1
|
Stubbe B, Stoico MP, Terp SK, Madsen PH, Lundbye-Christensen S, Hansen CP, Poulsen LØ, Rasmussen LS, Yilmaz MN, Jensen LH, Hansen TF, Pfeiffer P, Larsen AC, Krarup HB, Pedersen IS, Hasselby JP, Johansen AZ, Chen IM, Johansen JS, Thorlacius-Ussing O, Henriksen SD. Promoter hypermethylation of SFRP1 is an allele fraction-dependent prognostic biomarker in metastatic pancreatic ductal adenocarcinoma. Front Oncol 2025; 15:1568386. [PMID: 40492125 PMCID: PMC12146188 DOI: 10.3389/fonc.2025.1568386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/07/2025] [Indexed: 06/11/2025] Open
Abstract
Introduction Metastatic pancreatic ductal adenocarcinoma (PDAC) is highly lethal. Promoter hypermethylation of SFRP1 (phSFRP1) in cell-free DNA is an established prognostic biomarker in PDAC. We used digital droplet PCR (ddPCR) to examine whether the prognostic impact of phSFRP1 was allele fraction (AF) dependent. Methods Prospectively collected plasma samples were analyzed blinded. Dual-strand methylation ddPCR assays were designed for SFRP1, with single-strand assay for the reference gene EPHA3. Patients were stratified into unmethylated SFRP1 (umSFRP1), low phSFRP1 AF (phSFRP1low), and high phSFRP1 AF (phSFRP1high). Survival was assessed with Kaplan-Meier curves. The 3-, 6-, and 12-month absolute risk difference (ARD) was calculated, and performance assessed with ROC analyses. Results Overall, 354 patients were included. Patients with umSFRP1 (n=137) had a mOS of 9.1 months compared to 7.2 months in phSFRP1low (n=78) and 3.4 months in phSFRP1high (n=143, P<0.01). phSFRP1high was associated with increased mortality at 3 (ARD 26%, 95%CI: 15, 37), 6 (ARD 37%, 95%CI: 26, 48), and 12 months (ARD 23%, 95%CI: 14, 33). phSFRP1low was associated with increased mortality at 12 months (ARD 13%, 95%CI: 2, 25) but not at 3 (ARD -3%, 95%CI: -13, 8) or 6 months (ARD 3%, 95%CI: -10, 17). phSFRP1 significantly improved performance in predicting mortality compared to only clinical variables (AUC: 0.70-0.71 vs. 0.54-0.57). Discussion Patients with phSFRP1high had significantly shorter survival than phSFRP1low or umSFRP1, indicating AF-dependent prognostic effects. phSFRP1low had a worse prognosis than umSFRP1 at only 12 months, indicating dynamic changes. This could help personalize the treatment of PDAC.
Collapse
Affiliation(s)
- Benjamin Stubbe
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Malene P. Stoico
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Simone K. Terp
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Poul H. Madsen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Lundbye-Christensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Unit of Research Data and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Laurids Ø. Poulsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Louise S. Rasmussen
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mette N. Yilmaz
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Lars H. Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Torben F. Hansen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Per Pfeiffer
- Department of Medical Oncology, Odense University Medical Center, University of Odense, Odense, Denmark
| | - Anders C. Larsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik B. Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge S. Pedersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Jane P. Hasselby
- Department of Pathology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Stine D. Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
2
|
Juthani R, Manne A. Blood-based biomarkers in pancreatic ductal adenocarcinoma: developments over the last decade and what holds for the future- a review. Front Oncol 2025; 15:1555963. [PMID: 40330826 PMCID: PMC12052548 DOI: 10.3389/fonc.2025.1555963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) accounts for a significant burden of global cancer deaths worldwide. The dismal outcomes associated with PDAC can be overcome by detecting the disease early and developing tools that predict response to treatment, allowing the selection of the most optimal treatment. Over the last couple of years, significant progress has been made in the development of novel biomarkers that aid in diagnosis, prognosis, treatment selection, and monitoring response. Blood-based biomarkers offer an alternative to tissue-based diagnosis and offer immense potential in managing PDAC. In this review, we have discussed the advances in blood-based biomarkers in PDAC, such as DNA (mutations and methylations), RNA, protein biomarkers and circulating tumor cells (CTC) over the last decade and also elucidated all aspects of practical implementation of these biomarkers in clinical practice. We have also discussed implementing multiomics utilizing more than one biomarker and targeted therapies that have been developed using these biomarkers.
Collapse
Affiliation(s)
- Ronit Juthani
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
3
|
Sun D, Shu C, Zeng F, Xu D, Zhao X. The performance of JAM3/PAX1 methylation in the diagnosis of high-grade squamous intraepithelial lesions for women with high-risk HPV infection. BMC Cancer 2024; 24:1514. [PMID: 39696066 DOI: 10.1186/s12885-024-13299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE To assess the clinical value of DNA methylation measurement in exfoliated cervical cells for distinguishing high-grade squamous intraepithelial lesions (HSIL) from other cervical abnormalities. METHODS A total of 276 patients were enrolled, and general clinical information was collected. Exfoliated cervical cells were obtained to assess human papillomavirus (HPV) infection, conduct ThinPrep cytology tests (TCT), and measure methylation levels of JAM3 (△CtJ) and PAX1 (△CtP). Logistic regression was performed to identify factors significantly associated with HSIL diagnosis. A conditional inference tree model and the area under the curve (AUC) were employed to evaluate the efficacy of JAM3 and PAX1 methylation in detecting HSIL. RESULTS Independent risk factors for HSIL diagnosis included △CtJ, △CtP, atypical squamous cells of undetermined significance (ASCUS), and HPV16 infection. The conditional inference tree indicated that 96.4% of patients were non-HSIL when △CtJ > 11.66, and 99.1% were non-HSIL when △CtP > 10.97. The diagnostic performance of △CtJ/△CtP surpassed that of TCT/HPV alone. Among six methods, the combination of △CtP, TCT, and high-risk HPV (hr-HPV) testing achieved the highest sensitivity (91.2%), positive predictive value (50.0%), negative predictive value (98.6%), and AUC (0.932). CONCLUSION In women with hr-HPV infection, DNA methylation analysis of cervical cytology outperformed traditional TCT or HPV testing. The combination of △CtP with TCT and HPV may offer the most accurate screening approach for HSIL.
Collapse
Affiliation(s)
- Dan Sun
- Department of Gynecology, the Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Hunan, 410013, China
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Changfa Shu
- Department of Gynecology, the Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Hunan, 410013, China
| | - Fei Zeng
- Department of Gynecology, the Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Hunan, 410013, China
| | - Dabao Xu
- Department of Gynecology, the Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Hunan, 410013, China.
| | - Xingping Zhao
- Department of Gynecology, the Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Hunan, 410013, China.
- Jiangwan Research Institute, Central South University, Changsha, 410013, China.
