs that were housed in either a house or polytunnel; however, rectal temperature was unaffected by treatment. There was a progressive change in blood composition over time, and by the end of the experiment, outdoor lambs had reduced total antioxidant capacity (T-AOC), catalase (CAT), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) and increased malondialdehyde compared to those in the house or polytunnel. In relation to immune responses in the lambs' serum, in the polytunnel, immunoglobulin A (IgA), tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) were higher and immunoglobulin G (IgG) lower compared with the concentrations in lambs that were outdoors. Over the course of the experiment, genes expressing heat shock proteins and antioxidant enzymes increased in lambs in the outdoor treatment, whereas they decreased in lambs in the indoor treatments. It is concluded that although there were no treatment effects on core body temperature, the trends for progressive changes in blood composition and gene expression indicate that the outdoor lambs were not physiologically stable; hence, they should not be kept outdoors in these environmental conditions for long periods.
Collapse
Affiliation(s)
- Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Zhipeng Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Science, Estonia University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| |
Collapse
|
19
|
Ghozali DA, Doewes M, Soetrisno S, Indarto D, Ilyas MF. Dose-response effect of L-citrulline on skeletal muscle damage after acute eccentric exercise: an in vivo study in mice. PeerJ 2023; 11:e16684. [PMID: 38130917 PMCID: PMC10734431 DOI: 10.7717/peerj.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Background Eccentric exercise may trigger mechanical stress, resulting in muscle damage that may decrease athletic performance. L-citrulline potentially prevents skeletal muscle damage after acute eccentric exercise. This study aimed to assess the dose-response effect of L-citrulline as a preventive therapy for skeletal muscle damage in mice after acute eccentric exercise. Methods This is a controlled laboratory in vivo study with a post-test-only design. Male mice (BALB/c, n = 25) were randomized into the following groups: a normal control (C1) (n = 5); a negative control (C2) with downhill running and placebo intervention (n = 5); treatment groups: T1 (n = 5), T2 (n = 5), and T3 (n = 5), were subjected to downhill running and 250, 500, and 1,000 mg/kg of L-citrulline, respectively, for seven days. Blood plasma was used to determine the levels of TNNI2 and gastrocnemius muscle tissue NOX2, IL-6, and caspase 3 using ELISA. NF-κB and HSP-70 expressions were determined by immunohistochemistry. Results Skeletal muscle damage (plasma TNNI2 levels) in mice after eccentric exercise was lower after 250 and 500 mg/kg of L-citrulline. Further, changes in oxidative stress markers, NOX2, were reduced after a 1,000 mg/kg dose. However, a lower level of change has been observed in levels of cellular response markers (NF-κB, HSP-70, IL-6, and caspase 3) after administration of L-citrulline doses of 250, 500, and 1,000 mg/kg. Conclusion L-citrulline may prevent skeletal muscle damage in mice after acute eccentric exercise through antioxidant effects as well as inflammatory and apoptotic pathways. In relation to dose-related effects, it was found that L-citrulline doses of 250, 500, and 1,000 mg/kg significantly influenced the expression of NF-κB and HSP-70, as well as the levels of IL-6 and caspase 3. Meanwhile, only doses of 250 and 500 mg/kg had an impact on TNNI2 levels, and the 1,000 mg/kg dose affected NOX2 levels.
Collapse
Affiliation(s)
- Dhoni Akbar Ghozali
- Department of Anatomy and Embryology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Muchsin Doewes
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Soetrisno Soetrisno
- Departement of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Dono Indarto
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Muhana Fawwazy Ilyas
- Department of Anatomy and Embryology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
- Department of Neurology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| |
Collapse
|
20
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Alshamrani S, Mashraqi MM, Alzamami A, Alturki NA, Almasoudi HH, Alshahrani MA, Basharat Z. Mining Autoimmune-Disorder-Linked Molecular-Mimicry Candidates in Clostridioides difficile and Prospects of Mimic-Based Vaccine Design: An In Silico Approach. Microorganisms 2023; 11:2300. [PMID: 37764144 PMCID: PMC10536613 DOI: 10.3390/microorganisms11092300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular mimicry, a phenomenon in which microbial or environmental antigens resemble host antigens, has been proposed as a potential trigger for autoimmune responses. In this study, we employed a bioinformatics approach to investigate the role of molecular mimicry in Clostridioides difficile-caused infections and the induction of autoimmune disorders due to this phenomenon. Comparing proteomes of host and pathogen, we identified 23 proteins that exhibited significant sequence homology and were linked to autoimmune disorders. The disorders included rheumatoid arthritis, psoriasis, Alzheimer's disease, etc., while infections included viral and bacterial infections like HIV, HCV, and tuberculosis. The structure of the homologous proteins was superposed, and RMSD was calculated to find the maximum deviation, while accounting for rigid and flexible regions. Two sequence mimics (antigenic, non-allergenic, and immunogenic) of ≥10 amino acids from these proteins were used to design a vaccine construct to explore the possibility of eliciting an immune response. Docking analysis of the top vaccine construct C2 showed favorable interactions with HLA and TLR-4 receptor, indicating potential efficacy. The B-cell and T-helper cell activity was also simulated, showing promising results for effective immunization against C. difficile infections. This study highlights the potential of C. difficile to trigger autoimmunity through molecular mimicry and vaccine design based on sequence mimics that trigger a defensive response.
