1
|
Mahadevan KK, Maldonado AS, Li B, Bickert AA, Perdyan A, Kumbhar SV, Piya S, Sockwell A, Morse SJ, Arian K, Sugimoto H, Shalapour S, Hong DS, Heffernan TP, Maitra A, Kalluri R. Inhibitors of oncogenic Kras specifically prime CTLA4 blockade to transcriptionally reprogram Tregs and overcome resistance to suppress pancreas cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640711. [PMID: 40093186 PMCID: PMC11908235 DOI: 10.1101/2025.02.28.640711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lack of sustained response to oncogenic Kras (Kras*) inhibition in preclinical models and patients with pancreatic ductal adenocarcinoma (PDAC) emphasizes the need to identify impactful synergistic combination therapies to achieve robust clinical benefit. Kras* targeting results in an influx of global T cell infiltrates including Tregs, effector CD8 + T cells and exhausted CD8 + T cells expressing several immune checkpoint molecules in PDAC. Here, we probe whether the T cell influx induced by diverse Kras* inhibitors open a therapeutic window to target the adaptive immune response in PDAC. We show a specific synergy of anti-CTLA4 immune checkpoint blockade with Kras* targeting primed by Kras G12D allele specific inhibitor, MRTX1133 and multi-selective pan-RAS inhibitor, RMC-6236, both currently in clinical testing phase. In contrast, attempted therapeutic combination following Kras* targeting with multiple checkpoint inhibitors, including anti-PD1, anti-Tim3, anti-Lag3, anti-Vista and anti-4-1BB agonist antibody failed due to compensatory mechanisms mediated by other checkpoints on exhausted CD8 + T cells. Anti-CTLA4 therapy in Kras* targeted PDAC transcriptionally reprograms effector T regs to a naïve phenotype, reverses CD8 + T cell exhaustion and is associated with recruitment of tertiary lymphoid structures (TLS) containing interferon (IFN)-stimulated/ activated B cells and germinal center B cells to enable immunotherapy efficacy and overcome resistance with long-term survival. Single cell ATAC sequencing analysis revealed that transcriptional reprogramming of Tregs is epigenetically regulated by downregulation of AP-1 family of transcription factors including Fos, Fos-b, Jun-b, Jun-d in the IL-35 promoter region. This study reveals an actionable vulnerability in the adaptive immune response in Kras* targeted PDAC with important clinical implications. Graphical abstract
Collapse
|
2
|
Zhang X, Li L, Shi X, Zhao Y, Cai Z, Ni N, Yang D, Meng Z, Gao X, Huang L, Wang T. Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes. Front Immunol 2025; 16:1534928. [PMID: 40078998 PMCID: PMC11897234 DOI: 10.3389/fimmu.2025.1534928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Background Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with better prognostic outcomes. Methods We analyzed data from 13 independent breast cancer cohorts, totaling over 9,551 patients. Using single-cell RNA sequencing and machine learning algorithms, we identified critical TLS-associated genes and developed a TLS-based predictive model. This model stratified patients into high and low-risk groups. Genomic alterations, immune infiltration, and cellular interactions within the tumor microenvironment were assessed. Results The TLS-based model demonstrated superior accuracy compared to traditional models, predicting overall survival. High TLS patients had higher tumor mutation burden and more chromosomal alterations, correlating with poorer prognosis. High-risk patients exhibited a significant depletion of CD4+ T cells, CD8+ T cells, and B cells, as evidenced by single-cell and bulk transcriptomic analyses. In contrast, immune checkpoint inhibitors demonstrated greater efficacy in low-risk patients, whereas chemotherapy proved more effective for high-risk individuals. Conclusions The TLS-based prognostic model is a robust tool for predicting breast cancer outcomes, highlighting the tumor microenvironment's role in cancer progression. It enhances our understanding of breast cancer biology and supports personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Li Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaoyu Shi
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Yunxia Zhao
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhaogen Cai
- Department of Pathology, Bengbu Medical University, Bengbu, Anhui, China
| | - Ni Ni
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Di Yang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Zixin Meng
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Xu Gao
- School of Health Administration, Bengbu Medical University, Bengbu, Anhui, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Shen S, Cui Y, Li M, Yu K, Zhu Q, Zhang X, Shen W, Li H, Jiang H, Li M, Wang X, Zhao X, Ren X, Lin S. Toll-like receptor agonists promote the formation of tertiary lymphoid structure and improve anti-glioma immunity. Neuro Oncol 2025; 27:140-154. [PMID: 39188155 PMCID: PMC11726345 DOI: 10.1093/neuonc/noae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Glioma, characterized by limited lymphocytic infiltration, constitutes an "immune-desert" tumor displaying insensitivity to various immunotherapies. This study aims to explore therapeutic strategies for inducing tertiary lymphoid structure (TLS) formation within the glioma microenvironment (GME) to transition it from an immune resistant to an activated state. METHODS TLS formation in GME was successfully induced by intracranial administration of Toll-like receptor (TLR) agonists (OK-432, TLR2/4/9 agonist) and glioma antigens (i.c. αTLR-mix). We employed staining analysis, antibody neutralization, single-cell RNA sequencing (scRNA-Seq), and BCR/TCR sequencing to investigate the underlying mechanisms of TLS formation and its role in anti-glioma immunity. Additionally, a preliminary translational clinical study was conducted. RESULTS TLS formation correlated with increased lymphocyte infiltration in GME and led to improved prognosis in glioma-bearing mice. In the study of TLS induction mechanisms, certain macrophages/microglia and Th17 displayed markers of "LTo" and "LTi" cells, respectively, interaction through LTα/β-LTβR promoted TLS induction. Post-TLS formation, CD4 + and CD8 + T cells but not CD19 + B cells contributed to anti-glioma immunity. Comparative analysis of B/T cells between brain and lymph node showed that brain B/T cells unveiled the switch from naïve to mature, some B cells highlighted an enrichment of class switch recombination (CSR)-associated genes, V gene usage, and clonotype bias were observed. In related clinical studies, i.c. αTLR-mix treatment exhibited tolerability, and chemokines/cytokines assay provided preliminary evidence supporting TLS formation in GME. CONCLUSIONS TLS induction in GME enhanced anti-glioma immunity, improved the immune microenvironment, and controlled glioma growth, suggesting potential therapeutic avenues for treating glioma in the future.