- Postdoctoral Station of Clinical Medicine, the Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Kim H, Chu J, Do IG, Lee YP, Kim HK, Yang Y, Kwon J, Lee KH, Batochir C, Jo E, Kim KR, Han HS. Novel diagnostic biomarkers for pancreatic cancer: assessing methylation status with epigenetic-specific peptide nucleic acid and KRAS mutation in cell-free DNA. Front Oncol 2024; 14:1395473. [PMID: 39035743 PMCID: PMC11257850 DOI: 10.3389/fonc.2024.1395473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Purpose Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with a poor prognosis that poses challenges for diagnosis using traditional tissue-based techniques. DNA methylation alterations have emerged as potential and promising biomarkers for PDAC. In this study, we aimed to assess the diagnostic potential of a novel DNA methylation assay based on epigenetic-specific peptide nucleic acid (Epi-sPNA) in both tissue and plasma samples for detecting PDAC. Materials and methods The study involved 46 patients with PDAC who underwent surgical resection. Epi-TOP pancreatic assay was used to detect PDAC-specific epigenetic biomarkers. The Epi-sPNA allowed accurate and rapid methylation analysis without bisulfite sample processing. Genomic DNA extracted from paired normal pancreatic and PDAC tissues was used to assess the diagnostic efficacy of epigenetic biomarkers for PDAC. Subsequent validation was conducted on cell-free DNA (cfDNA) extracted from plasma samples, with 10 individuals represented in each group: PDAC, benign pancreatic cystic neoplasm, and healthy control. Results The combination of seven epigenetic biomarkers (HOXA9, TWIST, WT1, RPRM, BMP3, NPTX2, and BNC1) achieved 93.5% sensitivity and 96.7% specificity in discerning normal pancreatic from PDAC tissues. Plasma cfDNA, analyzed using these markers and KRAS mutations, exhibited a substantial 90.0% sensitivity, 95.0% specificity, and an overall 93.3% accuracy for discriminating PDAC. Notably, cancer antigen 19-9 and carcinoembryonic antigen both had an accuracy of 90.0%. Conclusion Our study suggests that analyzing seven differentially methylated genes with KRAS mutations in cfDNA using the novel Epi-TOP pancreatic assay is a potential blood-based biomarker for the diagnosis of PDAC.
Collapse
Affiliation(s)
- Hongsik Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jinah Chu
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Pyo Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yaewon Yang
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jihyun Kwon
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Ki Hyeong Lee
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | | | - Eunji Jo
- Seasun Biomaterials, Daejeon, Republic of Korea
| | - Kyo Rim Kim
- Seasun Biomaterials, Daejeon, Republic of Korea
| | - Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Rothe J, Becker JM, Charchinezhadamouei M, Mähr S, Lembeck F, Dannemann N, Nagy M. Expanding the scope of methylation-sensitive restriction enzyme (MSRE) PCR for forensic identification of body fluids through the novel use of methylation-dependent restriction enzymes (MDRE) and the combination of autosomal and Y-chromosomal markers. Int J Legal Med 2024; 138:375-393. [PMID: 37875742 PMCID: PMC10861701 DOI: 10.1007/s00414-023-03097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
Methylation-sensitive/-dependent restriction enzyme (MSRE/MDRE) PCR can be performed to detect hypomethylated or hypermethylated CpG sites. With the combined use of different tissue-specific CpG markers, MSRE/MDRE-PCR leads to tissue-specific methylation patterns (TSMPs), enabling the correlation of DNA samples to their source tissue. MSRE/MDRE assays can use the same platform as forensic STR typing and offer many advantages in the field of forensic body fluid detection. In the present study, we aimed to establish MSRE assays for the detection of blood, saliva, vaginal secretion, and semen, using markers from literature and from our own database search. We designed two different MSRE test-sets, which include two novel Y-chromosomal non-semen markers, and enable differentiation between female and male non-semen samples. Furthermore, we established an MSRE/MDRE semen approach, which includes only Y-chromosomal non-semen and semen markers. This Y-semen multiplex PCR utilizes the novel combination of the methylation-sensitive enzyme SmaI and the methylation-dependent enzyme GlaI, which enables more sensitive detection of male body fluids within male/female DNA mixtures. Our validation tests confirmed that MSRE/MDRE assays exhibit high sensitivity, similar to that of STR typing.
Collapse
Affiliation(s)
- Jessica Rothe
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jessica Maria Becker
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maral Charchinezhadamouei
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophia Mähr
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felizitas Lembeck
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nora Dannemann
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marion Nagy
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
6
|
Li X, He S, Zhao X, Sun D, Wu S, Xu D, Li Y. High -grade cervical lesions diagnosed by JAM3/PAX1 methylation in high -risk human papillomavirus -infected patients. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1820-1829. [PMID: 38448375 PMCID: PMC10930741 DOI: 10.11817/j.issn.1672-7347.2023.230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Currently, traditional cervical cancer screening methods, such as high-risk human papillomavirus testing and liquid based cytology (LBC), still possess limitations. This study aims to identify new diagnostic biomarkers to achieve the goal of "precision screening" via exploring the clinical value of DNA methylation [ΔCtP: paired box gene 1 (PAX1)and ΔCtJ: junctional adhesion molecule 3 (JAM3)] detection in cervical exfoliated cells for the diagnosis of high-grade cervical lesions. METHODS A total of 136 patients who underwent gynecological examinations in the vaginal room of the Department of Gynecology at the Third Xiangya Hospital of Central South University from June 2021 to June 2022 were retrospectively studied. Among them, 122 patients had non-high-grade cervical lesions, and 14 patients had high-grade cervical lesions. The variables included general information (age, body mass index, and menopause status), LBC, high-risk human papillomavirus, cervical tissue pathology, vaginal examination results, and the ΔCt values of JAM3 and PAX1 gene methylation. Logistic regression analysis was used to identify the factors affecting the diagnosis of high-grade cervical lesions, followed by correlation analysis and construction of a conditional inference tree model. RESULTS Logistic regression analysis showed that the methylation ΔCt values of PAX1 and JAM3 genes and LBC detection results were statistically significant between the high-grade cervical lesions group and the non-high-grade cervical lesions group (all P<0.05). Correlation analysis revealed a negative correlation between cervical pathological changes and ΔCtP (r=-0.36, P<0.001), ΔCtJ (r=-0.448, P<0.001), LBC (r=-0.305, P<0.001), or bacterial diversity (r=-0.183, P=0.037). The conditional inference tree showed that when ΔCtJ>10.13, all of patients had non-high-grade cervical lesions, while ΔCtP>6.22, the number of non-high-grade lesions accounted for 97.5% (117/120), and high-grade lesions accounted for only 2.5% (3/120). When ΔCtJ>8.61 and LBC were atypical squamous cell of undetermined significance or negative for intraepithelial lesions or malignancy (NILM), 105 (99.1%) patients were non-high-grade cervical lesions, only 1 (0.9%) patient was high-grade lesion. When the results of LBC were high-grade lesions, only 9 patients' histopathological examination was the high-grade lesions and 3 non-high-grade lesions. When LBC indicated low-grade lesions, atypical squamous cell of undetermined significance, no intraepithelial lesions, and ΔCtP>6.22, 117 (97.5%) of patients' histopathological examination was the non-high-grade lesions. CONCLUSIONS The JAM3/PAX1 gene methylation test can be used independently for the stratified diagnosis of high-grade/non-high-grade cervical lesions in women with high-risk human papillomavirus infection, independent of the cytological results of cervical excision. The JAM3/PAX1 gene methylation test can also be used in combination with LBC to make up for the shortcomings of low sensitivity of LBC. In addition, the application of methylation kit in large-scale cervical cancer screening in the future will be good to the detection of more patients with high-grade cervical lesions, and achieve early screening and early treatment for cervical lesions/cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Sili He
