1
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
2
|
Sila S, Niseteo T, Hojsak I. Importance of dietary fiber in children. Minerva Pediatr (Torino) 2024; 76:679-689. [PMID: 37310770 DOI: 10.23736/s2724-5276.23.07211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary fibers (DFs) are essential components of human nutrition and are principally defined as non-digestible carbohydrates (oligosaccharides and polysaccharides) usually classified by their physicochemical and physiological characteristics (water solubility, viscosity, fermentability, and bulking effect). Unfortunately, there is limited information on dietary fiber recommendations for children, and the evidence on their effect on health and symptom control is mainly available for the adult population. Therefore, this review aims to give a comprehensive overview of the characteristics and dietary sources of dietary fiber and their potential health benefits in healthy children but also their potential use in the treatment of sick children.
Collapse
Affiliation(s)
- Sara Sila
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, Zagreb, Croatia
| | - Tena Niseteo
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, Zagreb, Croatia
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children's Hospital Zagreb, Zagreb, Croatia -
- University of Zagreb, School of Medicine, Zagreb, Croatia
- School of Medicine, University J.J. Strossmayer, Osijek, Croatia
| |
Collapse
|
3
|
Son JE. Genetics, pharmacotherapy, and dietary interventions in childhood obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12861. [PMID: 38863827 PMCID: PMC11165095 DOI: 10.3389/jpps.2024.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Childhood obesity has emerged as a major global health issue, contributing to the increased prevalence of chronic conditions and adversely affecting the quality of life and future prospects of affected individuals, thereby presenting a substantial societal challenge. This complex condition, influenced by the interplay of genetic predispositions and environmental factors, is characterized by excessive energy intake due to uncontrolled appetite regulation and a Westernized diet. Managing obesity in childhood requires specific considerations compared with adulthood, given the vulnerability of the critical juvenile-adolescent period to toxicity and developmental defects. Consequently, common treatment options for adult obesity may not directly apply to younger populations. Therefore, research on childhood obesity has focused on genetic defects in regulating energy intake, alongside pharmacotherapy and dietary interventions as management approaches, with an emphasis on safety concerns. This review aims to summarize canonical knowledge and recent findings on genetic factors contributing to childhood obesity. Additionally, it assesses the efficacy and safety of existing pharmacotherapies and dietary interventions and suggests future research directions. By providing a comprehensive understanding of the complex dynamics of childhood obesity, this review aims to offer insights into more targeted and effective strategies for addressing this condition, including personalized healthcare solutions.
Collapse
Affiliation(s)
- Joe Eun Son
- School of Food Science and Biotechnology, Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
5
|
Toubon G, Butel MJ, Rozé JC, Delannoy J, Ancel PY, Aires J, Charles MA. Association between gut microbiota at 3.5 years of age and body mass index at 5 years: results from two French nationwide birth cohorts. Int J Obes (Lond) 2024; 48:503-511. [PMID: 38097759 DOI: 10.1038/s41366-023-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 04/02/2024]
Abstract
BACKGROUND/OBJECTIVES The relationship between gut microbiota and changes in body mass index (BMI) or pediatric overweight in early life remains unclear, and information regarding the preterm population is scarce. This study aimed to investigate how the gut microbiota at 3.5 years of age is associated with (1) later BMI at 5 years, and (2) BMI z-score variations between 2 and 5 years in children from two French nationwide birth cohorts. SUBJECTS/METHODS Bacterial 16S rRNA gene sequencing was performed to profile the gut microbiota at 3.5 years of age in preterm children (n = 143, EPIPAGE 2 cohort) and late preterm/full-term children (n = 369, ELFE cohort). The predicted abundances of metabolic functions were computed using PICRUSt2. Anthropometric measurements were collected at 2 and 5 years of age during medical examinations or retrieved from children's health records. Statistical analyses included multivariable linear and logistic regressions, random forest variable selection, and MiRKAT. RESULTS The Firmicutes to Bacteroidetes (F/B) ratio at 3.5 years was positively associated with the BMI z-score at 5 years. Several genera were positively ([Eubacterium] hallii group, Fusicatenibacter, and [Eubacterium] ventriosum group) or negatively (Eggerthella, Colidextribacter, and Ruminococcaceae CAG-352) associated with the BMI z-scores at 5 years. Some genera were also associated with variations in the BMI z-scores between 2 and 5 years of age. Predicted metabolic functions, including steroid hormone biosynthesis, biotin metabolism, glycosaminoglycan degradation, and amino sugar and nucleotide sugar metabolism, were associated with lower BMI z-scores at 5 years. The unsaturated fatty acids biosynthesis pathway was associated with higher BMI z-scores. CONCLUSIONS These findings indicate that the gut microbiota at 3.5 years is associated with later BMI during childhood, independent of preterm or term birth, suggesting that changes in the gut microbiota that may predispose to adult obesity begin in early childhood.
Collapse
Affiliation(s)
- Gaël Toubon
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Marie-José Butel
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Centre d'investigation clinique 1413, Centre hospitalo-universitaire de Nantes, F-44300, Nantes, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Pierre-Yves Ancel
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France.
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France.
| | - Marie-Aline Charles
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France.
| |
Collapse
|
6
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
8
|
Ciccone MM, Lepera ME, Guaricci AI, Forleo C, Cafiero C, Colella M, Palmirotta R, Santacroce L. Might Gut Microbiota Be a Target for a Personalized Therapeutic Approach in Patients Affected by Atherosclerosis Disease? J Pers Med 2023; 13:1360. [PMID: 37763128 PMCID: PMC10532785 DOI: 10.3390/jpm13091360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the increasing number of studies on the relationship between the gut microbiota and atherosclerosis have led to significant interest in this subject. The gut microbiota, its metabolites (metabolome), such as TMAO, and gut dysbiosis play an important role in the development of atherosclerosis. Furthermore, inflammation, originating from the intestinal tract, adds yet another mechanism by which the human ecosystem is disrupted, resulting in the manifestation of metabolic diseases and, by extension, cardiovascular diseases. The scientific community must understand and elucidate these mechanisms in depth, to gain a better understanding of the relationship between atherosclerosis and the gut microbiome and to promote the development of new therapeutic targets in the coming years. This review aims to present the knowledge acquired so far, to trigger others to further investigate this intriguing topic.
Collapse
Affiliation(s)
- Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Mario Erminio Lepera
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Raffele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| |
Collapse
|
9
|
Morgado MC, Sousa M, Coelho AB, Costa JA, Seabra A. Exploring Gut Microbiota and the Influence of Physical Activity Interventions on Overweight and Obese Children and Adolescents: A Systematic Review. Healthcare (Basel) 2023; 11:2459. [PMID: 37685493 PMCID: PMC10487561 DOI: 10.3390/healthcare11172459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The recognition that the gut microbiota of obese children differs from lean children has grown, and some studies suggest that physical activity positively influences the gut microbiota. This systematic review explores the changes in the gut microbiota composition of obese and non-obese children and adolescents and provides an understanding of the effects of physical activity interventions in modulating their microbiota. The PRISMA protocol was used across PubMed, Scopus, and Web of Science. Overall, twenty-four research papers were included in accordance with the chosen inclusion and exclusion criteria, eighteen studies compared the gut microbiota of obese and normal-weight children and adolescents, and six studies explored the effect of physical activity interventions on the gut microbiota. The analysis indicated that obese gut microbiota is reduced in Bacteroidetes, Bifidobacterium and alpha diversity but enriched in Proteobacteria and Lactobacillus. Interventions with physical activity seem to improve the alpha diversity and beneficial bacteria linked to body weight loss in children and adolescents. The gut microbiota of obese children exhibited a remarkably individual variation. More interventions are needed to clearly and accurately explore the relationships between child obesity, gut microbiota, and physical activity and to develop approaches to decrease the incidence of paediatric obesity.