Collapse
Affiliation(s)
- Shaoping Shen
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Haoyi Li
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Ming Li
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xijie Wang
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Beijing Neurological Institute, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Gulubova MV, Valkanov SP, Ignatova MMK, Minkov GA. Tertiary lymphoid structures in colorectal cancer - organization and immune cell interactions. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:236-245. [PMID: 39839346 PMCID: PMC11744347 DOI: 10.62347/gryy2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 01/23/2025]
Abstract
Tertiary lymphoid structures (TLS), formerly recognized as Crohn's-like structures, serve as crucial biomarkers for evaluating the progression of colorectal cancer (CRC). Understanding their spatial distribution, cellular composition, and interactions within CRC is paramount for comprehending the immune response in the tumor microenvironment (TME). TLS are comprised of a T-cellular compartment and a B-cellular compartment, the latter encompassing follicular dendritic cells (FDCs), high endothelial venules (HEVs), and lymphatic vessels. While T helper cells predominate in cancer TLS, the specific functions of their subpopulations remain inadequately understood. Notably, T follicular helper (Tfh) cells play a central role in the activation of CD8+ T cells, and both Tfh cells and Tfh-associated genes have been linked to enhanced CRC survival. In stage II CRC TLS, an escalation in the number of FoxP3+ T regulatory cells (Tregs) is regarded as a negative prognostic factor. Moreover, within TLS, T lymphocytes shield B lymphocytes from the immunosuppressive effects of the TME. B lymphocyte activation is succeeded by class recombination (CSR) and somatic hypermutation (SHM). Dendritic cells (DCs) constitute a vital cellular component of the TLS T compartment. During steady state and early stages of CRC, specialized antigen-presenting cells such as DCs migrate to regional lymph nodes through afferent lymphatics. They deliver MHC antigen-derived peptide complexes (tumor antigens) to naïve CD4+ and CD8+ T cells, which subsequently infiltrate the tumor site as antigen-specific T cells. Key DC markers studied in TLS include CD83 and DC-LAMP. Research has indicated that the DC-LAMP gene signature in tumor TLS reflects Th1 cell targeting, cytotoxicity, and T cell activation. This review comprehensively outlines the functions performed by distinct cell subsets within tertiary lymphoid structures (TLS) in tumors.
Collapse
Affiliation(s)
- Maya Vladova Gulubova
- Clinics of Pathology, University Hospital “Prof. Dr. Stoyan Kirkovich”Stara Zagora, Bulgria
- Department of Anatomy, Histology, Embryology and Pathology, Medical Faculty, “Asen Zlatarov University Bourgas”Bourgas, Bulgaria
| | - Stefan P Valkanov
- Clinics of Neurosurgery, University Hospital “Prof. Dr. Stoyan Kirkovich”Stara Zagora, Bulgria
- Department of Surgery, Medical Faculty, Trakia UniversityStara Zagora, Bulgria
| | | | - Georgi A Minkov
- Department of Surgery, Medical Faculty, Trakia UniversityStara Zagora, Bulgria
- Clinics of Surgery, University Hospital “Prof. Dr. Stoyan Kirkovich”Stara Zagora, Bulgria
| |
Collapse
|
5
|
Chen X, Xu W, Pan J, Yang H, Li Y, Chen X, Sun Y, Liu Q, Qiu S. m6A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq. Front Immunol 2024; 15:1492648. [PMID: 39726587 PMCID: PMC11669702 DOI: 10.3389/fimmu.2024.1492648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a type of malignant tumors commonly found in Southeast Asia and China, with insidious onset and clinical symptoms. N6-methyladenosine (m6A) modification significantly contributes to tumorigenesis and progression by altering RNA secondary structure and influencing RNA-protein binding at the transcriptome level. However, the mechanism and role of abnormal m6A modification in nasopharyngeal carcinoma remain unclear. Methods Nasopharyngeal Carcinoma tissues from 3 patients and non-cancerous nasopharyngeal tissues from 3 individuals, all from Fujian Cancer Hospital, were sequenced for m6A methylation. These were combined with transcriptome sequencing data from 192 nasopharyngeal cancer tissues. Genes linked to prognosis were discovered using differential analysis and univariate Cox regression. Subsequently, a prognostic model associated with m6A was developed through the application of LASSO regression analysis. The model's accuracy was verified using both internal transcriptome databases and external databases. An extensive evaluation of the tumor's immune microenvironment and signaling pathways was performed, analyzing both transcriptomic and single-cell data. Results The m6A methylation sequencing analysis revealed 194 genes with varying expression levels, many of which are predominantly associated with immune pathways. By integrating transcriptome sequencing data, 19 m6A-modified genes were found to be upregulated in tumor tissues, leading to the development of a three-gene (EME1, WNT4, SHISA2) risk prognosis model. The group with lower risk exhibited notable enrichment in pathways related to immunity, displaying traits like enhanced survival rates, stronger immune profiles, and increased responsiveness to immunotherapy when compared to the higher-risk group. Single-cell analysis revealed that malignant cells exhibited the highest risk score levels compared to immune cells, with a high-risk score indicating worse biological behavior. The three hub genes demonstrated significant correlation with m6A modification regulators, and MeRIP-RT-PCR confirmed the occurrence of m6A methylation in these genes within nasopharyngeal carcinoma cells. Conclusions A prognostic model for nasopharyngeal carcinoma risk based on m6A modification genes was developed, and its prognostic value was confirmed through self-assessment data. The study highlighted the crucial impact of m6A modification on the immune landscape of nasopharyngeal cancer.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junping Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
6
|
Surd AO, Răducu C, Răducu E, Ihuț A, Munteanu C. Lamina Propria and GALT: Their Relationship with Different Gastrointestinal Diseases, Including Cancer. GASTROINTESTINAL DISORDERS 2024; 6:947-963. [DOI: 10.3390/gidisord6040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The structural integrity of the gastrointestinal tract is important because it dictates the functionality of this system. Regarding this, gut-associated lymphoid tissue (GALT) has a significant role in immunity. Most cancer research focuses on organized lymphoid structures and less on diffuse structures such as the lamina propria (LP). Therefore, this paper aims to investigate the link between the LP and cancer in humans. The interstitial matrix and loose connective tissue layer located directly under the epithelium is known as the LP. In this area, there are a lot of IgA+ plasma cells (PCs), T and B lymphocytes, macrophages, dendritic cells (DCs), and stromal cells (SCs). Antigens from the lumen are picked up by LP DCs and presented directly to B cells, which may cause IgA class switching and differentiation in the presence of T cells. In humans, the GALT of the mucosa has been proposed as the source of a unique malignancy known as “GALT carcinoma”, which is thought to represent the “third pathway of colorectal carcinogenesis”. However, present colorectal cancer classifications do not define GALT carcinoma as a separate histologic category.