Collapse
Affiliation(s)
- Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia;
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Hassan H. Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | | |
Collapse
|
22
|
He LY, Niu SQ, Yang CX, Tang P, Fu JJ, Tan L, Li Y, Hua YN, Liu SJ, Guo JL. Cordyceps proteins alleviate lupus nephritis through modulation of the STAT3/mTOR/NF-кB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116284. [PMID: 36828195 DOI: 10.1016/j.jep.2023.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps is a parasitic edible fungus, which is a unique Chinese medicinal material. It has been reported to have immunomodulatory effects and use in kidney disease. Especially, Cordyceps has been used in the treatment of lupus nephritis (LN). AIM OF STUDY Cordyceps proteins (CP) have a favorable bidirectional immunomodulatory functions and may have therapeutic potential for LN. However, the underlying molecular mechanism remains unknown. So this study aimed to examine the activities of CP in LN and possible mechanism. MATERIALS AND METHODS So proteomics was performed to detect proteins components of Cordyceps, and analysis it. In addition, MRL/lpr mice were used to study the progression of LN. The MRL/lpr mice were fed either CP (i.g, 0.5, 1.0, 1.5 g/kg/d), prednisolone acetate (PA, i.g, 6 mg/kg/d), or Bailing capsule (BC, i.g, 0.75 g/kg/d) for 8 weeks. Hematoxylin-eosin (H&E), Periodic Acid Schif (PAS) and Masson's stainings, Immunofluorescence, and Immunohistochemistry were performed to verify the therapeutic effect of CP on MRL/lpr mice. The mechanism by CP alimerated LN was uncovered by Western blotting (WB) and Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) methods. RESULTS Our results revealed that CP blocked proteinuria production and renal inflammatory infiltratation in MRL/lpr mice to reduce the renal fibrosis. In addition, CP worked better than BC which is artificial Cordyceps fungus powder in regulating proteinuria to urine creatinine ratio and interleukin-4(IL-4) protein amount. Especially, CP modulated the STAT3/mTOR/NF-кB signaling pathway in LN mice and brought a more pronounced lowering effect on the contents of IL-6 and IL-1β than the PA. CONCLUSION CP could be a potential anti-inflammatory immune product with strong regulatory effects and potency than BC and PA in nephritis therapeutics.
Collapse
Affiliation(s)
- Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shu-Qi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases IntegRed Traditional Chinese and Western Medicine, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiao-Jiao Fu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases IntegRed Traditional Chinese and Western Medicine, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases IntegRed Traditional Chinese and Western Medicine, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases IntegRed Traditional Chinese and Western Medicine, China.
| |
Collapse
|
23
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
25
|
Böröcz K, Kinyó Á, Simon D, Erdő-Bonyár S, Németh P, Berki T. Complexity of the Immune Response Elicited by Different COVID-19 Vaccines, in the Light of Natural Autoantibodies and Immunomodulatory Therapies. Int J Mol Sci 2023; 24:ijms24076439. [PMID: 37047412 PMCID: PMC10094397 DOI: 10.3390/ijms24076439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Despite the abundance of data on the COVID-19 vaccine-induced immune activation, the impact of natural autoantibodies (nAAbs) on these processes is less well defined. Therefore, we investigated potential connections between vaccine efficacy and nAAb levels. We were also interested in the impact of immunomodulatory therapies on vaccine efficacy. Clinical residual samples were used for the assessment of the COVID-19 vaccine-elicited immune response (IR) (n=255), as well as for the investigation of the immunization-associated expansion of the nAAb pool (n=185). In order to study the potential interaction between immunomodulatory therapies and the vaccine-induced IR, untreated, healthy individuals and patients receiving anti-TNFα or anti-IL-17 therapies were compared (n total =45). In-house ELISAs (anticitrate synthase, anti-HSP60 and-70) and commercial ELISAs (anti-SARS-CoV-2 ELISAs IgG, IgA, NeutraLISA and IFN-γ release assay 'IGRA') were applied. We found significant differences in the IR given to different vaccines. Moreover, nAAb levels showed plasticity in response to anti-COVID-19 immunization. We conclude that our findings may support the theorem about the non-specific beneficial 'side effects' of vaccination, including the broadening of the nAAb repertoire. Considering immunomodulation, we suggest that anti-TNFα and anti-IL17 treatments may interfere negatively with MALT-associated IR, manifested as decreased IgA titers; however, the modest sample numbers of the herein presented model might be a limiting factor of reaching a more comprehensive conclusion.
Collapse
Affiliation(s)
- Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Ágnes Kinyó
- Department of Dermatology, Venereology and Oncodermatology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| |
Collapse
|
26
|
Liu M, Yang Y, Zhu W, Wu J, Yu X, Li W. Specific TLR-mediated HSP70 activation plays a potential role in host defense against the intestinal parasite Giardia duodenalis. Front Microbiol 2023; 14:1120048. [PMID: 36937289 PMCID: PMC10017776 DOI: 10.3389/fmicb.2023.1120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Giardia duodenalis, an important flagellated noninvasive protozoan parasite, infects the upper small intestine and causes a disease termed giardiasis globally. Few members of the heat shock protein (HSP) family have been shown to function as potential defenders against microbial pathogens, while such information is lacking for Giardia. Here we initially screened and indicated that in vitro Giardia challenge induced a marked early upregulation of HSP70 in intestinal epithelial cells (IECs). As noted previously, apoptotic resistance, nitric oxide (NO)-dependent cytostatic effect and parasite clearance, and epithelial barrier integrity represent effective anti-Giardia host defense mechanisms. We then explored the function of HSP70 in modulating apoptosis, NO release, and tight junction (TJ) protein levels in Giardia-IEC interactions. HSP70 inhibition by quercetin promoted Giardia-induced IEC apoptosis, viability decrease, NO release reduction, and ZO-1 and occludin downregulation, while the agonist celastrol could reverse these Giardia-evoked effects. The results demonstrated that HSP70 played a previously unrecognized and important role in regulating anti-Giardia host defense via attenuating apoptosis, promoting cell survival, and maintaining NO and TJ levels. Owing to the significance of apoptotic resistance among those defense-related factors mentioned earlier, we then elucidated the anti-apoptotic mechanism of HSP70. It was evident that HSP70 could negatively regulate apoptosis in an intrinsic way via direct inhibition of Apaf-1 or ROS-Bax/Bcl-2-Apaf-1 axis, and in an extrinsic way via cIAP2-mediated inhibition of RIP1 activity. Most importantly, it was confirmed that HSP70 exerted its host defense function by downregulating apoptosis via Toll-like receptor 4 (TLR4) activation, upregulating NO release via TLR4/TLR2 activation, and upregulating TJ protein expression via TLR2 activation. HSP70 represented a checkpoint regulator providing the crucial link between specific TLR activation and anti-Giardia host defense responses. Strikingly, independent of the checkpoint role of HSP70, TLR4 activation was proven to downregulate TJ protein expression, and TLR2 activation to accelerate apoptosis. Altogether, this study identified HSP70 as a potentially vital defender against Giardia, and revealed its correlation with specific TLR activation. The clinical importance of HSP70 has been extensively demonstrated, while its role as an effective therapeutic target in human giardiasis remains elusive and thus needs to be further clarified.