Collapse
Affiliation(s)
- Micaela C. Morgado
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal;
| | - Mónica Sousa
- CIDEFES, Universidade Lusófona, 1749-024 Lisboa, Portugal
- CINTESIS@RISE, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - André B. Coelho
- Faculty of Sports Science and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal;
| | - Júlio A. Costa
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal;
| | - André Seabra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
- Portugal Football School, Portuguese Football Federation (FPF), 1495-433 Cruz Quebrada, Portugal;
| |
Collapse
|
10
|
Role of oral and gut microbiota in childhood obesity. Folia Microbiol (Praha) 2023; 68:197-206. [PMID: 36626083 DOI: 10.1007/s12223-023-01033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Childhood obesity not only causes damage to children's respiratory, cardiovascular, endocrine, motor, and other systems but also is a significant risk factor for metabolic diseases such as obesity in adulthood, which has become one of the serious public health problems worldwide. The etiology and pathogenesis of obesity are complex. In addition to genetic and lifestyle factors, recent studies have found that the microbes in the digestive tract play a crucial role in the occurrence and development of obesity. Among them, the gut microbiota has been confirmed to be one of the important pathogenic factors of obesity, which can mediate the occurrence and development of obesity by interfering with the balance of host energy metabolism and inducing low-grade chronic inflammation throughout the host. Targeting the gut microbiota to treat obesity through various methods such as fecal microbiota transplantation, dietary intervention, and probiotic supplementation has become a research hotspot in obesity treatment. In addition, the oral microbiota is also considered closely related to the occurrence and development of obesity due to its regulatory effect on the balance of gut microbiota. Exploring the relationship between oral and gut microbiota and childhood obesity elucidates the pathogenesis and treatment concepts of childhood obesity from a new perspective. It may provide new methods for the prevention and treatment of childhood obesity in the future.
Collapse
|
11
|
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Tsai SY, Wu SF, Lin HC, Yeh YT. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front Nutr 2022; 9:922993. [PMID: 35990345 PMCID: PMC9386160 DOI: 10.3389/fnut.2022.922993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aims Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.
Collapse
Affiliation(s)
- An-Chyi Chen
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Tzu-Jung Fang
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shu-Fen Wu
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan.,Asia University Hospital, Asia University, Taichung City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| |
Collapse
|
12
|
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol 2022; 28:1875-1901. [PMID: 35664966 PMCID: PMC9150060 DOI: 10.3748/wjg.v28.i18.1875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has a significant role in gut development, maturation, and immune system differentiation. It exerts considerable effects on the child's physical and mental development. The gut microbiota composition and structure depend on many host and microbial factors. The host factors include age, genetic pool, general health, dietary factors, medication use, the intestine's pH, peristalsis, and transit time, mucus secretions, mucous immunoglobulin, and tissue oxidation-reduction potentials. The microbial factors include nutrient availability, bacterial cooperation or antagonism, and bacterial adhesion. Each part of the gut has its microbiota due to its specific characteristics. The gut microbiota interacts with different body parts, affecting the pathogenesis of many local and systemic diseases. Dysbiosis is a common finding in many childhood disorders such as autism, failure to thrive, nutritional disorders, coeliac disease, Necrotizing Enterocolitis, helicobacter pylori infection, functional gastrointestinal disorders of childhood, inflammatory bowel diseases, and many other gastrointestinal disorders. Dysbiosis is also observed in allergic conditions like atopic dermatitis, allergic rhinitis, and asthma. Dysbiosis can also impact the development and the progression of immune disorders and cardiac disorders, including heart failure. Probiotic supplements could provide some help in managing these disorders. However, we are still in need of more studies. In this narrative review, we will shed some light on the role of microbiota in the development and management of common childhood disorders.
Collapse
Affiliation(s)
- Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Yasser El-Sawaf
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Gastroenterology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Bahrain
| | - Osama Toema
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
13
|
Islam MR, Arthur S, Haynes J, Butts MR, Nepal N, Sundaram U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022; 14:624. [PMID: 35276983 PMCID: PMC8838694 DOI: 10.3390/nu14030624] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).
Collapse
Affiliation(s)
| | | | | | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.R.I.); (S.A.); (J.H.); (M.R.B.); (N.N.)
| |
Collapse
|
14
|
Sun Q, Ho CT, Zhang X, Liu Y, Zhang R, Wu Z. Strategies for circadian rhythm disturbances and related psychiatric disorders: A new cue based on plant polysaccharides and intestinal microbiota. Food Funct 2022; 13:1048-1061. [DOI: 10.1039/d1fo02716f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian rhythm is essential to human physiological homeostasis and health. The oscillation of host circadian rhythm affects the composition and function of intestinal microbiota, meanwhile, the normal operation of host...
Collapse
|
15
|
Sun T, Xue M, Yang J, Pei Z, Zhang N, Qin K, Liang H. Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4456-4463. [PMID: 33682122 DOI: 10.1002/jsfa.11202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important functions and is considered to be an essential 'organ' because it plays an important role in regulating human metabolism. Fucoidan contains a large amount of fucose and galactose residues, as well as various other neutral and acidic monosaccharides. Fucoidan particularly effects tumors, inflammatory bowel disease, diabetes and obesity by repairing intestinal mucosal damage and improving the intestinal microecological environment. It has been proposed that fucoidan could be used as a prebiotic agent for pharmaceutical and functional foods. In this review, we elucidate the potential mechanisms of the metabolic regulation of fucoidan with respect to the intestinal microecology of diseases. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, China
| |
Collapse
|
16
|
Petraroli M, Castellone E, Patianna V, Esposito S. Gut Microbiota and Obesity in Adults and Children: The State of the Art. Front Pediatr 2021; 9:657020. [PMID: 33816411 PMCID: PMC8017119 DOI: 10.3389/fped.2021.657020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, obesity has become a serious public health problem affecting both children and adults. Considering the multifactorial origin of obesity, including modifiable factors, childhood was identified as the golden age for investing in obesity prevention by both promoting proper lifestyles and actively intervening in possible triggers. The gut microbiota is at the center of the most recent scientific studies and plays a key role in obesity development because it is intimately linked to energetic-humoral variations in the host: its alterations can promote a state of excessive energy storage, and it can be manipulated to maintain energy homoeostasis. This review aims to offer a panoramic understanding of the interplay between obesity and the gut microbiota, focusing on the contribution that the gut microbiota could have to the prevention of childhood obesity and its complications in adulthood. Currently, the use of some specific probiotic strains has been shown to be able to act on some secondary metabolic consequences of obesity (such as liver steatosis and insulin resistance) without any effect on weight loss. Although definitive conclusions cannot be drawn on the real impact of probiotics and prebiotics, there is no doubt that they represent an exciting new frontier in the treatment of obesity and associated metabolic dysfunctions. Targeted studies randomized on specific populations and homogeneous for ethnicity, sex, and age are urgently needed to reach definitive conclusions about the influence of microbiota on weight. In particular, we still need more studies in the pediatric population to better understand when the switch to an obese-like gut microbiota takes place and to better comprehend the right timing of each intervention, including the use of pre/probiotics, to improve it.