Collapse
Affiliation(s)
- Adrian Onisim Surd
- Department of Pediatric Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Camelia Răducu
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Eugen Răducu
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andrada Ihuț
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Camelia Munteanu
- Department of Plant Culture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Fang J, Huang J, Zhang J, Chen L, Deng J. Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications. CURR PROTEOMICS 2024; 21:230-250. [DOI: 10.2174/0115701646317271240821071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 01/07/2025]
Abstract
Purpose:
The molecular properties of TLSs in pancreatic cancer are still not well comprehended.
This research delved into the molecular properties of intratumoral TLSs in pancreatic
cancer through the exploration of multi-omics data.
Methods:
Seven key genes were identified through Cox regression analysis and random survival
forest analysis from a total of 5908 genes related to TLSs. These genes were utilized to construct a
prognosis model, which was subsequently validated in two independent cohorts. Additionally, the
study investigated the molecular features of different populations of TLSs from multiple perspectives.
The model’ s forecasting accuracy was verified by analyzing nomogram and decision curves,
taking into account the patients’ clinical traits.
Results:
The analysis of immune cell infiltration showed a notably greater presence of Macrophage
M0 cells in the group at high risk than in the low-risk group. The pathway enrichment analysis
demonstrated the activation among common cancer-related pathways, including ECM receptor interaction,
pathways in cancer, and focal adhesion, in the high-risk group. Additionally, the methylation
study revealed notable disparities in DNA methylation between two TLS groups across four
regions: TSS200, 5’ UTR, 1stExon, and Body. A variety of notably distinct sites were linked with
PVT1. Furthermore, by constructing a competing endogenous RNA network, several mRNAs and
lncRNAs were identified that compete for the binding of hsa-mir-221.
Conclusion:
Overall, this research sheds light on the molecular properties of TLSs across various
pancreatic cancer stages and suggests possible focal points for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jiana Fang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jingru Huang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhong Zhang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Guangzhou,
510120, China
| | - Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
- Pazhou
Lab, Guangzhou, 510330, China
| |
Collapse
|
8
|
Lv J, Zhang X, Zhou M, Yan J, Chao G, Zhang S. Tertiary lymphoid structures in colorectal cancer. Ann Med 2024; 56:2400314. [PMID: 39575712 PMCID: PMC11616745 DOI: 10.1080/07853890.2024.2400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are ectopic clusters of immune cells found in non-lymphoid tissues, particularly within the tumor microenvironment (TME). These structures resemble secondary lymphoid organs and have been identified in various solid tumors, including colorectal cancer (CRC), where they are associated with favorable prognosis. The role of TLS in modulating the immune response within the TME and their impact on cancer prognosis has garnered increasing attention in recent years. OBJECTIVE This review aims to summarize the current understanding of TLS in CRC, focusing on their formation, function, and potential as prognostic markers and therapeutic targets. We explore the mechanisms by which TLS influence the immune response within the TME and their correlation with clinical outcomes in CRC patients. METHODS We conducted a comprehensive review of recent studies that investigated the presence and role of TLS in CRC. The review includes data from histopathological analyses, immunohistochemical studies, and clinical trials, examining the association between TLS density, composition, and CRC prognosis. Additionally, we explored emerging therapeutic strategies targeting TLS formation and function within the TME. RESULTS The presence of TLS in CRC is generally associated with an improved prognosis, particularly in early-stage disease. TLS formation is driven by chronic inflammation and is characterized by the organization of B and T cell zones, high endothelial venules (HEVs), and follicular dendritic cells (FDCs). The density and maturity of TLS are linked to better patient outcomes, including reduced recurrence rates and increased survival. Furthermore, the interplay between TLS and immune checkpoint inhibitors (ICIs) suggests potential therapeutic implications for enhancing anti-tumor immunity in CRC. CONCLUSIONS TLS represent a significant prognostic marker in CRC, with their presence correlating with favorable clinical outcomes. Ongoing research is required to fully understand the mechanisms by which TLS modulate the immune response within the TME and to develop effective therapies that harness their potential. The integration of TLS-focused strategies in CRC treatment could lead to improved patient management and outcomes.