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Dan Sun
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Si Wu
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Yingjia Li
- Department of Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
7
|
Bararia A, Das A, Mitra S, Banerjee S, Chatterjee A, Sikdar N. Deoxyribonucleic acid methylation driven aberrations in pancreatic cancer-related pathways. World J Gastrointest Oncol 2023; 15:1505-1519. [PMID: 37746645 PMCID: PMC10514732 DOI: 10.4251/wjgo.v15.i9.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
Pancreatic cancer (PanCa) presents a catastrophic disease with poor overall survival at advanced stages, with immediate requirement of new and effective treatment options. Besides genetic mutations, epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target. Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails. Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients. Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies. Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance. Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions, and novel pharmacological strategies that target these components could potentially lead to breakthroughs. We aim to highlight the possibilities that exist and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal 741235, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Kolkata 700160, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
8
|
Bararia A, Chakraborty P, Roy P, Chattopadhay BK, Das A, Chatterjee A, Sikdar N. Emerging role of non-invasive and liquid biopsy biomarkers in pancreatic cancer. World J Gastroenterol 2023; 29:2241-2260. [PMID: 37124888 PMCID: PMC10134423 DOI: 10.3748/wjg.v29.i15.2241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
A global increase in the incidence of pancreatic cancer (PanCa) presents a major concern and health burden. The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics; however, they face limitations based on diagnosis-associated difficulties and concerns surrounding tissue availability in the clinical setting. Late disease development with asymptomatic behavior is a drawback in the case of existing diagnostic procedures. The capability of cell free markers in discriminating PanCa from autoimmune pancreatitis and chronic pancreatitis along with other precancerous lesions can be a boon to clinicians. Early-stage diagnosis of PanCa can be achieved only if these biomarkers specifically discriminate the non-carcinogenic disease stage from malignancy with respect to tumor stages. In this review, we comprehensively described the non-invasive disease detection approaches and why these approaches are gaining popularity for their early-stage diagnostic capability and associated clinical feasibility.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Prosenjeet Chakraborty
- Department of Molecular Biosciences, SVYASA School of Yoga and Naturopathy, Bangalore 560105, India
| | - Paromita Roy
- Department of Pathology, Tata Medical Center, Kolkata 700160, India
| | | | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9061, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
9
|
Circulating Tumor DNA Methylation Biomarkers for Characterization and Determination of the Cancer Origin in Malignant Liver Tumors. Cancers (Basel) 2023; 15:cancers15030859. [PMID: 36765815 PMCID: PMC9913861 DOI: 10.3390/cancers15030859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant liver tumors include primary malignant liver tumors and liver metastases. They are among the most common malignancies worldwide. The disease has a poor prognosis and poor overall survival, especially with liver metastases. Therefore, early detection and differentiation between malignant liver tumors are critical for patient treatment selection. The detection of cancer and the prediction of its origin is possible with a DNA methylation profile of the tumor DNA compared to that of normal cells, which reflects tissue differentiation and malignant transformation. New technologies enable the characterization of the tumor methylome in circulating tumor DNA (ctDNA), providing a variety of new ctDNA methylation biomarkers, which can provide additional information to clinical decision-making. Our review of the literature provides insight into methylation changes in ctDNA from patients with common malignant liver tumors and can serve as a starting point for further research.
Collapse
|
10
|
Sharma N, Srivastava S. Diagnosis of Pancreatic Cancer Using miRNA30e Biosensor. Interdiscip Sci 2022; 14:804-813. [PMID: 35781212 DOI: 10.1007/s12539-022-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
This work describes miRNA-based electrochemical biosensor for detection of miRNA30e, a pancreatic cancer biomarker. The screen-printed gold electrode was functionalized using cysteine hydrochloride followed by immobilization of synthesized colloidal gold nanorods (10-12 nm diameter and 25-65 nm length). The gold nanorods modified electrode surface was amino functionalized for covalent attachment of single-stranded DNA probe against miRNA30e (miR30e). This platform was utilized for electrochemical measurements and response analysis of target miRNA30e. Electrochemical impedance spectroscopic measurements showed very poor sensitivity (13.51 Ω/µg/mL/cm2) using charge transfer resistance calibration plots. Cyclic voltammetry and differential pulse voltammetry-based miR30e quantification showed decreasing current response with increasing concentration of miR30e with detection range of 0.1 fg/mL-0.1 µg/mL (14.9 aM-14.9 nM). The sensitivity of DPV sensing (104.4 µA/µg/mL/cm2) was found to be 1.3 times higher than that of CV-based quantification (79.6 µA/µg/mL/cm2). miRNA-based biosensors have the potential of replacing current invasive, time consuming and technically difficult diagnostic procedures. Furthermore, the lower limit of detection of 14.9 aM miRNA30e makes it a promising tool for detection of cancer at early stages and hence increasing survival rate.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, India.
| |
Collapse
|
11
|
Wu H, Guo S, Liu X, Li Y, Su Z, He Q, Liu X, Zhang Z, Yu L, Shi X, Gao S, Wang H, Pan Y, Ma C, Liu R, Dai M, Jin G, Liang Z. Noninvasive detection of pancreatic ductal adenocarcinoma using the methylation signature of circulating tumour DNA. BMC Med 2022; 20:458. [PMID: 36434648 PMCID: PMC9701032 DOI: 10.1186/s12916-022-02647-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a noninvasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood. METHODS Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility. RESULTS In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis (CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity = 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001). CONCLUSIONS The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.
Collapse
Affiliation(s)
- Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Xiaoding Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Xiaoqian Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Zhiwen Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Lianyuan Yu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Yaqi Pan
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Chengcheng Ma
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China.