Collapse
Affiliation(s)
| | | | | | - Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Pastor-Villaescusa B, Plaza-Díaz J, Egea-Zorrilla A, Leis R, Bueno G, Hoyos R, Vázquez-Cobela R, Latorre M, Cañete MD, Caballero-Villarraso J, Gil Á, Cañete R, Aguilera CM. Evaluation of the gut microbiota after metformin intervention in children with obesity: A metagenomic study of a randomized controlled trial. Biomed Pharmacother 2021; 134:111117. [PMID: 33360047 DOI: 10.1016/j.biopha.2020.111117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
|
18
|
Concurrence of stunting and overweight/obesity among children: Evidence from Ethiopia. PLoS One 2021; 16:e0245456. [PMID: 33449970 PMCID: PMC7810347 DOI: 10.1371/journal.pone.0245456] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Nutrition transition in many low- and middle-income countries (LMICs) has led to shift in childhood nutritional outcomes from a predominance of undernutrition to a double burden of under- and overnutrition. Yet, policies that address undernutrition often times do not include overnutrition nor do policies on overweight, obesity reflect the challenges of undernutrition. It is therefore crucial to assess the prevalence and determinants of concurrence stunting and overweight/obesity to better inform nutrition programs in Ethiopia and beyond. Methods We analyzed anthropometric, sociodemographic and dietary data of children under five years of age from 2016 Ethiopian Demographic and Health Survey (EDHS). A total of 8,714 children were included in the current study. Concurrence of stunting and overweight/obesity (CSO) prevalence was estimated by basic, underlying and immediate factors. To identify factors associated with CSO, we conducted hierarchical logistic regression analyses. Results The overall prevalence of CSO was 1.99% (95% CI, 1.57–2.53). The odds of CSO was significantly higher in children in agrarian region compared to their counter parts in the pastoralist region (AOR = 1.51). Other significant factors included; not having improved toilet facility (AOR = 1.94), being younger than 12 months (AOR = 4.22), not having history of infection (AOR = 1.83) and not having taken deworming tablet within the previous six months (AOR = 1.49). Conclusion Our study provided evidence on the co-existence of stunting and overweight/obesity among infants and young children in Ethiopia. Therefore, identifying children at risk of growth flattering and excess weight gain provides nutrition policies and programs in Ethiopia and beyond with an opportunity of earlier interventions through improving sanitation, dietary quality by targeting children under five years of age and those living in Agrarian regions of Ethiopia.
Collapse
|
19
|
Oddi S, Huber P, Rocha Faria Duque AL, Vinderola G, Sivieri K. Breast-milk derived potential probiotics as strategy for the management of childhood obesity. Food Res Int 2020; 137:109673. [PMID: 33233250 DOI: 10.1016/j.foodres.2020.109673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/18/2022]
Abstract
Obesity and overweight, and their concomitant metabolic diseases, emerge as one of the most severe health problems in the world. Prevention and management of obesity are proposed to begin early in childhood, when probiotics may have a role. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), in a dynamic validated in vitro system able to simulate the different parts of the gastrointestinal tract, has proven to be useful in analyzing the human intestinal microbial community. L. plantarum 73a and B. animalis subsp. lactis INL1, two strains isolated from breast milk, were assayed in the SHIME® using the fecal microbiota of an obese child. L. plantarum 73a alone or in combination with B. animalis subsp. lactis INL1 demonstrated survival capacity in the SHIME® system. The administration of both strains increased the alpha diversity of the microbiota and reduced the levels of the phylum Proteobacteria. In particular, the genera Escherichia, Shigella, and Clostridium_sensu_stricto_1 were significantly reduced when both strains were administered. The increase of Proteobacteria phylum is generally associated with the microbiota of obese people. Escherichia and Shigellacan be involved in inflammation-dependent adiposity and insulin resistance. L. plantarum73a supplementation reduced ammonia production. L. plantarum 73a alone or in combination with B. animalis subsp. lactis INL1 are potential probiotic candidates for the management of infant obesity.
Collapse
Affiliation(s)
- S Oddi
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - P Huber
- Laboratorio de Plancton, Instituto Nacional de Limnología (INALI, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - A L Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 9 SP 14800-903, Brazil
| | - G Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - K Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 9 SP 14800-903, Brazil
| |
Collapse
|
20
|
Abstract
Several studies have gathered interest in the relationship between gut microbiota and atherosclerosis. Gut microbiota and its metabolites, such as trimethylamine-N-oxide, and gut dysbiosis play an important role in the development of atherosclerosis. Also, inflammation, derived by the intestinal tract, adds another mechanism through which the ecosystem of the human body affects the metabolic diseases and, furthermore, cardiovascular diseases. The scientific world should fixate the understanding of the exact physiologic and pathophysiologic mechanisms for atherogenesis by gut microbiota and through that, new ways for novel therapeutic targets will be available in the coming years. This review summarizes the latest data on this matter.
Collapse
|
21
|
Marques AM, Sarandy MM, Novaes RD, Gonçalves RV, Freitas MB. Preclinical relevance of probiotics in type 2 diabetes: A systematic review. Int J Exp Pathol 2020; 101:68-79. [PMID: 32608551 DOI: 10.1111/iep.12359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes (T2DM) is among the most prevalent metabolic diseases in the world and may result in several long-term complications. The crosstalk between gut microbiota and host metabolism is closely related to T2DM. Currently, fragmented data hamper defining the relationship between probiotics and T2DM. This systematic review aimed at investigating the effects of probiotics on T2DM in animal models. We systematically reviewed preclinical evidences using PubMed/MEDLINE and Scopus databases, recovering 24 original articles published until September 27th, 2019. This systematic review was performed according to PRISMA guidelines. We included experimental studies with animal models reporting the effects of probiotics on T2DM. Studies were sorted by characteristics of publications, animal models, performed analyses, probiotic used and interventions. Bias analysis and methodological quality assessments were examined through the SYRCLE's Risk of Bias tool. Probiotics improved T2DM in 96% of the studies. Most studies (96%) used Lactobacillus strains, and all of them led to improved glycaemia. All studies used rodents as models, and male animals were preferred over females. Results suggest that probiotics have a beneficial effect in T2DM animals and could be used as a supporting alternative in the disease treatment. Considering a detailed evaluation of the reporting and methodological quality, the current preclinical evidence is at high risk of bias. We hope that our critical analysis will be useful in mitigating the sources of bias in further studies.