Collapse
Affiliation(s)
- Jianyu Lv
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mi Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Junbin Yan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
9
|
Monabbati S, Fu P, Asa SL, Pathak T, Willis JE, Shi Q, Madabhushi A. Machine Vision-Detected Peritumoral Lymphocytic Aggregates Are Associated With Disease-Free Survival in Patients With Papillary Thyroid Carcinoma. J Transl Med 2024; 104:102168. [PMID: 39505213 PMCID: PMC11659025 DOI: 10.1016/j.labinv.2024.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer, with a disease recurrence rate of around 20%. Lymphoid formations, which occur in nonlymphoid tissues during chronic inflammatory, infectious, and immune responses, have been linked with tumor suppression. Lymphoid aggregates potentially enhance the body's antitumor response, offering an avenue for attracting tumor-infiltrating lymphocytes and fostering their coordination. Increasing evidence highlights the role of lymphoid aggregate density in managing tumor invasion and metastasis, with a favorable impact noted on overall and disease-free survival (DFS) across various cancer types. In this study, we present a machine vision model to predict recurrence in different histologic subtypes of PTC using measurements related to peritumoral lymphoid aggregate density. We demonstrated that quantifying peritumoral lymphocytic presence not only is associated with better prognosis but also, along with tumor-infiltrating lymphocytes within the tumor, adds additional prognostic value in the absence of well-known second mutations including TERT. Annotations of peritumoral lymphoid aggregates on 171 well-differentiated PTCs in the Cancer Genome Atlas Thyroid Carcinoma (TCGA-THCA) data set were used to train a deep-learning model to predict regions of lymphoid aggregates across the entire tissue. The fractional area of the tissue regions covered by these lymphocytes was dichotomized to determine the following 2 risk groups: a significant and low density of peritumoral lymphocytes. DFS prognosticated using these risk groups via the Kaplan-Meier analysis revealed a hazard ratio (HR) of 2.51 (95% CI: 2.36, 2.66), tested on 170 new patients also from the TCGA-THCA data set. The prognostic performance of peritumoral lymphocyte aggregate density was compared against the univariate Kaplan-Meier analysis of DFS using the fractional area of intratumoral lymphocytes within the primary tumor with an HR of 2.04 (95% CI: 1.89, 2.19). Combining the lymphocyte features in and around the tumor yielded a statistically significant improvement in prognostic performance (HR, 3.17 [95% CI: 3.02, 3.32]) on training and were independently evaluated against 62 patients outside TCGA-THCA with an HR of 2.44 (95% CI: 2.19, 2.69). Multivariable Cox regression analysis on the validation set revealed that the density of peritumoral and intratumoral lymphocytes was prognostic independent of histologic subtype with a concordance index of 0.815.
Collapse
Affiliation(s)
- Shayan Monabbati
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sylvia L Asa
- Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Tilak Pathak
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Qiuying Shi
- Department of Pathology, Emory University Hospital Midtown, Atlanta, Georgia
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia; Atlanta Veterans Administration Medical Center, Atlanta, Georgia.
| |
Collapse
|
10
|
Yu C, Xu J, Xu S, Tang L, Han Q, Sun Z. Research trends, hotspots and future directions of tertiary lymphoid structures in cancer: a comprehensive informatics analysis and visualization study. Discov Oncol 2024; 15:665. [PMID: 39549226 PMCID: PMC11569082 DOI: 10.1007/s12672-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Many studies have reported the presence of tertiary lymphoid structures (TLSs) in cancer, but the research progress of TLSs in cancer has not been systematically analyzed. Therefore, we analyzed the global scientific knowledge in the field using informatics methods. The results showed that TLSs in cancer have received increasing attention since the 21st century, with an annual publication growth rate of 27.86%. Unsupervised hierarchical clustering based on machine learning further categorized the research features into four clusters, with the cluster related to immunotherapy being considered an emerging cluster. TLSs and immunotherapy were identified as the top two hotspots with the highest occurrence frequency and total link strength. The Walktrap algorithm indicated that "TLSs, carcinoma, prognostic value" and "high endothelial venules, germinal-centers, node-like structures" are important to TLSs but remain underexplored, representing promising research directions. These findings suggest that cancer-related TLSs have brought new insights into antitumor immunity, and targeting TLSs has the potential to transform the landscape of antitumor immunotherapy.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Siyi Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Tang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Qinyuan Han
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengkui Sun
- Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China.
| |
Collapse
|
11
|
Liu Y, Li N, Qi J, Xu G, Zhao J, Wang N, Huang X, Jiang W, Wei H, Justet A, Adams TS, Homer R, Amei A, Rosas IO, Kaminski N, Wang Z, Yan X. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data. Genome Biol 2024; 25:271. [PMID: 39402626 PMCID: PMC11475911 DOI: 10.1186/s13059-024-03416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER's superior accuracy and robustness over existing methods.
Collapse
Affiliation(s)
- Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- SJTU-Yale Join Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, China
| | - Ji Qi
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Gang Xu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV, USA
| | - Jiayi Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Nating Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xiayuan Huang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Wenhao Jiang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Huanhuan Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Aurélien Justet
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Service de Pneumologie, Centre de Competences de Maladies Pulmonaires Rares, CHU de Caen UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Normandie University, Caen, France
| | - Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV, USA
| | - Ivan O Rosas
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, USA.
| | - Xiting Yan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
13
|
Niu L, Chen T, Yang A, Yan X, Jin F, Zheng A, Song X. Macrophages and tertiary lymphoid structures as indicators of prognosis and therapeutic response in cancer patients. Biochim Biophys Acta Rev Cancer 2024; 1879:189125. [PMID: 38851437 DOI: 10.1016/j.bbcan.2024.189125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Li Niu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aodan Yang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Xiwen Yan
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Garcia-Villatoro EL, Ufondu A, Callaway ES, Allred KF, Safe SH, Chapkin RS, Jayaraman A, Allred CD. Aryl hydrocarbon receptor activity in intestinal epithelial cells in the formation of colonic tertiary lymphoid tissues. Am J Physiol Gastrointest Liver Physiol 2024; 327:G154-G174. [PMID: 38563893 PMCID: PMC11427098 DOI: 10.1152/ajpgi.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the aryl hydrocarbon receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes or immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio were observed. These findings may represent an unfavorable prognosis when exposed to dextran sodium sulfate (DSS)-induced epithelial damage compared with females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.NEW & NOTEWORTHY This is the first research of its kind to demonstrate a clear connection between biological sex and the development of tertiary lymphoid tissues (TLT) in the colon. In addition, the research finds that in a preclinical model of inflammatory bowel disease, the expression of the aryl hydrocarbon receptor (AhR) influences the development of these structures in a sex-specific manner.