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Brancaccio M, Giachino C, Iazzetta AM, Cordone A, De Marino E, Affinito O, Vivo M, Calabrò V, Pollice A, Angrisano T. Integrated Bioinformatics Analysis Reveals Novel miRNA as Biomarkers Associated with Preeclampsia. Genes (Basel) 2022; 13:genes13101781. [PMID: 36292666 PMCID: PMC9601722 DOI: 10.3390/genes13101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Preeclampsia is a leading cause of perinatal maternal-foetal mortality and morbidity. This study aims to identify the key microRNAs (miRNA) in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE119799 for plasma and GSE177049 for the placenta. Each dataset consisted of five patients (PE) and five controls (N). From a technical point of view, we analysed the counts per million (CPM) for both datasets, highlighting 358 miRNAs in common, 78 unique for plasma and 298 unique for placenta. At the same time, we performed an expression differential analysis (|logFC| ≥ 1|and FDR ≤ 0.05) to evaluate the biological impact of the miRNAs. This approach allowed us to highlight 321 miRNAs in common between plasma and placenta, within which four were upregulated in plasma. Furthermore, the same analysis revealed five miRNAs expressed exclusively in plasma; these were also upregulated. In conclusion, the in-depth bioinformatics analysis conducted during our study will allow us, on the one hand, to verify the targets of each of the nine identified miRNAs; on the other hand, to use them both as new non-invasive biomarkers and as therapeutic targets for the development of personalised treatments.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| | - Caterina Giachino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Antonio Cordone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Elena De Marino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ornella Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vivo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| |
Collapse
|
13
|
Tonini V, Zanni M. Early diagnosis of pancreatic cancer: What strategies to avoid a foretold catastrophe. World J Gastroenterol 2022; 28:4235-4248. [PMID: 36159004 PMCID: PMC9453775 DOI: 10.3748/wjg.v28.i31.4235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
While great strides in improving survival rates have been made for most cancers in recent years, pancreatic ductal adenocarcinoma (PDAC) remains one of the solid tumors with the worst prognosis. PDAC mortality often overlaps with incidence. Surgical resection is the only potentially curative treatment, but it can be performed in a very limited number of cases. In order to improve the prognosis of PDAC, there are ideally two possible ways: the discovery of new strategies or drugs that will make it possible to treat the tumor more successfully or an earlier diagnosis that will allow patients to be operated on at a less advanced stage. The aim of this review was to summarize all the possible strategies available today for the early diagnosis of PDAC and the paths that research needs to take to make this goal ever closer. All the most recent studies on risk factors and screening modalities, new laboratory tests including liquid biopsy, new imaging methods and possible applications of artificial intelligence and machine learning were reviewed and commented on. Unfortunately, in 2022 the results for this type of cancer still remain discouraging, while a catastrophic increase in cases is expected in the coming years. The article was also written with the aim of highlighting the urgency of devoting more attention and resources to this pathology in order to reach a solution that seems more and more unreachable every day.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Manuel Zanni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
14
|
Solute Carrier Family 35 Member F2 Regulates Cisplatin Resistance and Promotes Malignant Progression of Pancreatic Cancer by Regulating RNA Binding Motif Protein 14. JOURNAL OF ONCOLOGY 2022; 2022:5091154. [PMID: 35669242 PMCID: PMC9166975 DOI: 10.1155/2022/5091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
We aimed to explore the role of Solute Carrier Family 35 Member F2 (SLC35F2) in pancreatic cancer (PCa) and to further study whether SLC35F2 regulates cisplatin resistance of PCa cells through the modulation of RNA binding motif protein 14 (RBM14) expression. SLC35F2 expression in 60 pairs of PCa tissues and adjacent ones was studied by RT-PCR analysis. Meanwhile, SLC35F2 expression levels in PCa cell lines were also evaluated by qPCR assay. In addition, SLC35F2 knockdown models were constructed in PCa cisplatin-resistant cells. Furthermore, we determined the interaction between SLC35F2 and RBM14 via luciferase assay. The findings of the present study demonstrated that SLC35F2 was significantly upregulated in PCa tissues. High level of SLC35F2 indicated higher incidence of metastasis and shorter survival rates. In vitro cell experiments revealed that knockdown of SLC35F2 suppressed cell invasion and metastasis capacity of cisplatin-resistant PCa cell lines PANC-1/DDP and CFPAC-1/DDP. It was also suggested that the key protein RBM14 in the SLC35F2 knockdown group was remarkably reduced. SLC35F2 can bind to RBM14 specifically. Overexpression of RBM14 partially reversed the effects of knockdown of SLC35F2 on the development of PCa. SLC35F2 expression in PCa tissues and cell lines is remarkably increased. In addition, it was also suggested that SLC35F2 may regulate cisplatin resistance of PCa cells through modulating RBM14 expression. In conclusion, it is conceivable from the study that SLC35F2 was remarkably upregulated in PCa and promoted the malignancy of PCa via regulating RBM14.
Collapse
|
15
|
Botrus G, Uson Junior PLS, Raman P, Kaufman AE, Kosiorek H, Yin J, Fu Y, Majeed U, Sonbol MB, Ahn DH, Chang IW, Drusbosky LM, Dada H, Starr J, Borad M, Mody K, Bekaii-Saab TS. Circulating Cell-Free Tumor DNA in Advanced Pancreatic Adenocarcinoma Identifies Patients With Worse Overall Survival. Front Oncol 2022; 11:794009. [PMID: 35083150 PMCID: PMC8784799 DOI: 10.3389/fonc.2021.794009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Plasma-based circulating cell-free tumor DNA (ctDNA) genomic profiling by next-generation sequencing (NGS)is an emerging diagnostic tool for pancreatic cancer (PC). The impact of detected genomic alterations and variant allele fraction (VAF) in tumor response to systemic treatments and outcomes is under investigation. Methods Patients with advanced PC who had ctDNA profiled at time of initial diagnosis were retrospectively evaluated. We considered the somatic alteration with the highest VAF as the dominant clone allele frequency (DCAF). ctDNA NGS results were related to clinical demographics, progression-free survival (PFS) and overall survival (OS). Results A total of 104 patients were evaluated. Somatic alterations were detected in 84.6% of the patients. Patients with ≥ 2 detectable genomic alterations had worse median PFS (p < 0.001) and worse median OS (p = 0.001). KRAS was associated with disease progression to systemic treatments (80.4% vs 19.6%, p = 0.006), worse median PFS (p < 0.001) and worse median OS (p = 0.002). TP53 was associated with worse median PFS (p = 0.02) and worse median OS (p = 0.001). The median DCAF was 0.45% (range 0-55%). DCAF >0.45% was associated with worse median PFS (p<0.0001) and median OS (p=0.0003). Patients that achieved clearance of KRAS had better PFS (p=0.047), while patients that achieved clearance of TP53 had better PFS (p=0.0056) and OS (p=0.037). Conclusions Initial detection of ctDNA in advanced PC can identify somatic alterations that may help predict clinical outcomes. The dynamics of ctDNA are prognostic of outcomes and should be evaluated in prospective studies.
Collapse
Affiliation(s)
- Gehan Botrus
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Pedro Luiz Serrano Uson Junior
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States.,Center for Personalized Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Puneet Raman
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Adrienne E Kaufman
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Heidi Kosiorek
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Jun Yin
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yu Fu
- Guardant Health, Inc., Redwood City, CA, United States
| | - Umair Majeed
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamad Bassam Sonbol
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Daniel H Ahn
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Isabela W Chang
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | | | - Hiba Dada
- Guardant Health, Inc., Redwood City, CA, United States
| | - Jason Starr
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitesh Borad
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States.,Center of individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Cancer Center, Phoenix, AZ, United States
| | - Kabir Mody
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Tanios S Bekaii-Saab
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
16
|
Roalsø MTT, Hald ØH, Alexeeva M, Søreide K. Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14030546. [PMID: 35158814 PMCID: PMC8833770 DOI: 10.3390/cancers14030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic alterations cause changes in gene expression without affecting the DNA sequence and are found to affect several molecular pathways in pancreatic tumors. Such changes are reversible, making them potential drug targets. Furthermore, epigenetic alterations occur early in the disease course and may thus be explored for early detection. Hence, a deeper understanding of epigenetics in pancreatic cancer may lead to improved diagnostics, treatments, and prognostication. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment options. Emerging evidence shows that epigenetic alterations are present in PDAC. The changes are potentially reversible and therefore promising therapeutic targets. Epigenetic aberrations also influence the tumor microenvironment with the potential to modulate and possibly enhance immune-based treatments. Epigenetic marks can also serve as diagnostic screening tools, as epigenetic changes occur at early stages of the disease. Further, epigenetics can be used in prognostication. The field is evolving, and this review seeks to provide an updated overview of the emerging role of epigenetics in the diagnosis, treatment, and prognostication of PDAC.