Collapse
Affiliation(s)
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil
| | | | | |
Collapse
|
22
|
Halkjær SI, de Knegt VE, Lo B, Nilas L, Cortes D, Pedersen AE, Mirsepasi-Lauridsen HC, Andersen LO, Nielsen HV, Stensvold CR, Johannesen TB, Kallemose T, Krogfelt KA, Petersen AM. Multistrain Probiotic Increases the Gut Microbiota Diversity in Obese Pregnant Women: Results from a Randomized, Double-Blind Placebo-Controlled Study. Curr Dev Nutr 2020; 4:nzaa095. [PMID: 32617453 PMCID: PMC7319727 DOI: 10.1093/cdn/nzaa095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Maternal obesity is associated with adverse pregnancy outcomes. Probiotic supplementation during pregnancy may have positive effects on blood glucose, gestational weight gain (GWG), and the risk of gestational diabetes mellitus [GDM and glycated hemoglobin (HbA1c)]. OBJECTIVES This feasibility study involved a daily probiotic intervention in obese pregnant women from the early second trimester until delivery. The primary aim was to investigate the effect on GWG and maternal glucose homeostasis (GDM and HbA1c). Secondary aims were the effect on infant birth weight, maternal gut microbiota, and other pregnancy outcomes. METHODS We carried out a randomized double-blinded placebo-controlled study in 50 obese pregnant women. Participants were randomly allocated (1:1) to multistrain probiotic (4 capsules of Vivomixx®; total of 450 billion CFU/d) or placebo at 14-20 weeks of gestation until delivery. Participants were followed with 2 predelivery visits at gestational week 27-30 and 36-37 and with 1 postdelivery visit. All visits included blood and fecal sampling. An oral-glucose-tolerance test was performed at inclusion and gestational week 27-30. RESULTS Forty-nine participants completed the study. Thirty-eight participants took >80% of the capsules (n = 21), placebo (n = 17). There was no significant difference in GWG, GDM, HbA1c concentrations, and infant birth weight between groups. Fecal microbiota analyses showed an overall increase in α-diversity over time in the probiotic group only (P = 0.016). CONCLUSIONS Administration of probiotics during pregnancy is feasible in obese women and the women were willing to participate in additional study visits and collection of fecal samples during pregnancy. Multistrain probiotic can modulate the gut microbiota in obese women during pregnancy. A larger study population is needed to uncover pregnancy effects after probiotic supplementation. This trial was registered at clincaltrials.gov as NCT02508844.
Collapse
Affiliation(s)
- Sofie Ingdam Halkjær
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Bobby Lo
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Lisbeth Nilas
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Dina Cortes
- Department of Pediatrics, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Elm Pedersen
- Department of Dentistry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Vedel Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Kallemose
- Clinical Research Centre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andreas Munk Petersen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
23
|
Maternal exposure to a high-fat diet showed unfavorable effects on the body weight, apoptosis and morphology of cardiac myocytes in offspring. Arch Gynecol Obstet 2020; 301:837-844. [PMID: 32114674 DOI: 10.1007/s00404-020-05470-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The study intends to explore the functions of maternal high-fat diet exposure on progeny weight and heart. METHODS Sprague-Dawley (SD) rats, fed on a high-fat diet, were used to establish a model of weight gain before and during pregnancy. The body and cardiac weight of neonatal, 1-month- and 3-month-old rats were measured. The morphology of myocardial cells was observed by hemotoxylin and eosin (H&E) staining. The expression of caspase-3, 8, 9 was measured by qRT-PCR and western blot. RESULTS Normal pregnant rats, fed on a high-fat diet throughout pregnancy, had a significant increase in body and cardiac weight of their neonates, and more fat deposition in myocardial cells and an increased expression of caspase-3, 8, 9, compared with that of the normal pregnant rats + normal diet group. These phenomena were relieved through later diet control. Pregnant rats, which fed on a high-fat diet throughout pregnancy, showed more adverse effects on neonatal body and cardiac weight, myocardial cell fat deposition, and the expression of caspase-3, 8, 9, compared with pregnant rats exposed to high-fat diet + normal diet and pregnant rats exposed to high-fat diet + normal diet + exercise. These phenomena cannot be fully restored via controlling later diet. CONCLUSIONS Our results stated that a proper diet before and during pregnancy was important for the cardiac health of offspring.
Collapse
|
24
|
Klancic T, Reimer RA. Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:110-118. [PMID: 32099719 PMCID: PMC7031774 DOI: 10.1016/j.jshs.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 06/10/2023]
Abstract
Obesity is a complex disease with multiple contributing factors. One of the most intensely studied factors during the past decade has been the gut microbiota, which is the community of all microbes in the intestinal tract. The gut microbiota, via energy extraction, inflammation, and other actions, is now recognized as an important player in the pathogenesis of obesity. Dysbiosis, or an imbalance in the microbial community, can initiate a cascade of metabolic disturbances in the host. Early life is a particularly important period for the development of the gut microbiota, and perturbations such as with antibiotic exposure can have long-lasting consequences for host health. In early life and throughout the life span, diet is one of the most important factors that shape the gut microbiota. Although diets high in fat and sugar have been shown to contribute to dysbiosis and disease, dietary fiber is recognized as an important fermentative fuel for the gut microbiota and results in the production of short-chain fatty acids that can act as signaling molecules in the host. One particular type of fiber, prebiotic fiber, contributes to changes in the gut microbiota, the most notable of which is an increase in the abundance of Bifidobacterium. This review highlights our current understanding of the role of gut microbiota in obesity development and the ways in which manipulating the microbiota through dietary means, specifically prebiotics, could contribute to improved health in the host, including musculoskeletal health.
Collapse
Affiliation(s)
- Teja Klancic
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
25
|
Fernández J, Ledesma E, Monte J, Millán E, Costa P, de la Fuente VG, García MTF, Martínez-Camblor P, Villar CJ, Lombó F. Traditional Processed Meat Products Re-designed Towards Inulin-rich Functional Foods Reduce Polyps in Two Colorectal Cancer Animal Models. Sci Rep 2019; 9:14783. [PMID: 31616028 PMCID: PMC6794276 DOI: 10.1038/s41598-019-51437-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
Inulin-rich foods exert a prebiotic effect, as this polysaccharide is able to enhance beneficial colon microbiota populations, giving rise to the in situ production of short-chain fatty acids (SCFAs) such as propionic and butyric acids. These SCFAs are potent preventive agents against colorectal cancer due to their histone deacetylases inhibitory properties, which induce apoptosis in tumor colonocytes. As colorectal cancer is the fourth most common neoplasia in Europe with 28.2 new cases per 100,000 inhabitants, a cost-effective preventive strategy has been tested in this work by redesigning common porcine meat products (chorizo sausages and cooked ham) consumed by a substantial proportion of the population towards potential colorectal cancer preventive functional foods. In order to test the preventive effect of these inulin-rich meat products against colorectal cancer, an animal model (Rattus norvegicus F344) was used, involving two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) during a 20-week assay period. Control feed, control sausages, functional sausages (15.7% inulin), control cooked ham and functional cooked ham (10% inulin) were used to feed the corresponding animal cohorts. Then, the animals were sacrificed and their digestive tract tissues were analyzed. The results showed a statistically significant 49% reduction in the number of colon polyps in the functional meat products cohorts with respect to the control meat products animals, as well as an increase in the cecum weight (an indicator of a diet rich in prebiotic fiber), a 51.8% increase in colon propionate production, a 39.1% increase in colon butyrate concentrations, and a reduction in the number of hyperplastic Peyer's patches. Metagenomics studies also demonstrated colon microbiota differences, revealing a significant increase in Bacteroidetes populations in the functional meat products (mainly due to an increase in Bacteroidaceae and Prevotellaceae families, which include prominent propionate producers), together with a reduction in Firmicutes (especially due to lower Lachnospiraceae populations). However, functional meat products showed a remarkable increase in the anti-inflammatory and fiber-fermentative Blautia genus, which belongs to this Lachnospiraceae family. The functional meat products cohorts also presented a reduction in important pro-inflammatory bacterial populations, such as those of the genus Desulfovibrio and Bilophila. These results were corroborated in a genetic animal model of CRC (F344/NSlc-Apc1588/kyo) that produced similar results. Therefore, processed meat products can be redesigned towards functional prebiotic foods of interest as a cost-effective dietary strategy for preventing colorectal cancer in human populations.