Collapse
Affiliation(s)
| | - A. Ufondu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - E. S. Callaway
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - K. F. Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| | - S. H. Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States
| | - R. S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, United States
| | - A. Jayaraman
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - C. D. Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| |
Collapse
|
16
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
17
|
Zhang D, Jiang D, Jiang L, Ma J, Wang X, Xu X, Chen Z, Jiang M, Ye W, Wang J, Meng W, Qiu W, Hou Y, Huang J, Jiao Y, Liu Y, Liu Z. HLA-A + tertiary lymphoid structures with reactivated tumor infiltrating lymphocytes are associated with a positive immunotherapy response in esophageal squamous cell carcinoma. Br J Cancer 2024; 131:184-195. [PMID: 38762674 PMCID: PMC11231239 DOI: 10.1038/s41416-024-02712-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy provides remarkable clinical benefits for multiple cancer types. However, the overall response rate to ICB therapy remains low in esophageal squamous cell carcinoma (ESCC). This study aimed to identify biomarkers of ICB therapy for ESCC and interrogate its potential clinical relevance. METHODS We investigated gene expression in 42 treatment-naïve ESCC tumor tissues and identified differentially expressed genes, tumor-infiltrating lymphocytes and immune-related genes signatures associated with differential immunotherapy responses. We systematically assessed the tumor microenvironment using the NanoString GeoMx digital spatial profiler, single-cell RNA-seq and multiplex immunohistochemistry in ESCC. Finally, we evaluated the associations between HLA-A-positive tertiary lymphoid structures (TLSs) and patients' responses to ICB in 60 ESCC patients. RESULTS Tumor infiltrating B lymphocytes and several immune-related gene signatures, such as the antigen presenting machinery (APM) signature, are significantly elevated in ICB treatment responders. Multiplex immunohistochemistry identified the presence of HLA-A+ TLSs and showed that TLS-resident cells increasingly express HLA-A as TLSs mature. Most TLS-resident HLA-A+ cells are tumor-infiltrating T (TIL-T) or tumor-infiltrating B (TIL-B) lymphocytes. Digital spatial profiling of spatially distinct TIL-T lymphocytes and single-cell RNA-seq data from 60 ESCC tumor tissues revealed that CXCL13-expressing exhausted TIL-Ts inside TLSs are reactivated with elevated expression of the APM signature as TLSs mature. Finally, we demonstrated that HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, are associated with a clinical benefit from ICB treatment for ESCC. CONCLUSIONS HLA-A+ TLSs are present in ESCC tumor tissues. TLS-resident TIL-Ts with elevated expression of the APM signature may be reactivated. HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, may serve as biomarkers for ICB-treated ESCC patients.
Collapse
Affiliation(s)
- Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jiakang Ma
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xingyu Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziqiang Chen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mengping Jiang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenjing Ye
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Departments of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weida Meng
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenqing Qiu
- Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
18
|
Xu Z, Wang Q, Zhang Y, Li X, Wang M, Zhang Y, Pei Y, Li K, Yang M, Luo L, Wu C, Wang W. Exploiting tertiary lymphoid structures gene signature to evaluate tumor microenvironment infiltration and immunotherapy response in colorectal cancer. Front Oncol 2024; 14:1383096. [PMID: 38846981 PMCID: PMC11153738 DOI: 10.3389/fonc.2024.1383096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS) is a particular component of tumor microenvironment (TME). However, its biological mechanisms in colorectal cancer (CRC) have not yet been understood. We desired to reveal the TLS gene signature in CRC and evaluate its role in prognosis and immunotherapy response. Methods The data was sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Based on TLS-related genes (TRGs), the TLS related subclusters were identified through unsupervised clustering. The TME between subclusters were evaluated by CIBERSORT and xCell. Subsequently, developing a risk model and conducting external validation. Integrating risk score and clinical characteristics to create a comprehensive nomogram. Further analyses were conducted to screen TLS-related hub genes and explore the relationship between hub genes, TME, and biological processes, using random forest analysis, enrichment and variation analysis, and competing endogenous RNA (ceRNA) network analysis. Multiple immunofluorescence (mIF) and immunohistochemistry (IHC) were employed to characterize the existence of TLS and the expression of hub gene. Results Two subclusters that enriched or depleted in TLS were identified. The two subclusters had distinct prognoses, clinical characteristics, and tumor immune infiltration. We established a TLS-related prognostic risk model including 14 genes and validated its predictive power in two external datasets. The model's AUC values for 1-, 3-, and 5-year overall survival (OS) were 0.704, 0.737, and 0.746. The low-risk group had a superior survival rate, more abundant infiltration of immune cells, lower tumor immune dysfunction and exclusion (TIDE) score, and exhibited better immunotherapy efficacy. In addition, we selected the top important features within the model: VSIG4, SELL and PRRX1. Enrichment analysis showed that the hub genes significantly affected signaling pathways related to TLS and tumor progression. The ceRNA network: PRRX1-miRNA (hsa-miR-20a-5p, hsa-miR-485-5p) -lncRNA has been discovered. Finally, IHC and mIF results confirmed that the expression level of PRRX1 was markedly elevated in the TLS- CRC group. Conclusion We conducted a study to thoroughly describe TLS gene signature in CRC. The TLS-related risk model was applicable for prognostic prediction and assessment of immunotherapy efficacy. The TLS-hub gene PRRX1, which had the potential to function as an immunomodulatory factor of TLS, could be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhu Xu
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Wang
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolan Li
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Zhang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaxin Pei
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kezhen Li
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Man Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
20
|
Wang B, Zou L, Chen J, Cao Y, Cai Z, Qiu Y, Mao L, Wang Z, Chen J, Gui L, Yang X. A Weakly Supervised Segmentation Network Embedding Cross-Scale Attention Guidance and Noise-Sensitive Constraint for Detecting Tertiary Lymphoid Structures of Pancreatic Tumors. IEEE J Biomed Health Inform 2024; 28:988-999. [PMID: 38064334 DOI: 10.1109/jbhi.2023.3340686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) on pancreatic pathological images is an important prognostic indicator of pancreatic tumors. Therefore, TLSs detection on pancreatic pathological images plays a crucial role in diagnosis and treatment for patients with pancreatic tumors. However, fully supervised detection algorithms based on deep learning usually require a large number of manual annotations, which is time-consuming and labor-intensive. In this paper, we aim to detect the TLSs in a manner of few-shot learning by proposing a weakly supervised segmentation network. We firstly obtain the lymphocyte density maps by combining a pretrained model for nuclei segmentation and a domain adversarial network for lymphocyte nuclei recognition. Then, we establish a cross-scale attention guidance mechanism by jointly learning the coarse-scale features from the original histopathology images and fine-scale features from our designed lymphocyte density attention. A noise-sensitive constraint is introduced by an embedding signed distance function loss in the training procedure to reduce tiny prediction errors. Experimental results on two collected datasets demonstrate that our proposed method significantly outperforms the state-of-the-art segmentation-based algorithms in terms of TLSs detection accuracy. Additionally, we apply our method to study the congruent relationship between the density of TLSs and peripancreatic vascular invasion and obtain some clinically statistical results.