Collapse
Affiliation(s)
- Marcus T. T. Roalsø
- Department of Quality and Health Technology, University of Stavanger, 4036 Stavanger, Norway;
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Øyvind H. Hald
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway;
| | - Marina Alexeeva
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Kjetil Søreide
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Correspondence:
| |
Collapse
|
17
|
Liu M, Li J, Wang Y, Ghaffar M, Yang Y, Wang M, Li C. MAGEA6 positively regulates MSMO1 and promotes the migration and invasion of oesophageal cancer cells. Exp Ther Med 2022; 23:204. [PMID: 35126707 PMCID: PMC8796618 DOI: 10.3892/etm.2022.11127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
The melanoma antigen gene family A (MAGEA) family of proteins comprises of cancer-testis antigens that are highly expressed in a number of tumours but are minimally expressed in normal cells. Due to its expression characteristics, this protein family has become a popular target for anti-cancer drugs and immunotherapy research over recent years. Although, elevated expression levels of MAGEA6 has been found in different types of tumours, there remains to be insufficient information on the function of MAGEA6 and its associated gene regulation pathways. The present study used Transwell, Cell Counting Kit-8 and wound healing assays to analyse the effects of MAGEA6 on Eca109 cell invasion, migration and proliferation. The main functions and pathways involved in MAGEA6 were predicted by Illumina Hiseq screening for mutually regulated genes and core genes. Eca109 cell line with a high expression of MAGEA6 was a stable cell line obtained by transfection in the early stage, and this cell line was used in subsequent experiments. Transcriptome sequencing was performed on this cell line and the Eca109 cell line that normally expressed MAGEA6. It was revealed that a high expression of MAGEA6 conferred a significant stimulating effect on cell proliferation whilst also significantly increasing cell invasion and migration. Transcriptomic analysis identified 14 differentially expressed genes and 13 core regulatory genes closely associated with MAGEA6 expression regulation, such as methylsterol monooxygenase 1 (MSMO1). The present study suggest that MAGEA6 positively regulated MSMO1 expression, which may serve an oncogenic role in cells through this regulatory effect. Overall, this provided a novel route of investigation for an in-depth study of the regulatory function of MAGEA6.
Collapse
Affiliation(s)
- Manyu Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yangjunqi Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Maliha Ghaffar
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yishu Yang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Minglian Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Changshuo Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
18
|
The Impact of Biomarkers in Pancreatic Ductal Adenocarcinoma on Diagnosis, Surveillance and Therapy. Cancers (Basel) 2022; 14:cancers14010217. [PMID: 35008381 PMCID: PMC8750069 DOI: 10.3390/cancers14010217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a leading cause of cancer death worldwide. Due to the frequently late diagnosis, early metastasis and high therapy resistance curation is rare and prognosis remains poor overall. To provide early diagnostic and therapeutic predictors, various molecules from blood, tissue and other origin e.g., saliva, urine and stool, have been identified as biomarkers. This review summarizes current trends in biomarkers for diagnosis and therapy of pancreatic ductal adenocarcinoma. Abstract Pancreatic ductal adenocarcinoma (PDAC) is still difficult to treat due to insufficient methods for early diagnosis and prediction of therapy response. Furthermore, surveillance after curatively intended surgery lacks adequate methods for timely detection of recurrence. Therefore, several molecules have been analyzed as predictors of recurrence or early detection of PDAC. Enhanced understanding of molecular tumorigenesis and treatment response triggered the identification of novel biomarkers as predictors for response to conventional chemotherapy or targeted therapy. In conclusion, progress has been made especially in the prediction of therapy response with biomarkers. The use of molecules for early detection and recurrence of PDAC is still at an early stage, but there are promising approaches in noninvasive biomarkers, composite panels and scores that can already ameliorate the current clinical practice. The present review summarizes the current state of research on biomarkers for diagnosis and therapy of pancreatic cancer.
Collapse
|
19
|
Faleiro I, Roberto VP, Demirkol Canli S, Fraunhoffer NA, Iovanna J, Gure AO, Link W, Castelo-Branco P. DNA Methylation of PI3K/AKT Pathway-Related Genes Predicts Outcome in Patients with Pancreatic Cancer: A Comprehensive Bioinformatics-Based Study. Cancers (Basel) 2021; 13:cancers13246354. [PMID: 34944974 PMCID: PMC8699150 DOI: 10.3390/cancers13246354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignancy. Dysregulation of epigenetic mechanisms leads to abnormal patterns of gene expression contributing to the development and progression of cancer. We explored the ability of DNA methylation of PI3K-related genes to differentiate between malignant and healthy pancreatic tissue using distinct pancreatic cancer cohorts, and found that the methylation levels of the ITGA4, SFN, ITGA2, and PIK3R1 genes are altered in tumour samples since the early stages of malignant transformation and could serve as new diagnostic tools. We also demonstrate that these alterations correlate with overall survival and recurrence-free survival of the patients suggesting that its assessment can serve as independent prognostic indicators of patients’ survival with higher sensitivity and specificity than the currently implemented biomarkers. Therefore, the methylation profile of genes involved in this pathway may be an alternative method for predicting cell malignancy and help doctors’ decisions on patient care. Abstract Pancreatic cancer (PCA) is one of the most lethal malignancies worldwide with a 5-year survival rate of 9%. Despite the advances in the field, the need for an earlier detection and effective therapies is paramount. PCA high heterogeneity suggests that epigenetic alterations play a key role in tumour development. However, only few epigenetic biomarkers or therapeutic targets have been identified so far. Here we explored the potential of distinct DNA methylation signatures as biomarkers for early detection and prognosis of PCA. PI3K/AKT-related genes differentially expressed in PCA were identified using the Pancreatic Expression Database (n = 153). Methylation data from PCA patients was obtained from The Cancer Genome Atlas (n = 183), crossed with clinical data to evaluate the biomarker potential of the epigenetic signatures identified and validated in independent cohorts. The majority of selected genes presented higher expression and hypomethylation in tumour tissue. The methylation signatures of specific genes in the PI3K/AKT pathway could distinguish normal from malignant tissue at initial disease stages with AUC > 0.8, revealing their potential as PCA diagnostic tools. ITGA4, SFN, ITGA2, and PIK3R1 methylation levels could be independent prognostic indicators of patients’ survival. Methylation status of SFN and PIK3R1 were also associated with disease recurrence. Our study reveals that the methylation levels of PIK3/AKT genes involved in PCA could be used to diagnose and predict patients’ clinical outcome with high sensitivity and specificity. These results provide new evidence of the potential of epigenetic alterations as biomarkers for disease screening and management and highlight possible therapeutic targets.
Collapse
Affiliation(s)
- Inês Faleiro
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (IMM), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| | - Secil Demirkol Canli
- Molecular Pathology Application and Research Center, Hacettepe University, 06100 Ankara, Turkey;
| | - Nicolas A. Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Ali Osmay Gure
- Department of Medical Biology, Acibadem University, 34684 Istanbul, Turkey;
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| |
Collapse
|
20
|
Detection of CpG Methylation in G-Quadruplex Forming Sequences Using G-Quadruplex Ligands. Int J Mol Sci 2021; 22:ijms222313159. [PMID: 34884964 PMCID: PMC8658440 DOI: 10.3390/ijms222313159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
Genomic DNA methylation is involved in many diseases and is expected to be a specific biomarker for even the pre-symptomatic diagnosis of many diseases. Thus, a rapid and inexpensive detection method is required for disease diagnosis. We have previously reported that cytosine methylation in G-quadruplex (G4)-forming oligonucleotides develops different G4 topologies. In this study, we developed a method for detecting CpG methylation in G4-forming oligonucleotides based on the structural differences between methylated and unmethylated G4 DNAs. The differences in G4 topologies due to CpG methylation can be discriminated by G4 ligands. We performed a binding assay between methylated or unmethylated G4 DNAs and G4 ligands. The binding abilities of fluorescent G4 ligands to BCL-2, HRAS1, HRAS2, VEGF G4-forming sequences were examined by fluorescence-based microtiter plate assay. The differences in fluorescence intensities between methylated and unmethylated G4 DNAs were statistically significant. In addition to fluorescence detection, the binding of G4 ligand to DNA was detected by chemiluminescence. A significant difference was also detected in chemiluminescence intensity between methylated and unmethylated DNA. This is the first study on the detection of CpG methylation in G4 structures, focusing on structural changes using G4 ligands.