Collapse
|
27
|
Israr M, Naseem N, Akhtar T, Aftab U, Zafar MS, Faheem MA, Shahzad M. Nimbolide attenuates complete Freund's adjuvant induced arthritis through expression regulation of toll-like receptors signaling pathway. Phytother Res 2023; 37:903-912. [PMID: 36437579 DOI: 10.1002/ptr.7672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022]
Abstract
Nimbolide is an active constituent of Azadirachta indica and is known for its anti-inflammatory, anti-oxidant, immune-modulatory, and anti-cancer effects. Few studies suggest that nimbolide treatment influences the responses to rheumatoid arthritis, but the underlying molecular mechanisms involved are not yet well established. Therefore, the present study was designed to determine the effect of nimbolide on expression regulation of toll-like receptors to attenuate rheumatoid arthritis. The rheumatoid arthritis model was established by injecting complete Freund's adjuvant (CFA) intra-dermally into the sub-plantar region of the left hind paw of rats. Nimbolide (20 mg/kg) and piroxicam (10 mg/kg) were given to arthritic rats. Rats treated with nimbolide showed a significant reduction in inflammatory cells, rheumatoid factor, ESR, and improved the body weight. The results indicated that nimbolide possesses the capacity to attenuate rheumatoid arthritis by downregulating toll-like receptors, IL-17, IL-23, HSP70, and IFN-γ expression levels. Nimbolide treatment showed significant reduction in the severity of inflammation and destruction of joints and showed comparable effects to piroxicam, which is a standard non-steroidal anti-inflammatory drug used for the treatment of rheumatoid arthritis. It can be concluded that nimbolide can be considered as a potential candidate for therapeutic targeting of the toll-like receptors pathway in rheumatoid arthritis.
Collapse
Affiliation(s)
- Maham Israr
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Nadia Naseem
- Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | | | | | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
28
|
La Paglia L, Vazzana M, Mauro M, Dumas F, Fiannaca A, Urso A, Arizza V, Vizzini A. Transcriptomic and Bioinformatic Analyses Identifying a Central Mif-Cop9-Nf-kB Signaling Network in Innate Immunity Response of Ciona robusta. Int J Mol Sci 2023; 24:ijms24044112. [PMID: 36835523 PMCID: PMC9960688 DOI: 10.3390/ijms24044112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads to intracellular signaling involving the Nf-kB signaling cascade that triggers downstream pro-inflammatory gene expression. In mammals, the COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) complex also results in the activation of the NF-kB pathway. It is a highly conserved complex in vertebrates, mainly engaged in proteasome degradation which is essential for maintaining processes such as cell cycle, DNA repair, and differentiation. In the present study, we used bioinformatics and in-silico analyses combined with an in-vivo LPS exposure strategy, next-generation sequencing (NGS), and qRT-PCR to elucidate molecules and the temporal dynamics of Mif cytokines, Csn signaling components, and the Nf-κB signaling pathway in C. robusta. A qRT-PCR analysis of immune genes selected from transcriptome data revealed a biphasic activation of the inflammatory response. A phylogenetic and STRING analysis indicated an evolutionarily conserved functional link between the Mif-Csn-Nf-kB axis in ascidian C. robusta during LPS-mediated inflammation response, finely regulated by non-coding molecules such as microRNAs (miRNAs).
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
29
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
30
|
Ochoa-Ramírez LA, Díaz-Camacho SP, Mellado-Corrales SN, Muñoz-Estrada VF, Ríos-Tostado JJ, Sánchez-Zazueta JG, Velarde-Félix JS. Analysis of the heat shock protein 70 (HSP70) genetic variants in nonsegmental vitiligo patients. Int J Dermatol 2023; 62:225-230. [PMID: 36345598 DOI: 10.1111/ijd.16487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Vitiligo is an autoimmune disease that courses with skin depigmentation because of the destruction of melanocytes. Vitiliginous melanocyte is prone to damage because of oxidative stress which activates cellular stress response and the release of heat shock proteins such as HSP70 promoting immune activation against the melanocyte. Variants in HSP70 genes (HSPA) might alter their expression and thus modulate vitiligo susceptibility. Therefore, we sought to evaluate the role of the 5' untranslated region HSPA1A G/C (rs1043618) and the exonic HSPA1B A/G (rs1061581) and HSPA1L T/C (rs2227956) gene variants in nonsegmental vitiligo. METHODS A total of 200 nonsegmental vitiligo patients and 208 age/gender-matched healthy subjects were genotyped for rs1043618, rs1061581, and rs2227956 variants by PCR-RFLP. RESULTS Variants rs1043618 and rs1061581 were not associated with vitiligo susceptibility. On the other hand, the rs2227956 C allele and TC genotype were associated with protection against vitiligo. A similar effect was observed for the GAC haplotype. Any of the aforementioned HSP70 gene variants were associated with the clinical characteristics of vitiligo. CONCLUSION Our findings suggest that the HSPA1L rs2227956 gene variant might influence the susceptibility to vitiligo. Being the first study of HSP70 gene variants in vitiligo, further research is encouraged to corroborate these results.