Collapse
|
21
|
Vaccaro A, van de Walle T, Ramachandran M, Essand M, Dimberg A. Of mice and lymphoid aggregates: modeling tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1275378. [PMID: 37954592 PMCID: PMC10639130 DOI: 10.3389/fimmu.2023.1275378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like aggregates that can form in association with chronic inflammation or cancer. Mature TLS are organized into B and T cell zones, and are not encapsulated but include all cell types necessary for eliciting an adaptive immune response. TLS have been observed in various cancer types and are generally associated with a positive prognosis as well as increased sensitivity to cancer immunotherapy. However, a comprehensive understanding of the roles of TLS in eliciting anti-tumor immunity as well as the mechanisms involved in their formation and function is still lacking. Further studies in orthotopic, immunocompetent cancer models are necessary to evaluate the influence of TLS on cancer therapies, and to develop new treatments that promote their formation in cancer. Here, we review key insights obtained from functional murine studies, discuss appropriate models that can be used to study cancer-associated TLS, and suggest guidelines on how to identify TLS and distinguish them from other antigen-presenting niches.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- *Correspondence: Alessandra Vaccaro, ; Tiarne van de Walle, ; Anna Dimberg,
| | | | | | | | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Wei Q, Jiang X, Miao X, Zhang Y, Chen F, Zhang P. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns. J Cancer Res Clin Oncol 2023; 149:11351-11368. [PMID: 37378675 DOI: 10.1007/s00432-023-05000-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) seriously threatens people's health worldwide. Programmed cell death (PCD) plays a critical role in regulating LUAD growth and metastasis as well as in therapeutic response. However, currently, there is a lack of integrative analysis of PCD-related signatures of LUAD for accurate prediction of prognosis and therapeutic response. METHODS The bulk transcriptome and clinical information of LUAD were obtained from TCGA and GEO databases. A total of 1382 genes involved in regulating 13 various PCD patterns (apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, alkaliptosis and disulfidptosis) were included in the study. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to identify PCD-associated differential expression genes (DEGs). An unsupervised consensus clustering algorithm was used to explore the potential subtypes of LUAD based on the expression profiles of PCD-associated DEGs. Univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, Random Forest (RF) analysis and stepwise multivariate Cox analysis were performed to construct a prognostic gene signature. The "oncoPredict" algorithm was utilized for drug-sensitive analysis. GSVA and GSEA were utilized to perform function enrichment analysis. MCPcounter, quanTIseq, Xcell and ssGSEA algorithms were used for tumor immune microenvironment analysis. A nomogram incorporating PCDI and clinicopathological characteristics was established to predict the prognosis of LUAD patients. RESULTS Forty PCD-associated DEGs related to LUAD were obtained by WGCNA analysis and differential expression analysis, followed by unsupervised clustering to identify two LUAD molecular subtypes. A programmed cell death index (PCDI) with a five-gene signature was established by machine learning algorithms. LUAD patients were then divided into a high PCDI group and a low PCDI group using the median PCDI as a cutoff. Survival and therapeutic analysis revealed that the high PCDI group had a poor prognosis and was more sensitive to targeted drugs but less sensitive to immunotherapy compared to the low PCDI group. Further enrichment analysis showed that B cell-related pathways were significantly downregulated in the high PCDI group. Accordingly, the decreased tumor immune cell infiltration and the lower tumor tertiary lymphoid structure (TLS) scores were also found in the high PCDI group. Finally, a nomogram with reliable predictive performance PCDI was constructed by incorporating PCDI and clinicopathological characteristics, and a user-friendly online website was established for clinical reference ( https://nomogramiv.shinyapps.io/NomogramPCDI/ ). CONCLUSION We performed the first comprehensive analysis of the clinical relevance of genes regulating 13 PCD patterns in LUAD and identified two LUAD molecular subtypes with distinct PCD-related gene signature which indicated differential prognosis and treatment sensitivity. Our study provided a new index to predict the efficacy of therapeutic interventions and the prognosis of LUAD patients for guiding personalized treatments.