Collapse
|
21
|
Abdalla TSA, Almanfalouti V, Effenberger K, Uzunoglu FG, Ghadban T, Dupreé A, Izbicki JR, Pantel K, Reeh M. Evaluation of the Hamburg-Glasgow Classification in Pancreatic Cancer: Preoperative Staging by Combining Disseminated Tumor Load and Systemic Inflammation. Cancers (Basel) 2021; 13:cancers13235942. [PMID: 34885052 PMCID: PMC8657182 DOI: 10.3390/cancers13235942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
This study aims to compare the Hamburg Glasgow Classification (HGC) to Union for International Cancer Control (UICC) classification in patients with pancreatic ductal adenocarcinoma (PDAC). As adequate tumor classification is only possible after tumor resection and histological evaluation, only 20% of patients with PDAC receive accurate tumor staging. Thus, an accurate preoperative staging system is still missing but urgently needed. Systemic inflammation and tumor dissemination are important factors regarding the oncological outcome. HGC integrates both into a preoperative staging system, by combining C-reactive protein (CRP), albumin, and disseminated tumor cells (DTC) in the bone marrow. In this prospective study, 109 patients underwent surgical exploration for suspected PDAC. All patients underwent a preoperative bone marrow aspiration for DTC detection. HGC showed significant preoperative risk stratification for overall survival (OS) (p-value < 0.001) and progression-free survival (PFS) (p-value < 0.001). These results were comparable to the UICC survival stratification for OS and PFS (p-value = 0.001 and 0.006). Additionally, in non-metastatic PDAC, HGC III-IV was associated with shorter OS and PFS (p-value < 0.001, respectively) when compared to HGC I-II. Therefore, the HGC is a promising preoperative prognostic staging classification for accurate and simple outcome stratification in patients with PDAC.
Collapse
Affiliation(s)
- Thaer S. A. Abdalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
| | - Valeria Almanfalouti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
| | - Katharina Effenberger
- Department of Tumor Biology, University Cancer Center Hamburg, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.E.); (K.P.)
| | - Faik G. Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
| | - Anna Dupreé
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
| | - Klaus Pantel
- Department of Tumor Biology, University Cancer Center Hamburg, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.E.); (K.P.)
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (T.S.A.A.); (V.A.); (F.G.U.); (T.G.); (A.D.); (J.R.I.)
- Correspondence:
| |
Collapse
|
22
|
Pietrasz D, Wang-Renault S, Taieb J, Dahan L, Postel M, Durand-Labrunie J, Le Malicot K, Mulot C, Rinaldi Y, Phelip JM, Doat S, Blons H, de Reynies A, Bachet JB, Taly V, Laurent-Puig P. Prognostic value of circulating tumour DNA in metastatic pancreatic cancer patients: post-hoc analyses of two clinical trials. Br J Cancer 2021; 126:440-448. [PMID: 34811505 DOI: 10.1038/s41416-021-01624-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The prognostication of metastatic pancreatic adenocarcinoma (mPDAC) patients remains uncertain, mainly based on carbohydrate antigen 19-9 (CA19-9), with limited utility. Circulating tumour DNA (ctDNA) has been suggested as a prognostic factor, but its added value has been poorly explored. The objective was to determine whether ctDNA is an independent factor for the prognostication of mPDAC. DESIGN Translational study based on two prospective collections of plasma samples of mPDAC patients naïve for chemotherapy. One used as a test series and the other as validation series coming from two randomised trials (Prodige 35 and Prodige 37). CtDNA was assessed by digital droplet PCR targeting two methylated markers (HOXD8 and POU4F1) according to a newly developed and validated method. Univariate and multivariate analyses were performed according to ctDNA status. RESULTS Of 372 plasma samples available, 354 patients were analyzed for survival. In the validation series, 145 of 255 patients were found ctDNA positive (56.8%), Median PFS and OS were 5.3 and 8.2 months in ctDNA-positive and 6.2 and 12.6 months in ctDNA-negative patients, respectively. ctDNA positivity was more often associated with young age, high CA19-9 level and neutrophils lymphocytes ratio. In multivariate analysis including these previous markers, ctDNA was confirmed as an independent prognostic marker for PFS (adjusted hazard ratio (HR) 1.5, CI 95% [1.03-2.18], p = 0.034) and OS (HR 1.62, CI 95% [1.05-2.5], p = 0.029). CONCLUSIONS In this first ctDNA assessment in a large series of mPDAC derived from clinical trials, ctDNA was detectable in 56.8% of patients and confirmed as an independent prognostic marker.
Collapse
Affiliation(s)
- Daniel Pietrasz
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France.,Assistance Publique-Hopitaux de Paris Hôpital Paul-Brousse, Centre Hépato-Biliaire, Université Paris-Saclay, 94800, Villejuif, France
| | - Shufang Wang-Renault
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Julien Taieb
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France.,Institut du Cancer Paris Carpem, APHP.Centre -Université de Paris, Hopital Européen Georges Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Laetitia Dahan
- Hepato-Gastroenterology and Oncology Department, University Hospital la Timone, Marseille, France
| | - Mathilde Postel
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Jerome Durand-Labrunie
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive (FFCD); EPICAD INSERM LNC-UMR 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Claire Mulot
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France.,Biological resources center-EPIGENETEC BB-0033-00055, Paris, France
| | - Yves Rinaldi
- Gastroenterology Departement, Hôpital Européen, Marseille, France
| | | | - Solene Doat
- Gastroenterology and Digestive Oncology Department, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France.,Institut du cancer Paris Carpem; APHP.Centre-Université de Paris, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Aurelien de Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Baptiste Bachet
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France.,Gastroenterology and Digestive Oncology Department, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University, Paris, France
| | - Valérie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France.
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France. .,Institut du cancer Paris Carpem; APHP.Centre-Université de Paris, Assistance Publique - Hopitaux de Paris, Paris, France.
| |
Collapse
|
23
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. However, it should be kept in mind that there are other pancreatic cancers that are classified by their cellular lineage: acinar cell carcinomas (acinar differentiation), neuroendocrine neoplasms (arising from the islets), solid-pseudopapillary neoplasms (showing no discernible cell lineage), and pancreatoblastomas (characterized by multiphenotypic differentiation, including acinar endocrine and ductal). This article focuses on the molecular and pathology alterations in PDAC.