Collapse
Affiliation(s)
- Luis Antonio Ochoa-Ramírez
- Laboratorio de Medicina Genómica, Hospital General de Culiacán, Servicios de Salud Sinaloa, Culiacán, Mexico
| | - Sylvia Paz Díaz-Camacho
- Unidad de Investigación en Ambiente y Salud, Universidad Autónoma de Occidente, Culiacán, Mexico
| | | | | | - Juan José Ríos-Tostado
- Laboratorio de Medicina Genómica, Hospital General de Culiacán, Servicios de Salud Sinaloa, Culiacán, Mexico.,Cuerpo Académico Inmunogenética y Evolución UAS-CA-265, Facultad de Biología; Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Jorge Guillermo Sánchez-Zazueta
- Cuerpo Académico Inmunogenética y Evolución UAS-CA-265, Facultad de Biología; Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Jesús Salvador Velarde-Félix
- Laboratorio de Medicina Genómica, Hospital General de Culiacán, Servicios de Salud Sinaloa, Culiacán, Mexico.,Maestría en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Culiacán, Mexico.,Cuerpo Académico Inmunogenética y Evolución UAS-CA-265, Facultad de Biología; Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
31
|
Gouda SAA, Aboulhoda BE, Abdelwahed OM, Abdallah H, Rashed L, Hussein RE, Sharawy N. Low-intensity pulsed ultrasound (LIPUS) switched macrophage into M2 phenotype and mitigated necroptosis and increased HSP 70 in gentamicin-induced nephrotoxicity. Life Sci 2023; 314:121338. [PMID: 36592788 DOI: 10.1016/j.lfs.2022.121338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Many attempts to control acute kidney injury (AKI) have failed due to a lack of understanding of its pathophysiological key components. Macrophages are a crucial determinant of AKI, which can be categorized functionally as M1 pro-inflammatory and M2 anti-inflammatory macrophages. Low-intensity pulsed ultrasound (LIPUS) is currently being investigated as an immune modulator. The present study aimed to explore the potential effects of LIPUS on the polarization of renal macrophages, as well as the possible interplay between macrophage polarization and necroptosis in gentamicin-induced acute kidney injury. METHOD All rats were randomly allocated into one of four groups: control, LIPUS-treated control, gentamicin acute kidney (GM-AKI), and LIPUS-treated GM-AKI. Renal functions, macrophage polarization, necroptosis, and heat shock protein-70 (HSP70) were analyzed using real-time reverse-transcriptase-polymerase chain reaction (rT-PCR), Western Blot, Enzyme-linked immunosorbent assay (ELISA) as well as immunohistological analysis. RESULTS we found that LIPUS markedly inhibited the expressions of M1 macrophage-related genes and promoted significantly the expression of M2 macrophages related genes. This was accompanied by an inhibition of necroptosis and a marked reduction of HSP-70, resulting in a reversal of gentamicin-induced renal alteration. CONCLUSION Functional switching of macrophage responses from M1 into M2 seems to be a potential approach to ameliorate necroptosis as well as HSP-70 by low pulsed ultrasound waves in GM-AKI.
Collapse
Affiliation(s)
| | | | | | - Hend Abdallah
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
32
|
Lv WX, Cheng P, Lei JJ, Peng H, Zang CH, Lou ZW, Liu HM, Guo XX, Wang HY, Wang HF, Zhang CX, Liu LJ, Gong MQ. Interactions between the gut micro-community and transcriptome of Culex pipiens pallens under low-temperature stress. Parasit Vectors 2023; 16:12. [PMID: 36635706 PMCID: PMC9837946 DOI: 10.1186/s13071-022-05643-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Culex pipiens pallens (Diptera: Culicidae) can survive at low temperature for long periods. Understanding the effects of low-temperature stress on the gut microflora and gene expression levels in Cx. pipiens pallens, as well as their correlation, will contribute to the study of the overwintering mechanism of Cx. pipiens pallens. METHODS The gut bacteria were removed by antibiotic treatment, and the survival of Cx. pipiens pallens under low-temperature stress was observed and compared with the control group. Then, full-length 16S rRNA sequencing and the Illumina HiSeq X Ten sequencing platform were used to evaluate the gut microflora and gene expression levels in Cx. pipiens pallens under low-temperature stress. RESULTS Under the low-temperature stress of 7 °C, the median survival time of Cx. pipiens pallens in the antibiotic treatment group was significantly shortened by approximately 70% compared to that in the control group. The species diversity index (Shannon, Simpson, Ace, Chao1) of Cx. pipiens pallens decreased under low-temperature stress (7 °C). Non-metric multidimensional scaling (NMDS) analysis divided all the gut samples into two groups: control group and treatment group. Pseudomonas was the dominant taxon identified in the control group, followed by Elizabethkingia and Dyadobacter; in the treatment group, Pseudomonas was the dominant taxon, followed by Aeromonas and Comamonas. Of the 2417 differentially expressed genes (DEGs), 1316 were upregulated, and 1101 were downregulated. Functional GO terms were enriched in 23 biological processes, 20 cellular components and 21 molecular functions. KEGG annotation results showed that most of these genes were related to energy metabolism-related pathways. The results of Pearson's correlation analysis showed a significant correlation between the gut microcommunity at the genus level and several DEGs. CONCLUSIONS These results suggest that the mechanism of adaptation of Cx. pipiens pallens to low-temperature stress may be the result of interactions between the gut bacterial community and transcriptome.