Collapse
Affiliation(s)
- Qin Wei
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyu Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinyi Miao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yilin Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fengzhe Chen
- Department of Infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China.
| | - Pengju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
23
|
Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw 2023; 23:e41. [PMID: 37970230 PMCID: PMC10643329 DOI: 10.4110/in.2023.23.e41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
CD4 and CD8 T cells are key players in the immune response against both pathogenic infections and cancer. CD4 T cells provide help to CD8 T cells via multiple mechanisms, including licensing dendritic cells (DCs), co-stimulation, and cytokine production. During acute infection and vaccination, CD4 T cell help is important for the development of CD8 T cell memory. However, during chronic viral infection and cancer, CD4 helper T cells are critical for the sustained effector CD8 T cell response, through a variety of mechanisms. In this review, we focus on T cell responses in conditions of chronic Ag stimulation, such as chronic viral infection and cancer. In particular, we address the significant role of CD4 T cell help in promoting effector CD8 T cell responses, emerging techniques that can be utilized to further our understanding of how these interactions may take place in the context of tertiary lymphoid structures, and how this key information can be harnessed for therapeutic utility against cancer.
Collapse
Affiliation(s)
- Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Siying Lin
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
26
|
Elsayed R, Elashiry M, Tran C, Yang T, Carroll A, Liu Y, Hamrick M, Cutler CW. Engineered Human Dendritic Cell Exosomes as Effective Delivery System for Immune Modulation. Int J Mol Sci 2023; 24:11306. [PMID: 37511064 PMCID: PMC10379002 DOI: 10.3390/ijms241411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes (exos) contain molecular cargo of therapeutic and diagnostic value for cancers and other inflammatory diseases, but their therapeutic potential for periodontitis (PD) remains unclear. Dendritic cells (DCs) are the directors of immune response and have been extensively used in immune therapy. We previously reported in a mouse model of PD that custom murine DC-derived exo subtypes could reprogram the immune response toward a bone-sparing or bone-loss phenotype, depending on immune profile. Further advancement of this technology requires the testing of human DC-based exos with human target cells. Our main objective in this study is to test the hypothesis that human monocyte-derived dendritic cell (MoDC)-derived exos constitute a well-tolerated and effective immune therapeutic approach to modulate human target DC and T cell immune responses in vitro. MoDC subtypes were generated with TGFb/IL-10 (regulatory (reg) MoDCs, CD86lowHLA-DRlowPDL1high), E. coli LPS (stimulatory (stim) MoDCs, CD86highHLA-DRhighPDL1low) and buffer (immature (i) MoDCs, CD86lowHLA-DRmedPDL1low). Exosomes were isolated from different MoDC subtypes and characterized. Once released from the secreting cell into the surrounding environment, exosomes protect their prepackaged molecular cargo and deliver it to bystander cells. This modulates the functions of these cells, depending on the cargo content. RegMoDCexos were internalized by recipient MoDCs and induced upregulation of PDL1 and downregulation of costimulatory molecules CD86, HLADR, and CD80, while stimMoDCexos had the opposite influence. RegMoDCexos induced CD25+Foxp3+ Tregs, which expressed CTLA4 and PD1 but not IL-17A. In contrast, T cells treated with stimMoDCexos induced IL-17A+ Th17 T cells, which were negative for immunoregulatory CTLA4 and PD1. T cells and DCs treated with iMoDCexos were immune 'neutral', equivalent to controls. In conclusion, human DC exos present an effective delivery system to modulate human DC and T cell immune responses in vitro. Thus, MoDC exos may present a viable immunotherapeutic agent for modulating immune response in the gingival tissue to inhibit bone loss in periodontal disease.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Cathy Tran
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tigerwin Yang
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Angelica Carroll
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
27
|
Giacomelli M, Monti M, Pezzola DC, Lonardi S, Bugatti M, Missale F, Cioncada R, Melocchi L, Giustini V, Villanacci V, Baronchelli C, Manenti S, Imberti L, Giurisato E, Vermi W. Immuno-Contexture and Immune Checkpoint Molecule Expression in Mismatch Repair Proficient Colorectal Carcinoma. Cancers (Basel) 2023; 15:3097. [PMID: 37370706 DOI: 10.3390/cancers15123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.
Collapse
Affiliation(s)
- Mauro Giacomelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Diego Cesare Pezzola
- Department of Surgery, Surgery Division II, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van Leeuwenhoek-Nederlands Kanker Instituut, 1066 CX Amsterdam, The Netherlands
| | - Rossella Cioncada
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Viviana Giustini
- CREA Laboratory, AIL Center for Hemato-Oncologic Research, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Carla Baronchelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Stefania Manenti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William Vermi
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, School of Medicine, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
28
|
Cao Y, Hou Y, Zhao L, Huang Y, Liu G. New insights into follicular regulatory T cells in the intestinal and tumor microenvironments. J Cell Physiol 2023. [PMID: 37210730 DOI: 10.1002/jcp.31039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
29
|