Collapse
Affiliation(s)
- Joseph F Kearney
- Surgery, University of North Carolina at Chapel Hill, 101 Manning Drive, 1150 Physicians Office Building, 21-245 Lineberger CB# 7213, Chapel Hill, NC 27599-7213, USA
| | - Volkan Adsay
- Department of Pathology, Koc University School of Medicine and KUTTAM Research Center, Koc University Hospital, Davutpasa Caddesi, Topkapi, Istanbul 34010, Turkey
| | - Jen Jen Yeh
- Surgery and Pharmacology, University of North Carolina at Chapel Hill, 101 Manning Drive, 1150 Physicians Office Building, 21-245 Lineberger CB# 7213, Chapel Hill, NC 27599-7213, USA.
| |
Collapse
|
24
|
Montano E, Pollice A, Lucci V, Falco G, Affinito O, La Mantia G, Vivo M, Angrisano T. Pancreatic Progenitor Commitment Is Marked by an Increase in Ink4a/Arf Expression. Biomolecules 2021; 11:biom11081124. [PMID: 34439790 PMCID: PMC8392192 DOI: 10.3390/biom11081124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
The identification of the molecular mechanisms controlling early cell fate decisions in mammals is of paramount importance as the ability to determine specific lineage differentiation represents a significant opportunity for new therapies. Pancreatic Progenitor Cells (PPCs) constitute a regenerative reserve essential for the maintenance and regeneration of the pancreas. Besides, PPCs represent an excellent model for understanding pathological pancreatic cellular remodeling. Given the lack of valid markers of early endoderm, the identification of new ones is of fundamental importance. Both products of the Ink4a/Arf locus, in addition to being critical cell-cycle regulators, appear to be involved in several disease pathologies. Moreover, the locus' expression is epigenetically regulated in ES reprogramming processes, thus constituting the ideal candidates to modulate PPCs homeostasis. In this study, starting from mouse embryonic stem cells (mESCs), we analyzed the early stages of pancreatic commitment. By inducing mESCs commitment to the pancreatic lineage, we observed that both products of the Cdkn2a locus, Ink4a and Arf, mark a naïve pancreatic cellular state that resembled PPC-like specification. Treatment with epi-drugs suggests a role for chromatin remodeling in the CDKN2a (Cycline Dependent Kinase Inhibitor 2A) locus regulation in line with previous observations in other cellular systems. Our data considerably improve the comprehension of pancreatic cellular ontogeny, which could be critical for implementing pluripotent stem cells programming and reprogramming toward pancreatic lineage commitment.
Collapse
Affiliation(s)
- Elena Montano
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
| | - Alessandra Pollice
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
| | - Valeria Lucci
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
- Department of Nuclear Medicine, IRCCS—Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Geppino Falco
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
- Department of Nuclear Medicine, IRCCS—Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
- Biogem Scarl, Istituto di Ricerche Genetiche “Gaetano Salvatore”, 83031 Ariano Irpino, Italy
| | | | - Girolama La Mantia
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
| | - Maria Vivo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- Correspondence: (M.V.); (T.A.); Tel.: +39-081-679721 (T.A.)
| | - Tiziana Angrisano
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
- Correspondence: (M.V.); (T.A.); Tel.: +39-081-679721 (T.A.)
| |
Collapse
|
25
|
Epigenetic Alterations in Pancreatic Cancer Metastasis. Biomolecules 2021; 11:biom11081082. [PMID: 34439749 PMCID: PMC8394313 DOI: 10.3390/biom11081082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. Pancreatic ductal adenocarcinoma (PDA) is the most common (90%) and aggressive type of pancreatic cancer. Genomic analyses of PDA specimens have identified the recurrent genetic mutations that drive PDA initiation and progression. However, the underlying mechanisms that further drive PDA metastasis remain elusive. Despite many attempts, no recurrent genetic mutation driving PDA metastasis has been found, suggesting that PDA metastasis is driven by epigenetic fluctuations rather than genetic factors. Therefore, establishing epigenetic mechanisms of PDA metastasis would facilitate the development of successful therapeutic interventions. In this review, we provide a comprehensive overview on the role of epigenetic mechanisms in PDA as a critical contributor on PDA progression and metastasis. In particular, we explore the recent advancements elucidating the role of nucleosome remodeling, histone modification, and DNA methylation in the process of cancer metastasis.
Collapse
|
26
|
Savchenko RR, Murashkina AA, Fishman VS, Sukhikh ES, Vertinsky AV, Sukhikh LG, Serov OL, Lebedev IN, Vasilyev SA. Effect of ADAMTS1 Differential Expression on the Radiation-Induced Response of HеLа Cell Line. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Watanabe K, Nakamura Y, Low SK. Clinical implementation and current advancement of blood liquid biopsy in cancer. J Hum Genet 2021; 66:909-926. [PMID: 34088974 DOI: 10.1038/s10038-021-00939-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
Liquid biopsies have been receiving tremendous attentions as easy, rapid, and non-invasive tools for cancer diagnosis. Liquid biopsy can be performed repeatedly for disease monitoring and is expected to overcome the limitations of tissue biopsies. With the advancement of next generation sequencing technologies, it is now possible to detect minute amount of tumor-derived circulation tumor DNA (ctDNA) from blood samples. Importantly, ctDNA detection could be complementary to tissue biopsies or tumor biomarkers particularly in cases of which tumor biopsy is clinically difficult to obtain. Here, we introduce the up-to-date technologies used in cfDNA-based liquid biopsy and review the clinical utilities of ctDNA in cancer screening, detection of minimal residual diseases, selection of molecular-targeted drugs, as well as monitoring of treatment responsiveness. We also discuss the challenges and future perspectives of liquid biopsy implementation in clinical setting.
Collapse
Affiliation(s)
- Kazunori Watanabe
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew-Kee Low
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
28
|
Autocrine TGFβ1 Opposes Exogenous TGFβ1-Induced Cell Migration and Growth Arrest through Sustainment of a Feed-Forward Loop Involving MEK-ERK Signaling. Cancers (Basel) 2021; 13:cancers13061357. [PMID: 33802809 PMCID: PMC8002526 DOI: 10.3390/cancers13061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Transforming growth factor (TGF) β signaling is intimately involved in nearly all aspects of tumor development and is known for its role as both a tumor suppressor in benign tissues and a tumor promoter in advanced cancers. This dual role is also reflected by cancer cell-produced TGFβ that eventually acts on the same cell(s) in an autocrine fashion. Recently, we observed that endogenous TGFB1 can inhibit rather than stimulate cell motility in cell lines with high autocrine TGFβ production. The unexpected anti-migratory role prompted us to evaluate how autocrine TGFβ1 impacts the cells’ migratory and proliferative responses to exogenous (recombinant human) TGFβ. Surprisingly, endogenous TGFB1 opposed the migratory and growth-inhibitory responses induced by exogenous TGFβ1 by driving a self-perpetuating feedforward loop involving MEK-ERK signaling. Our observation has implications for the use of TGFβ signaling inhibitors in cancer therapy. Abstract Autocrine transforming growth factor β (aTGFβ) has been implicated in the regulation of cell invasion and growth of several malignant cancers such as pancreatic ductal adenocarcinoma (PDAC) or triple-negative breast cancer (TNBC). Recently, we observed that endogenous TGFB1 can inhibit rather than stimulate cell motility in cell lines with high aTGFβ production and mutant KRAS, i.e., Panc1 (PDAC) and MDA-MB-231 (TNBC). The unexpected anti-migratory role prompted us to evaluate if aTGFβ1 may be able to antagonize the action of exogenous (recombinant human) TGFβ (rhTGFβ), a well-known promoter of cell motility and growth arrest in these cells. Surprisingly, RNA interference-mediated knockdown of the endogenous TGFB1 sensitized genes involved in EMT and cell motility (i.e., SNAI1) to up-regulation by rhTGFβ1, which was associated with a more pronounced migratory response following rhTGFβ1 treatment. Ectopic expression of TGFB1 decreased both basal and rhTGFβ1-induced migratory activities in MDA-MB-231 cells but had the opposite effect in Panc1 cells. Moreover, silencing TGFB1 reduced basal proliferation and enhanced growth inhibition by rhTGFβ1 and induction of cyclin-dependent kinase inhibitor, p21WAF1. Finally, we show that aTGFβ1 promotes MEK-ERK signaling and vice versa to form a self-perpetuating feedforward loop that is sensitive to SB431542, an inhibitor of the TGFβ type I receptor, ALK5. Together, these data suggest that in transformed cells an ALK5-MEK-ERK-aTGFβ1 pathway opposes the promigratory and growth-arresting function of rhTGFβ1. This observation has profound translational implications for TGFβ signaling in cancer.