Collapse
Affiliation(s)
- Javier Fernández
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo. Avda. Julián Clavería, 7, 33006, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Estefanía Ledesma
- El Hórreo Healthy Foods SL. Polígono de Granda 17, 33199, Siero, Spain
| | - Joaquín Monte
- El Hórreo Healthy Foods SL. Polígono de Granda 17, 33199, Siero, Spain
| | - Enric Millán
- COSFER SA, C/Isaac Peral 2, Can Castells, 08420, Canovelles, Barcelona, Spain
| | - Pedro Costa
- COSFER SA, C/Isaac Peral 2, Can Castells, 08420, Canovelles, Barcelona, Spain
| | - Vanessa García de la Fuente
- Molecular Histopathology Unit in Animal Models for Cancer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - María Teresa Fernández García
- Molecular Histopathology Unit in Animal Models for Cancer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Geisel School of Medicine at Dartmouth, Dartmouth College, Hannover, NH, 03755, New Hampshire, USA
| | - Claudio J Villar
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo. Avda. Julián Clavería, 7, 33006, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Felipe Lombó
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo. Avda. Julián Clavería, 7, 33006, Oviedo, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain.
| |
Collapse
|
26
|
Joseph N, Vasodavan K, Saipudin NA, Yusof BNM, Kumar S, Nordin SA. Gut microbiota and short-chain fatty acids (SCFAs) profiles of normal and overweight school children in Selangor after probiotics administration. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Are intestinal parasites associated with obesity in Mexican children and adolescents? Parasitol Int 2019; 71:126-131. [PMID: 30951870 DOI: 10.1016/j.parint.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
|
28
|
Abstract
The long-held concept of fetus being nurtured in a sterile environment has been challenged by many recent studies that have identified bacterial communities in meconium, amniotic fluid and the placenta concluding that the microbial colonization of fetal gut begins in utero and continues during the first 2 years of life. This microbial colonization of newborn's gut during prenatal, intrapartum, and postnatal period depends on multiple factors, e.g. maternal diet, stress, antibiotic exposure, mode of delivery, type of feeding (human milk versus formula), etc., and imparts a critical role in the development of gastrointestinal, immunological, and neural systems in newborns. This article briefly reviews the current state of knowledge of microbiome in the maternal fetal unit and its impact on subsequent neonatal health and diseases.
Collapse
Affiliation(s)
- Anchala Singh
- Department of Paediatrics, BRD Medical College, Gorakhpur, India
| | - Mahima Mittal
- Department of Paediatrics, BRD Medical College, Gorakhpur, India
| |
Collapse
|
29
|
Lin S, Wang Z, Lam KL, Zeng S, Tan BK, Hu J. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food Nutr Res 2019; 63:1518. [PMID: 30814920 PMCID: PMC6385797 DOI: 10.29219/fnr.v63.1518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Background Polyphenols are a class of plant secondary metabolites with a variety of physiological functions. Polyphenols and their intestinal metabolites could greatly affect host energy metabolism via multiple mechanisms. Objective The objective of this review was to elaborate the role of intestinal microecology in the regulatory effects of dietary polyphenols and their metabolites on energy metabolism. Methods In this review, we illustrated the potential mechanisms of energy metabolism regulated by the crosstalk between polyphenols and intestinal microecology including intestinal microbiota, intestinal epithelial cells, and mucosal immune system. Results Polyphenols can selectively regulate the growth of susceptible microorganisms (eg. reducing the ratio of Firmicutes to Bacteroides, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria) as well as alter bacterial enzyme activity. Moreover, polyphenols can influence the absorption and secretion of intestinal epithelial cells, and alter the intestinal mucosal immune system. Conclusion The intestinal microecology play a crucial role for the regulation of energy metabolism by dietary polyphenols.
Collapse
Affiliation(s)
- Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengyu Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ka-Lung Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bee K Tan
- Departments of Cardiovascular Sciences, Health Sciences and Leicester Diabetes Centre, College of Life Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
30
|
Karvonen AM, Sordillo JE, Gold DR, Bacharier LB, O'Connor GT, Zeiger RS, Beigelman A, Weiss ST, Litonjua AA. Gut microbiota and overweight in 3-year old children. Int J Obes (Lond) 2018; 43:713-723. [PMID: 30568265 PMCID: PMC6457121 DOI: 10.1038/s41366-018-0290-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The gut microbiota has been associated with overweight and obesity in adults, but the evidence in children is limited. Our aim was to study whether composition of the gut microbiota at the age of 3 years is associated with overweight/obesity in children cross-sectionally. METHODS Children, who participated in a clinical trial of prenatal vitamin-D supplementation (VDAART), underwent standardized height and weight measurements, and collection of stool samples at 3 years of age. 16 S rRNA sequencing (V4 region) of the stool samples were performed with Illumina MiSeq. Associations between microbiota and overweight/obesity (body mass index z-scores >85th percentile) was analyzed using logistic regression. RESULTS Out of 502 children, 146 (29%) were categorized as overweight/obese. Maternal pre-pregnancy BMI, birth weight and length, formula feeding during the first year, high frequency of fast food consumption, and time watching TV or computer screen at 3 years were the risk factors for overweight/obesity. Of the top 20 most abundant genera, high relative abundance of Parabacteroidetes (Bacteroidetes; Bacteroidales) (aOR(95% CI): 0.69 (0.53, 0.90, p = 0.007) per interquartile increase) and unassigned genus within Peptostreptococcae family were inversely associated with overweight/obesity, whereas high relative abundance of Dorea (Firmicutes;Clostridiales) (1.23 (1.05, 1.43, p = 0.009)) was positively associated. Associations were independent of each other. No associations were found between diversity indices and overweight/obesity. CONCLUSIONS Our data suggest that some of the differences in gut composition of bacteria between obese and non-obese adults can already be observed in 3-year old children. Longitudinal studies will be needed to determine long-term effects.