Collapse
Affiliation(s)
- Wen-Xiang Lv
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Peng Cheng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Jing-Jing Lei
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hui Peng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chuan-Hui Zang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Zi-Wei Lou
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hong-Mei Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Xiu-Xia Guo
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Yang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Fang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chong-Xing Zhang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Li-Juan Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Mao-Qing Gong
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| |
Collapse
|
33
|
Kasperkiewicz M, Tukaj S. Targeting heat shock proteins 90 and 70: A promising remedy for both autoimmune bullous diseases and COVID-19. Front Immunol 2022; 13:1080786. [PMID: 36591225 PMCID: PMC9797581 DOI: 10.3389/fimmu.2022.1080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps), including Hsp90 and Hsp70, are intra- and extracellular molecules implicated in cellular homeostasis and immune processes and are induced by cell stress such as inflammation and infection. Autoimmune bullous disorders (AIBDs) and COVID-19 represent potentially life-threatening inflammatory and infectious diseases, respectively. A significant portion of AIBDs remain refractory to currently available immunosuppressive therapies, which may represent a risk factor for COVID-19, and suffer from treatment side-effects. Despite advances in vaccination, there is still a need to develop new therapeutic approaches targeting SARS-CoV-2, especially considering vaccine hesitancy, logistical distribution challenges, and breakthrough infections. In this mini review, we briefly summarize the role of targeting Hsp90/70 as a promising double-edged sword in the therapy of AIBDs and COVID-19.
Collapse
Affiliation(s)
- Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,*Correspondence: Michael Kasperkiewicz,
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
34
|
Wang J, Pan Y, Wei G, Mao H, Liu R, He Y. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss. Redox Rep 2022; 27:193-199. [PMID: 36154894 PMCID: PMC9518600 DOI: 10.1080/13510002.2022.2123864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The pathogenesis of vitiligo remains unclear. In this review, we comprehensively describe the role of damage associated molecular patterns (DAMPs) during vitiligo pathogenesis. METHODS Published papers on vitiligo, oxidative stress and DAMPs were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS Oxidative stress may be an important inducer of vitiligo. At high oxidative stress levels, damage-associated molecular patterns (DAMPs) are released from keratinocytes or melanocytes in the skin and induce downstream immune responses during vitiligo. Treatment regimens targeting DAMPs can effectively improve disease severity. DISCUSSION DAMPs play key roles in initiating host defenses against danger signals, deteriorating the condition of vitiligo. DAMP levels in serum and skin may be used as biomarkers to indicate vitiligo activity and prognosis. Targeted therapies, incorporating HMGB1, Hsp70, and IL-15 could significantly improve disease etiology. Thus, novel strategies could be identified for vitiligo treatment by targeting DAMPs.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Guangmin Wei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Yuanmin He Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
35
|
Tukaj S. Circulating heat shock protein 90 (Hsp90) in atopic dermatitis and bullous pemphigoid: is there a link? Cell Stress Chaperones 2022; 27:601-602. [PMID: 36161584 PMCID: PMC9672208 DOI: 10.1007/s12192-022-01298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
36
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
37
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
38
|
Badr G, Sayed LH, Omar HEDM, ِAbd Elghaffar SK, Menshawy MM. Bee gomogenat rescues lymphoid organs from degeneration by regulating the crosstalk between apoptosis and autophagy in streptozotocin-induced diabetic mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68990-69007. [PMID: 35554836 PMCID: PMC9508069 DOI: 10.1007/s11356-022-20457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes severe complications in several tissues due to redox imbalances, which in turn cause defective angiogenesis in response to ischemia and activate a number of proinflammatory pathways. Our study aimed to investigate the effect of bee gomogenat (BG) dietary supplementation on the architecture of immune organs in a streptozotocin (STZ)-induced type 1 diabetes (T1D) mouse model. Three animal groups were used: the control non-diabetic, diabetic, and BG-treated diabetic groups. STZ-induced diabetes was associated with increased levels of blood glucose, ROS, and IL-6 and decreased levels of IL-2, IL-7, IL-4, and GSH. Moreover, diabetic mice showed alterations in the expression of autophagy markers (LC3, Beclin-1, and P62) and apoptosis markers (Bcl-2 and Bax) in the thymus, spleen, and lymph nodes. Most importantly, the phosphorylation level of AKT (a promoter of cell survival) was significantly decreased, but the expression levels of MCP-1 and HSP-70 (markers of inflammation) were significantly increased in the spleen and lymph nodes in diabetic mice compared to control animals. Interestingly, oral supplementation with BG restored the levels of blood glucose, ROS, IL-6, IL-2, IL-4, IL-7, and GSH in diabetic mice. Treatment with BG significantly abrogated apoptosis and autophagy in lymphoid organs in diabetic mice by restoring the expression levels of LC3, Beclin-1, P62, Bcl-2, and Bax; decreasing inflammatory signals by downregulating the expression of MCP-1 and HSP-70; and promoting cell survival by enhancing the phosphorylation of AKT. Our data were the first to reveal the therapeutic potential of BG on the architecture of lymphoid organs and enhancing the immune system during T1D.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Sary Khaleel ِAbd Elghaffar
- Pathology and clinical pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Medhat M Menshawy
- Department of Biology, Misr University of Science and Technology, 6th October City, Egypt
| |
Collapse
|
39
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
40
|