Collapse
|
29
|
Robichaud PP, Arseneault M, O'Connell C, Ouellette RJ, Morin PJ. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci Lett 2021; 750:135813. [PMID: 33705931 DOI: 10.1016/j.neulet.2021.135813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation has garnered much attention in recent years for its diagnostic potential in multiple conditions including cancer and neurodegenerative diseases. Conversely, advances regarding the potential diagnostic relevance of DNA methylation status have been sparse in the field of amyotrophic lateral sclerosis (ALS) even though patients diagnosed with this condition would significantly benefit from improved molecular assays aimed at furthering the current diagnostic and therapeutic options available. This review will provide an overview of the current diagnostic approaches available for ALS diagnosis and discuss the potential clinical usefulness of DNA methylation. We will also present examples of DNA methylation as a diagnostic tool in various types of cancer and neurodegenerative conditions and expand on how circulating cfDNA methylation may be leveraged for the early detection of ALS. In general, this article will reinforce the importance of cfDNA methylation as diagnostic tools and will further highlight its clinical relevance for persons diagnosed with ALS.
Collapse
Affiliation(s)
- Philippe-Pierre Robichaud
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Genetic Services, 330 Université Ave, Moncton, New Brunswick, E1C 2Z3, Canada; Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Michael Arseneault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, 800 Priestman Street, Fredericton, New Brunswick, E3B 0C7, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
30
|
Giannis D, Moris D, Barbas AS. Diagnostic, Predictive and Prognostic Molecular Biomarkers in Pancreatic Cancer: An Overview for Clinicians. Cancers (Basel) 2021; 13:1071. [PMID: 33802340 PMCID: PMC7959127 DOI: 10.3390/cancers13051071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/13/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and is associated with aggressive tumor behavior and poor prognosis. Most patients with PDAC present with an advanced disease stage and treatment-resistant tumors. The lack of noninvasive tests for PDAC diagnosis and survival prediction mandates the identification of novel biomarkers. The early identification of high-risk patients and patients with PDAC is of utmost importance. In addition, the identification of molecules that are associated with tumor biology, aggressiveness, and metastatic potential is crucial to predict survival and to provide patients with personalized treatment regimens. In this review, we summarize the current literature and focus on newer biomarkers, which are continuously added to the armamentarium of PDAC screening, predictive tools, and prognostic tools.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA;
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
31
|
Jie Y, Peng W, Li YY. Identification of novel candidate biomarkers for pancreatic adenocarcinoma based on TCGA cohort. Aging (Albany NY) 2021; 13:5698-5717. [PMID: 33591944 PMCID: PMC7950294 DOI: 10.18632/aging.202494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is the most serious solid tumor type throughout the world. The present study aimed to identify novel biomarkers and potential efficacious small drugs in PAAD using integrated bioinformatics analyses. A total of 4777 differentially expressed genes (DEGs) were filtered, 2536 upregulated DEGs and 2241 downregulated DEGs. Weighted gene co-expression network analysis was then used and identified 12 modules, of which, blue module with the most significant enrichment result was selected. KEGG and GO enrichment analyses showed that all DEGs of blue module were enriched in EMT and PI3K/Akt pathway. Three hub genes (ITGB1, ITGB5, and OSMR) were determined as key genes with higher expression levels, significant prognostic value and excellent diagnostic efficiency for PAAD. Additionally, some small molecule drugs that possess the potential to treat PAAD were screened out, including thapsigargin (TG). Functional in vitro experiments revealed that TG repressed cell viability via inactivating the PI3K/Akt pathway in PAAD cells. Totally, our findings identified three key genes implicated in PAAD and screened out several potential small drugs to treat PAAD.
Collapse
Affiliation(s)
- Yang Jie
- Department of Pharmacy, Shandong Provincial Hospital, Jinan 250022, Shandong, P.R. China
| | - Wang Peng
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, P.R. China
| | - Yuan-Yuan Li
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, P.R. China
| |
Collapse
|
32
|
Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021; 160:690-709. [PMID: 33279516 PMCID: PMC7878343 DOI: 10.1053/j.gastro.2020.09.058] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, liver cancer, stomach cancer, pancreatic cancer, and esophageal cancer are leading causes of cancer-related deaths worldwide. A fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological processes of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the clinical behavior of the precancers and cancers and can be used as biomarkers for cancer risk determination, early detection of cancer and precancer, determination of the prognosis of cancer and prediction of the response to therapy. Epigenetic alterations have emerged as one of most robust classes of biomarkers and are the basis for a growing number of clinical tests for cancer screening and surveillance.
Collapse
Affiliation(s)
- William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
33
|
Wang Y, Lakoma A, Zogopoulos G. Building towards Precision Oncology for Pancreatic Cancer: Real-World Challenges and Opportunities. Genes (Basel) 2020; 11:E1098. [PMID: 32967105 PMCID: PMC7563487 DOI: 10.3390/genes11091098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The advent of next-generation sequencing (NGS) has provided unprecedented insight into the molecular complexity of pancreatic ductal adenocarcinoma (PDAC). This has led to the emergence of biomarker-driven treatment paradigms that challenge empiric treatment approaches. However, the growth of sequencing technologies is outpacing the development of the infrastructure required to implement precision oncology as routine clinical practice. Addressing these logistical barriers is imperative to maximize the clinical impact of molecular profiling initiatives. In this review, we examine the evolution of precision oncology in PDAC, spanning from germline testing for cancer susceptibility genes to multi-omic tumor profiling. Furthermore, we highlight real-world challenges to delivering precision oncology for PDAC, and propose strategies to improve the generation, interpretation, and clinical translation of molecular profiling data.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anna Lakoma
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
34
|
LRG1 May Accelerate the Progression of ccRCC via the TGF- β Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1285068. [PMID: 32337221 PMCID: PMC7149433 DOI: 10.1155/2020/1285068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. It is an urgent mission to find more therapeutic targets for advanced ccRCC. Leucine-rich a-2-glycoprotein 1 (LRG1) is a secreted protein associated with a variety of malignancies. Our study focused on the expression and mechanism of LRG1 in ccRCC based on data from The Cancer Genome Atlas (TCGA) and provided primary verification including LRG1 expression detection, LRG1 gene methylation detection, and downstream signaling detection. We found that LRG1 was overexpressed in ccRCC kidney tissue samples, and the methylation level of LRG1 gene was significantly decreased in ccRCC. Moreover, the expression of LRG1 was negatively related to patient survival. Based on our previous study and the verification reported in this article, we propose that demethylation-induced overexpression of LRG1 is likely to accelerate ccRCC progression via the TGF-β pathway.
Collapse
|