Collapse
Affiliation(s)
- Anne M Karvonen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland. .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Joanne E Sordillo
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Robert S Zeiger
- Department of Allergy and Department of Research and Evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, San Diego, CA, USA
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, New York, NY, USA
| |
Collapse
|
31
|
Dreyer JL, Liebl AL. Early colonization of the gut microbiome and its relationship with obesity. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J Nutr Biochem 2018; 61:111-128. [PMID: 30196243 PMCID: PMC7126101 DOI: 10.1016/j.jnutbio.2018.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Subhasree Sengupta
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
33
|
Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 2018; 109:418-428. [PMID: 30221912 DOI: 10.23736/s0026-4806.18.05845-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The manipulation of gut microbiota via administration of probiotics has been proposed as a potential strategy for the treatment of non-alcoholic fatty liver disease (NAFLD). Hence, we performed a double-blind single center randomized placebo-controlled trial (RCT) to evaluate the efficacy of coadministration of probiotics with omega-3 vs. placebo in type-2 diabetic patients with NAFLD. METHODS A total of 48 patients met the criteria for inclusion. They were randomly assigned to receive "Symbiter Omega" combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or placebo for 8-weeks. The primary main outcomes were the change in fatty liver index (FLI) and liver stiffness (LS) measured by Shear Wave Elastography (SWE). Secondary outcomes were the changes in transaminases level, serum lipids and cytokines levels. RESULTS In probiotic-omega group, FLI significantly decreased from 83.53±2.60 to 76.26±2.96 (P<0.001) while no significant changes were observed in the placebo group (82.86±2.45 to 81.09±2.84; P=0.156). Changes of LS in both groups were insignificant. Analysis of secondary outcomes showed that the coadministration of probiotics with omega-3 lead to significant reduction of serum gamma-glutamyl transpeptidase, triglycerides, and total cholesterol. Chronic systemic inflammatory markers after intervention decrease significantly only in Symbiter Omega group: IL-1β (P=0.029), TNF-α (P<0.001), IL-8 (P=0.029), IL-6 (P=0.003), and INF-γ (P=0.016). CONCLUSIONS Coadministration of a live multi-strain probiotic mixture with omega-3 fatty acids once daily for 8 weeks to patients with NAFLD can reduce liver fat, improve serum lipids, metabolic profile, and reduce chronic systemic inflammatory state.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Galyna Mykhalchyshyn
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- Research Department, Greenwood Genetic Center, Greenwood School of Health Research, Clemson University, Clemson, SC, USA
| | - Liudmyla Kononenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Kyriienko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine.,Kyiv City Clinical Endocrinology Center, Kyiv, Ukraine
| | - Iuliia Komisarenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleg Dynnyk
- Bogomolets Institute of Physiology of the Ukrainian National Academy of Science, Kyiv, Ukraine
| |
Collapse
|
34
|
Kobyliak N, Falalyeyeva T, Boyko N, Tsyryuk O, Beregova T, Ostapchenko L. Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res Clin Pract 2018; 141:190-199. [PMID: 29772287 DOI: 10.1016/j.diabres.2018.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The beneficial interaction between the microbiota and humans is how bacteria contained within the gut 'talk' to the immune system and in this landscape, probiotics and nutraceuticals play a major role. The study aims to determine whether probiotics plus nutraceuticals such as smectite or omega-3 are superior to probiotic alone on the monosodium glutamate (MSG) induced obesity model in rats. METHODS Totally, 75 rats divided into five groups were included (n = 15, in each). Rats in group I were intact. Newborn rats in groups II-V were injected with MSG. Group III (Symbiter) received 2.5 ml/kg of multiprobiotic "Symbiter" containing concentrated biomass of 14 probiotic bacteria genera. Groups IV (Symbiter-Omega) and V (Symbiter-Smectite) received a combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or smectite gel (250 mg), respectively. RESULTS In all interventional groups, significant reductions of total body and visceral adipose tissue weight as compared to MSG-obesity were observed. However, the lowest prevalence of obesity was noted for Symbiter-Omega (20% vs 33.3% as compared to other interventional groups). Moreover, supplementation of probiotics with omega-3 lead to a more pronounced decrease in HOMA-IR (2.31 ± 0.13 vs 4.02 ± 0.33, p < 0.001) and elevation of adiponectin levels (5.67 ± 0.39 vs 2.61 ± 0.27, P < 0.001), compared to the obesity group. CONCLUSION Probiotics and nutraceuticals led to a significantly lower prevalence of obesity, reduction of insulin resistance, total and VAT weight. Our study demonstrated that supplementation of probiotics with omega-3 may have the most beneficial antiobesity properties.
Collapse
Affiliation(s)
- N Kobyliak
- Bogomolets National Medical University, Kyiv, Ukraine.
| | - T Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - N Boyko
- Uzhhorod National University, Uzhhorod, Ukraine
| | - O Tsyryuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Beregova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - L Ostapchenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
35
|
Fabersani E, Russo M, Marquez A, Abeijón-Mukdsi C, Medina R, Gauffin-Cano P. Modulation of intestinal microbiota and immunometabolic parameters by caloric restriction and lactic acid bacteria. Food Res Int 2018; 124:188-199. [PMID: 31466639 DOI: 10.1016/j.foodres.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Emanuel Fabersani
- Universidad Nacional de Tucumán, Tucumán, Argentina; Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | - Matías Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | - Antonela Marquez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | | | - Roxana Medina
- Universidad Nacional de Tucumán, Tucumán, Argentina; Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina.
| |
Collapse
|
36
|
Kang Y, Cai Y. The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones (Athens) 2018; 17:141-151. [PMID: 29858841 DOI: 10.1007/s42000-018-0003-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity is a growing epidemic worldwide. The most frequent cause leading to the development of obesity is an imbalance between energy intake and energy expenditure. The gut microbiota is an environmental factor involved in obesity and metabolic disorders which reveals that obese animal and human subjects present alterations in the composition of the gut microbiota compared to their lean counterparts. Furthermore, evidence has so far demonstrated that the gut microbiota, which influences whole-body metabolism, by affecting energy balance, but also inflammation and gut barrier function, integrates peripheral and central food intake regulatory signals, thereby altering body weight. At the same time, these data suggest that species of intestinal commensal bacteria may play either a pathogenic or a protective role in the development of obesity. Though still a relatively nascent field of research, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of obesity. Various studies have described the beneficial effects of specific bacteria on the characteristics of obesity. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the notable advances and contributions in the field that may prove useful for identifying probiotics that target obesity and its related disorders.
Collapse
Affiliation(s)
- Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Yue Cai
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China
- Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
37
|
Stephens RW, Arhire L, Covasa M. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity (Silver Spring) 2018; 26:801-809. [PMID: 29687647 DOI: 10.1002/oby.22179] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. METHODS The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. RESULTS Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. CONCLUSIONS There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity.
Collapse
Affiliation(s)
- Richard W Stephens
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Lidia Arhire
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Hospital Sf. Spiridon, Iasi, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, USA
- Department of Health and Human Development, University of Suceava, Romania
| |
Collapse
|
38
|
Affiliation(s)
- Tom Baranowski
- 1 Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX
| | - Elsie M Taveras
- 2 Division of General Academic Pediatrics, Massachusetts General Hospital for Children , Boston, MA
- 3 Department of Nutrition, Harvard School of Public Health , Boston, MA
| |
Collapse
|
39
|
Zavala GA, Rosado JL, Doak CM, Caamaño MDC, Campos-Ponce M, Ronquillo D, Polman K, García OP. Energy and food intake are associated with specific intestinal parasitic infections in children of rural Mexico. Parasitol Int 2017; 66:831-836. [PMID: 28743469 DOI: 10.1016/j.parint.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/16/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Gerardo A Zavala
- Faculty of Earth and Life Sciences, Department of Health Sciences, VU Amsterdam University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands.