Rahman N, Begum S, Khan A, Afridi SG, Khayam Sahibzada MU, Atwah B, Alhindi Z, Khan H. An insight in Salmonella typhi associated autoimmunity candidates' prediction by molecular mimicry. Comput Biol Med 2022; 148:105865. [PMID: 35843194 DOI: 10.1016/j.compbiomed.2022.105865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases develop when the immune system targets healthy cells and tissues of an individual. In developing countries, S. typhi (a gram-negative pathogenic bacteria) remains a major public health issue. This study aimed to employ bioinformatics analyses to determine the 3D structural-based molecular mimicry and sequence of S. typhi and human host proteins. In addition, to classify possible antigenic microbial peptides homologous to human peptides and comprehend the molecular basis of S. typhi-related autoimmune disorders. Protein sequences were obtained from the NCBI database, and redundancy was removed using the CD-HIT tool. The BLASTp comparative sequence analysis was followed for molecular mimicry identification of human and S. typhi protein sequences. The PathDIP database was utilized to simulate essential physical relationships between proteins and curated pathways for metabolic processes. Subsequently, the IEDB database was used to find cross-reactive MHC class-II binding epitopes that could trigger an autoimmune reaction. SPARKS-X computational biology resource was also used to determine the structural homology between human and S. typhi peptides. The BLASTp study showed that S. typhi and the human host have several proteins holding considerable sequence similarities based on a set threshold of e ≤ 10-6 and bit score ≥100. The PathDIP putatively identified that these proteins enriched in a total of 68 metabolic pathways by a significant P-value (P < 0.005). The PSORTb analysis predicted that 26 out of these proteins are cytosolic, 1 predicted to be periplasmic protein, and 1 predicted to be localized in the cytoplasmic membrane. IEDB data analysis predicted many S.typhi and human homologs epitopes as a good binder of human HLA, i.e. DRB1*01:01, DPA1*03:01/DPB1*04:02, and DQA1*01:02/DQB1*06:02 with IC50 < 50 nM. Finally, the docking data demonstrated that homolog lead epitopes promisingly interact with HLA and immune TLR4 receptors by exhibiting the best docking scores and molecular interactions. The analyses ultimately identified several potential candidate proteins and peptides that could cause S.typhi infection-mediated autoimmune diseases in humans.
Collapse
Affiliation(s)
- Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sara Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | | | - Banan Atwah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zain Alhindi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
41
|
Song B, Shen S, Fu S, Fu J. HSPA6 and its role in cancers and other diseases. Mol Biol Rep 2022; 49:10565-10577. [PMID: 35666422 DOI: 10.1007/s11033-022-07641-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Heat Shock Protein Family A (Hsp70) Member 6 (HSPA6) (Online Mendelian Inheritance in Man: 140555) belongs to the HSP70 family and is a partially conserved inducible protein in mammals. The HSPA6 gene locates on the human chromosome 1q23.3 and encodes a protein containing two important structural domains: The N-terminal nucleotide-binding domain and the C-terminal substrate-binding domain. Currently, studies have found that HSPA6 not only plays a role in the tumorigenesis and tumor progresses but also causes non-tumor-related diseases. Furthermore, HSPA6 exhibits to inhibit tumorigenesis and tumor progression in some types of cancers but promotes in others. Even though HSPA6 research has increased, its exact roles and mechanisms are still unclear. This article reviews the structure, expression, function, research progress, possible mechanism, and perspective of HSPA6 in cancers and other diseases, highlighting its potential role as a targeted therapeutic and prognostic marker.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shiyi Shen
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
42
|
Li Y, Feng Y, Jiang Y, Ma J, Bao X, Li Z, Cui M, Li B, Xu X, Wang W, Sun G, Liu X, Yang J. Differential gene expression analysis related to sperm storage in spermathecas of Amphioctopus fangsiao. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100966. [PMID: 35150972 DOI: 10.1016/j.cbd.2022.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Sperm storage in the female body is an important strategy in animal reproductive behavior. Amphioctopus fangsiao is an economically important cephalopod that has a sperm storage period of up to seven months. There are few studies concerning the mechanism of sperm storage in A. fangsiao. In this study, we performed transcriptome gene expression profiling of the oviductal glands at different phases (presence and absence of sperm storage). In total, 7943 differentially expressed genes (DEGs) comprising 4737 upregulated and 3206 downregulated genes were identified. GO and KEGG enrichment analyses were used to search for sperm storage-related genes. A protein interaction network was constructed to examine the interactions between genes. Nineteen genes associated with immunity, apoptosis, and autophagy were obtained and verified by qRT-PCR. This is the first comprehensive analysis of sperm storage-related genes in A. fangsiao. The results provide basic insights into the complex sperm storage mechanism of A. fangsiao.
Collapse
Affiliation(s)
- Yan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yu Jiang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jingjun Ma
- Yantai Laishan District Fisheries and Marine Service station, Yantai 264003, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Mingxian Cui
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai 264004, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China; Jiangsu Baoyuan Biotechnology Co. Ltd., Lianyungang 222100, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
43
|
Nong W, Huang F, Mao F, Lao D, Gong Z, Huang W. DCAF12 and HSPA1A May Serve as Potential Diagnostic Biomarkers for Myasthenia Gravis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8587273. [PMID: 35655486 PMCID: PMC9155969 DOI: 10.1155/2022/8587273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease that severely affects the life quality of patients. This study explores the differences in immune cell types between MG and healthy control and the role of immune-related genes in the diagnosis of MG. Methods The GSE85452 dataset was downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma package to determine differentially expressed genes (DEGs) between patients with MG and the control group. Differentially expressed immune cells were analyzed using single-sample gene set enrichment analysis (GSEA), while immune cell-associated modules were identified by weighted gene coexpression network analysis (WGCNA). Then, the expression of the identified hub genes was confirmed by RT-PCR in peripheral blood mononuclear cells (PBMCs) of MG patients. The R package pROC was used to plot the receiver operating characteristics (ROC) curves. Results The modules related to CD56bright natural killer cells were identified by GSEA and WGCNA. The proportion of CD56bright natural killer cells in the peripheral blood of MG patients is low. The results of RT-PCR showed that the levels of DDB1- and CUL4-associated factor 12 (DCAF12) and heat shock protein family A member 1A (HSPA1A) were significantly decreased in peripheral blood mononuclear cells of MG patients compared with healthy controls. The ROC curve results of DCAF12 and HSPA1A mRNA in MG diagnosis were 0.780 and 0.830, respectively. Conclusions CD56bright NK cell is lower in MG patients and may affect MG occurrence. DCAF12 and HSPA1A are lowly expressed in PBMCs of MG patients and may serve as the diagnostic biomarkers of MG.
Collapse
Affiliation(s)
- Weidong Nong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fang Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fengping Mao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Dayuan Lao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Zhuowei Gong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Wen Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| |
Collapse
|
44
|
Tukaj S, Mantej J, Sitko K, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Pathological Relevance of Anti-Hsp70 IgG Autoantibodies in Epidermolysis Bullosa Acquisita. Front Immunol 2022; 13:877958. [PMID: 35514963 PMCID: PMC9065281 DOI: 10.3389/fimmu.2022.877958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Stress-induced heat shock protein 70 (Hsp70) is a key intra- and extracellular molecular chaperone implicated in autoimmune processes. Highly immunogenic extracellular Hsp70 can activate innate and acquired (adaptive) immune responses driving the generation of anti-Hsp70 autoantibodies that are frequently observed in inflammatory/autoimmune disorders. We recently described the direct pathological role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated autoimmune blistering skin disease. Here, we determined the role of anti-Hsp70 autoantibodies in EBA. We observed that circulating anti-Hsp70 IgG autoantibodies were significantly elevated in EBA patients compared to healthy individuals and positively correlated with serum levels of pro-inflammatory interferon gamma (IFN-γ). The pathophysiological relevance of anti-Hsp70 IgG autoantibodies was demonstrated in an antibody transfer-induced EBA mouse model in which elevated serum levels of anti-Hsp70 IgG were found. In addition, anti-Hsp70 IgG-treated animals had a more intense clinical and histological disease activity, as well as upregulated nuclear factor kappa B (NF-κB) activation in skin biopsies compared to isotype-treated animals. Our results suggest that autoantibodies to Hsp70 may contribute to EBA development via enhanced neutrophil infiltration to the skin and activation of the NF-κB signaling pathway in an IFN-γ-associated manner.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
45
|
Li DY, Liang S, Wen JH, Tang JX, Deng SL, Liu YX. Extracellular HSPs: The Potential Target for Human Disease Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072361. [PMID: 35408755 PMCID: PMC9000741 DOI: 10.3390/molecules27072361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Collapse
Affiliation(s)
- Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| |
Collapse
|
46
|
Jiao S, Bai C, Qi C, Wu H, Hu L, Li F, Yang K, Zhao C, Ouyang H, Pang D, Tang X, Xie Z. Identification and Functional Analysis of the Regulatory Elements in the pHSPA6 Promoter. Genes (Basel) 2022; 13:genes13020189. [PMID: 35205234 PMCID: PMC8872561 DOI: 10.3390/genes13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Functional and expressional research of heat shock protein A6 (HSPA6) suggests that the gene is of great value for neurodegenerative diseases, biosensors, cancer, etc. Based on the important value of pigs in agriculture and biomedicine and to advance knowledge of this little-studied HSPA member, the stress-sensitive sites in porcine HSPA6 (pHSPA6) were investigated following different stresses. Here, two heat shock elements (HSEs) and a conserved region (CR) were identified in the pHSPA6 promoter by a CRISPR/Cas9-mediated precise gene editing strategy. Gene expression data showed that sequence disruption of these regions could significantly reduce the expression of pHSPA6 under heat stress. Stimulation studies indicated that these regions responded not only to heat stress but also to copper sulfate, MG132, and curcumin. Further mechanism studies showed that downregulated pHSPA6 could significantly affect some important members of the HSP family that are involved in HSP40, HSP70, and HSP90. Overall, our results provide a new approach for investigating gene expression and regulation that may contribute to gene regulatory mechanisms, drug target selection, and breeding stock selection.
Collapse
Affiliation(s)
- Shuyu Jiao
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chunyun Qi
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Heyong Wu
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Lanxin Hu
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Feng Li
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Kang Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chuheng Zhao
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Hongsheng Ouyang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Daxin Pang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Correspondence: (X.T.); (Z.X.)
| | - Zicong Xie
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Correspondence: (X.T.); (Z.X.)
| |
Collapse
|
47
|
Abstract
Stress response is a cellular widespread mechanism encoded by a common protein program composed by multiple cellular factors that converge in a defense reaction to protect the cell against damage. Among many mechanisms described, heat shock proteins were proposed as universally conserved protective factors in the stress core proteome, coping with different stress stimuli through its canonical role in protein homeostasis. However, emerging evidences reveal non-canonical roles of heat shock proteins relevant for physiological and pathological conditions. Here, we review the implications of inducible heat shock proteins in the central nervous system physiology. In particular, we discuss the relevance of heat shock proteins in the maintenance of synapses, as a balanced protective mechanism in central nervous system development, pathological conditions and aging.