| | - Jorge L Rosado
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de la Ciencia S/N, Juriquilla, Querétaro 76230, Mexico
| | - Colleen M Doak
- Faculty of Earth and Life Sciences, Department of Health Sciences, VU Amsterdam University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Maria Del Carmen Caamaño
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de la Ciencia S/N, Juriquilla, Querétaro 76230, Mexico
| | - Maiza Campos-Ponce
- Faculty of Earth and Life Sciences, Department of Health Sciences, VU Amsterdam University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Dolores Ronquillo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de la Ciencia S/N, Juriquilla, Querétaro 76230, Mexico
| | - Katja Polman
- Faculty of Earth and Life Sciences, Department of Health Sciences, VU Amsterdam University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands; Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerpen, Belgium
| | - Olga P García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de la Ciencia S/N, Juriquilla, Querétaro 76230, Mexico
| |
Collapse
|
40
|
Mitchell EL, Davis AT, Brass K, Dendinger M, Barner R, Gharaibeh R, Fodor AA, Kavanagh K. Reduced Intestinal Motility, Mucosal Barrier Function, and Inflammation in Aged Monkeys. J Nutr Health Aging 2017; 21:354-361. [PMID: 28346561 PMCID: PMC6057140 DOI: 10.1007/s12603-016-0725-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We aimed to examine the general health and intestinal physiology of young and old non-human primates with comparable life histories and dietary environments. DESIGN Vervet monkeys (Chlorcebus aethiops sabaeus) in stable and comparable social and nutritional environments were selected for evaluation. Health phenotype, circulating cytokines and biomarkers of microbial translocation (MT) were measured (n=26-44). Subsets of monkeys additionally had their intestinal motility, intestinal permeability, and fecal microbiomes characterized. These outcomes document age-related intestinal changes present in the absence of nutritional stressors, which are all known to affect gastrointestinal motility, microbiome, and MT. RESULTS We found that old monkeys have greater systemic inflammation and poor intestinal barrier function as compared to young monkeys. Old monkeys have dramatically reduced intestinal motility, and all changes in motility and MT are present without large differences in fecal microbiomes. CONCLUSION We conclude that deteriorating intestinal function is a feature of normal aging and could represent the source of inflammatory burden yet to be explained by disease or diet in normal aging human primate populations. Intestinal changes were seen independent of dietary influences and aging within a consistent environment appears to avoid major microbiome shifts. Our data suggests interventions to promote intestinal motility and mucosal barrier function have the potential to support better health with aging.
Collapse
Affiliation(s)
- E L Mitchell
- Kylie Kavanagh, DVM, MS, MPH, Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27107, , phone: (336) 713 1745, fax: (336) 716 1515
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zavala GA, García OP, Campos-Ponce M, Ronquillo D, Caamaño MC, Doak CM, Rosado JL. Children with moderate-high infection with Entamoeba coli have higher percentage of body and abdominal fat than non-infected children. Pediatr Obes 2016; 11:443-449. [PMID: 26663860 DOI: 10.1111/ijpo.12085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intestinal parasites, virus and bacterial infections are positively associated with obesity and adiposity in vitro and in animal models, but conclusive evidence of this relationship in humans is lacking. The aim of this cross-sectional study was to determine differences in adiposity between infected and non-infected children, with a high prevalence of intestinal parasitic infection and obesity. SUBJECTS A total of 296 school-aged children (8.0 ± 1.5 years) from a rural area in Querétaro, Mexico, participated in this study. Anthropometry (weight, height and waist circumference) and body fat (DXA) were measured in all children. A fresh stool sample was collected from each child and analysed for parasites. Questionnaires related to socioeconomic status and clinical history were completed by caretakers. RESULTS Approximately 11% of the children were obese, and 19% were overweight. The overall prevalence of infection was 61%. Ascaris lumbricoides was the most prevalent soil transmitted helminth (16%) followed by hookworm. Entamoeba coli was the predominant protozoa (20%) followed by Endolimax nana, Balantidium coli, Entamoeba histolytica/dispar, Iodamoeba bütschlii and Giardia lamblia. Children with moderate-heavy infection of E. coli had significantly higher waist circumference, waist-to-height ratio, body and abdominal fat than children not infected or with light-intensity infection (p < 0.05). CONCLUSION These findings raise the possibility that a moderate or heavy infection with E. coli may contribute to fat deposition and thereby have long-term consequences on human health. Further studies are needed to better understand if E. coli contributes directly to fat deposition and possible mechanisms.
Collapse
Affiliation(s)
- G A Zavala
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico.,Faculty of Earth and Life Sciences, VU Amsterdam University, Amsterdam, The Netherlands
| | - O P García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - M Campos-Ponce
- Faculty of Earth and Life Sciences, VU Amsterdam University, Amsterdam, The Netherlands
| | - D Ronquillo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - M C Caamaño
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - C M Doak
- Faculty of Earth and Life Sciences, VU Amsterdam University, Amsterdam, The Netherlands
| | - J L Rosado
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico.,Cindetec, AC, Santiago de Querétaro, Mexico
| |
Collapse
|
42
|
Lemas DJ, Yee S, Cacho N, Miller D, Cardel M, Gurka M, Janicke D, Shenkman E. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity. Semin Fetal Neonatal Med 2016; 21:406-409. [PMID: 27424917 DOI: 10.1016/j.siny.2016.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pediatric obesity, a significant public health concern, has been associated with adult premature mortality and the development of type 2 diabetes and cardiovascular disease. Evidence has suggested that the gut microbiota is associated with pediatric obesity. Establishment of the infant gut microbiome is dependent on a dynamic maternal-infant microbiota exchange during early life. The objective of this review is to describe maternal factors such as feeding practices and antibiotic use that may influence the infant gut microbiome and risk for obesity. The complex components in human milk have many nutritional benefits to the infant; however, the microbiome in human milk may be an important factor to help regulate the infant's weight. We discuss maternal antibiotics and the effects on breast milk as critical exposures that alter the infant's gut microbiome and influence the risk of pediatric obesity.
Collapse
Affiliation(s)
- Dominick J Lemas
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA.
| | - Shanique Yee
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Nicole Cacho
- University of Florida, Department of Pediatrics, Division of Neonatology, Gainesville, FL, USA
| | - Darci Miller
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Michelle Cardel
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Matthew Gurka
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - David Janicke
- University of Florida, Department of Clinical and Health Psychology, Gainesville, FL, USA
| | - Elizabeth Shenkman
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| |
Collapse
|
43
|
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016; 5:E80. [PMID: 28231175 PMCID: PMC5302426 DOI: 10.3390/foods5040080] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
44
|
Tidjani Alou M, Lagier JC, Raoult D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.humic.2016.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Kobyliak N, Virchenko O, Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutr J 2016; 15:43. [PMID: 27105827 PMCID: PMC4841968 DOI: 10.1186/s12937-016-0166-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/21/2016] [Indexed: 12/16/2022] Open
Abstract
Overweight and obesity increase the risk for a number of diseases, namely, cardiovascular diseases, type 2 diabetes, dyslipidemia, premature death, non-alcoholic fatty liver disease as well as different types of cancer. Approximately 1.7 billion people in the world suffer from being overweight, most notably in developed countries. Current research efforts have focused on host and environmental factors that may affect energy balance. It was hypothesized that a microbiota profile specific to an obese host with increased energy-yielding behavior may exist. Consequently, the gut microbiota is becoming of significant research interest in relation to obesity in an attempt to better understand the aetiology of obesity and to develop new methods of its prevention and treatment. Alteration of microbiota composition may stimulate development of obesity and other metabolic diseases via several mechanisms: increasing gut permeability with subsequent metabolic inflammation; increasing energy harvest from the diet; impairing short-chain fatty acids synthesis; and altering bile acids metabolism and FXR/TGR5 signaling. Prebiotics and probiotics have physiologic functions that contribute to the health of gut microbiota, maintenance of a healthy body weight and control of factors associated with obesity through their effects on mechanisms that control food intake, body weight, gut microbiota and inflammatory processes.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Bogomolets National Medical University, T. Shevchenko Boulevard, 13, Kyiv, 01601, Ukraine.
| | - Oleksandr Virchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| |
Collapse
|
46
|
Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10:S150-S157. [PMID: 26916014 DOI: 10.1016/j.dsx.2016.01.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
The gut microbiome contributes approximately 2kg of the whole body weight, and recent studies suggest that gut microbiota has a profound effect on human metabolism, potentially contributing to several features of the metabolic syndrome. Metabolic syndrome is defined by a clustering of metabolic disorders that include central adiposity with visceral fat accumulation, dyslipidemia, insulin resistance, dysglycemia and non-optimal blood pressure levels. Metabolic syndrome is associated with an increased risk of cardiovascular diseases and type 2 diabetes. It is estimated that around 20-25 percent of the world's adult population has metabolic syndrome. In this manuscript, we have reviewed the existing data linking gut microbiome with metabolic syndrome. Existing evidence from studies both in animals and humans support a link between gut microbiome and various components of metabolic syndrome. Possible pathways include involvement with energy homeostasis and metabolic processes, modulation of inflammatory signaling pathways, interferences with the immune system, and interference with the renin-angiotensin system. Modification of gut microbiota via prebiotics, probiotics or other dietary interventions has provided evidence to support a possible beneficial effect of interventions targeting gut microbiota modulation to treat components or complications of metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China; Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science (IC-UCAS), West Beichen Road, Chaoyang, China
| | - Peyman Rezaie
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Majid Ghayour Mobarhan
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, BN1 9PH, UK
| |
Collapse
|
47
|
Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, Fusek J, Rodrigo L, Kruzliak P. Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab (Lond) 2016; 13:14. [PMID: 26900391 PMCID: PMC4761174 DOI: 10.1186/s12986-016-0067-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of obesity more than doubled between 1980 and 2014. The obesity pandemic is tightly linked to an increase in energy availability, sedentariness and greater control of ambient temperature that have paralleled the socioeconomic development of the past decades. The most frequent cause which leads to the obesity development is a dysbalance between energy intake and energy expenditure. The gut microbiota as an environmental factor which influence whole-body metabolism by affecting energy balance but also inflammation and gut barrier function, integrate peripheral and central food intake regulatory signals and thereby increase body weight. Probiotics have physiologic functions that contribute to the health of gut microbiota, can affect food intake and appetite, body weight and composition and metabolic functions through gastrointestinal pathways and modulation of the gut bacterial community.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Division of Endocrinology and Metabolic Diseases, Catholic University of Sacred Heart, A. Gemelli Medical School, Rome, Italy
| | - Caterina Conte
- Division of Endocrinology and Metabolic Diseases, Catholic University of Sacred Heart, A. Gemelli Medical School, Rome, Italy
| | - Giovanni Cammarota
- Division of Internal Medicine and Gastroenterology, Catholic University of Sacred Heart, A. Gemelli Medical School, Rome, Italy
| | - Andreana P Haley
- Department of Psychology, The University of Texas at Austin, Austin, TX USA ; University of Texas Imaging Research Center, Austin, TX USA
| | - Igor Styriak
- Institute of Geotechnics, Department of Biotechnology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Ludovit Gaspar
- 2nd Department of Internal Medicine, Comenius University and University Hospital, Mickiewiczova 13, 813 69 Bratislava, Slovak Republic
| | - Jozef Fusek
- Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Luis Rodrigo
- Department of Gastroenterology, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Department of Gastroenterology, Central University Hospital of Asturias (HUCA), Oviedo, Spain ; 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic ; Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
48
|
Balasubramanian H, Patole S. Early probiotics to prevent childhood metabolic syndrome: A systematic review. World J Methodol 2015; 5:157-163. [PMID: 26413489 PMCID: PMC4572029 DOI: 10.5662/wjm.v5.i3.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/05/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To conduct a systematic review of studies on early probiotic supplementation to prevent childhood metabolic syndrome (MS).
METHODS: Using the Cochrane systematic review strategy we searched PubMed, EMBASE, CENTRAL, CINAHL, and the conference proceedings of the Pediatric American Society meetings and trial registries in December 2014. Randomised controlled trials (RCTs) and non RCTs of probiotic supplementation to the mother and/or infant for a minimum duration of 4 wk were selected. Of these, studies that reported on MS or its components (obesity, raised blood pressure, hyperglycemia, dyslipidemia) in children between 2-19 years were to be eligible for inclusion in the review. Risk of bias (ROB) in selected RCTs and quality assessment of non-RCT studies were to be assessed by the Cochrane ROB assessment table and New Castle Ottawa scale.
RESULTS: There were no studies on early probiotic administration for prevention of childhood MS (CMS). Follow up studies of two placebo controlled RCTs (n = 233) reported on the effects of early probiotics on one or more components of MS in children aged 2-19 years. Meta-analysis of those two studies could not be performed due to differences in the patient population, type of outcomes studied and the timing of their assessment. Assessment of childhood metabolic outcomes was not the primary objective of these studies. The first study that assessed the effects of prenatal and postnatal supplementation of Lactobacillus rhamnosus GG on body mass index till 10 years, did not report a significant benefit. In the second study, Lactobacillus paracasei 19 was supplemented to healthy term infants from 4-13 mo. No significant effect on body mass index, body composition or metabolic markers was detected.
CONCLUSION: Current evidence on early probiotic administration to prevent CMS is inadequate. Gaps in knowledge need to be addressed before large RCTs can be planned.
Collapse
|
49
|
Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X, Del Pozo-Yauner L, Ochoa-Leyva A. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 2015; 13:390-401. [PMID: 26137199 PMCID: PMC4484546 DOI: 10.1016/j.csbj.2015.06.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.
Collapse
Affiliation(s)
- Shirley Bikel
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Alejandra Valdez-Lara
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Fernanda Cornejo-Granados
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Karina Rico
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | | | - Adrián Ochoa-Leyva
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| |
Collapse
|
50
|
An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:284-96. [PMID: 25985766 DOI: 10.1016/j.jep.2015.05.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 01/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fermented food and beverages represent an important part of the worldwide foodscape, medicinal food domain and domestic strategies of health care, yet relevant traditional knowledge in Europe is poorly documented. METHODS Review of primary ethnographic literature, archival sources and a few ad-hoc ethnobotanical field studies in seven selected Eastern European countries (Albania, Belarus, Bulgaria, Estonia, Hungary, Kosovo, and Poland) were conducted. RESULTS Current or recently abandoned uses of 116 botanical taxa, belonging to 37 families in fermented food or medicinal food products were recorded. These findings demonstrate a rich bio-cultural diversity of use, and also a clear prevalence of the use of fruits of the tannin- and phenolic-rich Rosaceae species in alcoholic, lactic- and acetic acid fermented preparations. In the considered countries, fermentation still plays (or has played until recent years) a crucial role in folk cuisines and this heritage requires urgent and in-depth evaluation. DISCUSSION Future studies should be aimed at further documenting and also bio-evaluating the ingredients and processes involved in the preparation of homemade fermented products, as this can be used to support local, community-based development efforts to foster food security, food sovereignty, and small-scale local food-based economies.
Collapse
|