Collapse
|
48
|
The Correlation between Extracellular Heat Shock Protein 70 and Lipid Metabolism in a Ruminant Model. Metabolites 2021; 12:metabo12010019. [PMID: 35050141 PMCID: PMC8779628 DOI: 10.3390/metabo12010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic stress in early lactation cows is characterized by lipolysis, ketogenesis, insulin resistance and inflammation because of negative energy balance and increased use of lipids for energy needs. In this study the relationship between lipid metabolite, lipid-based insulin resistance, and hepatocyte functionality indexes and tumor necrosis factor alpha (TNF-α) with extracellular heat shock protein 70 (eHsp70) was investigated. The experiment included 50 cows and all parameters were measured in blood serum. In cows with a more pronounced negative energy balance, the following was determined: a higher concentration of eHsp70, TNF-α, non-esterified fatty acid (NEFA), beta-hydroxybutyrate (BHB), NEFA to insulin and NEFA to cholesterol ratio and lower concentration of cholesterol, very low-density lipoproteins (VLDL), low density lipoproteins (LDL) and liver functionality index (LFI). The eHsp70 correlated negatively with the values of cholesterol, VLDL, LDL, and triglycerides, while correlated positively with the level of NEFA and BHB. A higher concentration of eHsp70 suggests the development of fatty liver (due to a higher NEFA to cholesterol ratio and lower LFI) and insulin resistance (due to a lower revised quantitative insulin sensitivity check index RQUICKI-BHB and higher NEFA to insulin ratio). The eHsp70 correlated positively with TNF-α. Both TNF-α and eHsp70 correlated similarly to lipid metabolites. In cows with high eHsp70 and TNF-α values we found higher concentrations of NEFA, BHB, NEFA to insulin and NEFA to cholesterol ratio and a lower concentration of triglycerides and VLDL cholesterol compared to cows that had only high TNF-α values. Based on the positive correlation between eHsp70 and TNF-α, their similar relations, and the additional effect of eHsp70 (high TNF-α + eHsp70 values) on lipid metabolites we conclude that eHsp70 has pro-inflammatory effects implicating lipolysis, fatty liver, and fat tissue insulin resistance.
Collapse
|
49
|
Unravelling the Interaction of Piperlongumine with the Nucleotide-Binding Domain of HSP70: A Spectroscopic and In Silico Study. Pharmaceuticals (Basel) 2021; 14:ph14121298. [PMID: 34959698 PMCID: PMC8703466 DOI: 10.3390/ph14121298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Piperlongumine (PPL) is an alkaloid extracted from several pepper species that exhibits anti-inflammatory and anti-carcinogenic properties. Nevertheless, the molecular mode of action of PPL that confers such powerful pharmacological properties remains unknown. From this perspective, spectroscopic methods aided by computational modeling were employed to characterize the interaction between PPL and nucleotide-binding domain of heat shock protein 70 (NBD/HSP70), which is involved in the pathogenesis of several diseases. Steady-state fluorescence spectroscopy along with time-resolved fluorescence revealed the complex formation based on a static quenching mechanism. Van't Hoff analyses showed that the binding of PPL toward NBD is driven by equivalent contributions of entropic and enthalpic factors. Furthermore, IDF and Scatchard methods applied to fluorescence intensities determined two cooperative binding sites with Kb of (6.3 ± 0.2) × 104 M-1. Circular dichroism determined the thermal stability of the NBD domain and showed that PPL caused minor changes in the protein secondary structure. Computational simulations elucidated the microenvironment of these interactions, showing that the binding sites are composed mainly of polar amino acids and the predominant interaction of PPL with NBD is Van der Waals in nature.
Collapse
|
50
|
Quaglio AEV, Santaella FJ, Rodrigues MAM, Sassaki LY, Di Stasi LC. MicroRNAs expression influence in ulcerative colitis and Crohn's disease: A pilot study for the identification of diagnostic biomarkers. World J Gastroenterol 2021; 27:7801-7812. [PMID: 34963743 PMCID: PMC8661377 DOI: 10.3748/wjg.v27.i45.7801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) comprises two distinct diseases, Crohn's disease (CD) and ulcerative colitis (UC), both of which are chronic, relapsing inflammatory disorders of the gastrointestinal tract with a mostly unknown etiology. The incidence and prevalence of IBD are continually increasing, indicating the need for further studies to investigate the genetic determinants of these diseases. Since microRNAs (miRNAs) regulate protein translation via complementary binding to mRNA, discovering differentially expressed miRNAs (DE) in UC or CD patients could be important for diagnostic biomarker identification, assisting in the appropriate disease differentiation progressing the understanding of IBD pathogenesis. AIM To determine the miRNA expression profile in UC and CD patients and the potential pathophysiological contributions of differentially expressed miRNA. METHODS A total of 20 formalin-fixed paraffin-embedded colonic samples were collected from the Pathology Department of Botucatu Medical School at São Paulo State University (Unesp). The diagnosis of UC or CD was based on clinical, endoscopic, radiologic, and histological criteria and confirmed by histopathological analysis at the time of selection. The TaqMan™ Array Human MicroRNA A+B Cards Set v3.0 (Applied Biosystems™) platform was used to analyze 754 miRNAs. Targets of DE-miRNAs were predicted using miRNA Data Integration Portal (mirDIP) and the miRNA Target Interaction database (MiRTarBase). All statistical analyses were conducted using GraphPad Prism software. Parametric and nonparametric data were analyzed using t-tests and Mann-Whitney U tests, respectively. RESULTS The results showed that of the 754 miRNAs that were initially evaluated, 643 miRNAs were found to be expressed in at least five of the patients who were diagnosed with either CD or UC; the remaining 111 miRNAs were not considered to be expressed in these patients. The expression levels of 28 miRNAs were significantly different between the CD and UC patients (P ≤ 0.05); 13 miRNAs demonstrated a fold-change in expression level greater than 1. Five miRNAs with a downregulated expression were selected for enrichment analysis. The miRNAs whose expression levels were significantly lower in UC patients than in CD patients were enriched in certain signaling pathways that were mostly correlated with cancer-related processes and respective biomarkers. CONCLUSION MiRNAs could be used to differentiate UC from CD, and differently expressed miRNAs could help explain the distinct pathophysiology of each disease.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Felipe Jose Santaella
- Department of Pathology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, São Paulo, Brazil
| | | | - Ligia Yukie Sassaki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| |
Collapse
|