Chen X, Ding Q, Lin T, Sun Y, Huang Z, Li Y, Hong W, Chen X, Wang D, Qiu S. An immune-related prognostic model predicts neoplasm-immunity interactions for metastatic nasopharyngeal carcinoma. Front Immunol 2023; 14:1109503. [PMID: 37063853 PMCID: PMC10102363 DOI: 10.3389/fimmu.2023.1109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe prognosis of nasopharyngeal carcinoma (NPC) has been recognized to improve immensely owing to radiotherapy combined with chemotherapy. However, patients with metastatic NPC have a poor prognosis. Immunotherapy has dramatically prolonged the survival of patients with NPC. Hence, further research on immune-related biomarkers is imperative to establish the prognosis of metastatic NPC.Methods10 NPC RNA expression profiles were generated from patients with or without distant metastasis after chemoradiotherapy from the Fujian Cancer Hospital. The differential immune-related genes were identified and validated by immunohistochemistry analysis. The method of least absolute shrinkage and selection operator (LASSO)was used to further establish the immune-related prognostic model in an external GEO database (GSE102349, n=88). The immune microenvironment and signal pathways were evaluated in multiple dimensions at the transcriptome and single-cell levels.Results1328 differential genes were identified, out of which 520 were upregulated and 808 were downregulated. Notably, most of the immune genes and pathways were down-regulated in the metastasis group. A prognostic immune model involving nine hub genes. Patients in low-risk group were characterized by survival advantage, hot immune phenotype and benefit from immunotherapy. Compared with immune cells, malignant cell exhibited the most active levels of risk score by ssGSEA. Accordingly, intercellular communications including LT, CD70, CD40 and SPP1, and the like, between high-risk and low-risk were explored by the R package “Cellchat”.ConclusionWe have constructed a model based on immunity of metastatic NPC and determined its prognostic value. The model identified the level of immune cell infiltration, cell-cell communication, along with potential immunotherapy for metastatic NPC.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ting Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, China
| | - Zongwei Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenquan Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Desheng Wang
- Department of Otolaryngology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Sufang Qiu, ; Desheng Wang,
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Sufang Qiu, ; Desheng Wang,
| |
Collapse
|
30
|
Immunoscore Signatures in Surgical Specimens and Tumor-Infiltrating Lymphocytes in Pretreatment Biopsy Predict Treatment Efficacy and Survival in Esophageal Cancer. Ann Surg 2023; 277:e528-e537. [PMID: 34334651 PMCID: PMC10060045 DOI: 10.1097/sla.0000000000005104] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Tumor-infiltrating lymphocytes (TILs) have long been recognized as playing an important role in tumor immune microenvironment. Lately, the Immunoscore (IS) has been proposed as a new method of quantifying the number of TILs in association with patient survival in several cancer types. METHODS In 300 preoperatively untreated esophageal cancer (EC) patients who underwent curative resection at two different institutes, immunohistochemical staining using CD3 and CD8 antibodies was performed to evaluate IS, as objectively scored by auto-counted TILs in the tumor core and invasive margin. In addition, in pre-neoadjuvant chemotherapy (pre-NAC) endoscopic biopsies of a different cohort of 146 EC patients who received NAC, CD3, and CD8 were immunostained to evaluate TIL density. RESULTS In all cases, the IS-high (score 3-4) group tended to have better survival [5-year overall survival (OS) of the IS-high vs low group: 77.6 vs 65.8%, P = 0.0722] than the IS-low (score 1-2) group. This trend was more remarkable in cStage II-IV patients (70.2 vs 54.5%, P = 0.0208) and multivariate analysis of OS further identified IS (hazard ratio 2.07, P = 0.0043) to be an independent prognostic variable. In preNAC biopsies, NAC-responders had higher densities than non-responders of both CD3 + ( P = 0.0106) and CD8 + cells ( P = 0.0729) and, particularly CD3 + cell density was found to be an independent prognostic factor (hazard ratio 1.75, P = 0.0169). CONCLUSIONS The IS signature in surgical specimens and TIL density in preNAC- biopsies could be predictive markers of clinical outcomes in EC patients.
Collapse
|
31
|
Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol 2023; 13:1063711. [PMID: 36713409 PMCID: PMC9875059 DOI: 10.3389/fimmu.2022.1063711] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates that form at sites of chronic inflammation, including cancers, in non-lymphoid tissues. Although the formation of TLSs is similar to that of secondary lymphoid organs, the pathogenic factors leading to TLS formation in cancerous tissues and the mechanisms underlying the role of these structures in the intra-tumoral adaptive antitumor immune response are not fully understood. The presence of TLSs may impact patient prognosis and treatment outcomes. This review examines the current understanding of TLSs in cancers, including their composition and formation as well as their potential to predict prognosis and therapeutic efficacy. We also summarize strategies to induce TLS formation for cancer treatment.
Collapse
Affiliation(s)
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
32
|
Griffith BD, Turcotte S, Lazarus J, Lima F, Bell S, Delrosario L, McGue J, Krishnan S, Oneka MD, Nathan H, Smith JJ, D’Angelica MI, Shia J, Di Magliano MP, Rao A, Frankel TL. MHC Class II Expression Influences the Composition and Distribution of Immune Cells in the Metastatic Colorectal Cancer Microenvironment. Cancers (Basel) 2022; 14:4092. [PMID: 36077630 PMCID: PMC9454847 DOI: 10.3390/cancers14174092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in therapy over the past decades, metastatic colorectal cancer (mCRC) remains a highly morbid disease. While the impact of MHC-I on immune infiltration in mCRC has been well studied, data on the consequences of MHC-II loss are lacking. Multiplex fluorescent immunohistochemistry (mfIHC) was performed on 149 patients undergoing curative intent resection for mCRC and stratified into high and low human leukocyte antigen isotype DR (HLA-DR) expressing tumors. Intratumoral HLA-DR expression was found in stromal bands, and its expression level was associated with different infiltrating immune cell makeup and distribution. Low HLA-DR expression was associated with increased intercellular distances and decreased population mixing of T helper cells and antigen-presenting cells (APC), suggestive of decreased interactions. This was associated with less co-localization of tumor cells and cytotoxic T lymphocytes (CTLs), which tended to be in a less activated state as determined by Ki67 and granzyme B expression. These findings suggest that low HLA-DR in the tumor microenvironment of mCRC may reflect a state of poor helper T-cell interactions with APCs and CTL-mediated anti-tumor activity. Efforts to restore/enhance MHC-II presentation may be a useful strategy to enhance checkpoint inhibition therapy in the future.
Collapse
Affiliation(s)
- Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Turcotte
- Department of Surgery, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha Bell
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Morgan D. Oneka
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael I. D’Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
33
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
34
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
35
|
Hernandez S, Parra ER, Uraoka N, Tang X, Shen Y, Qiao W, Jiang M, Zhang S, Mino B, Lu W, Pandurengan R, Haymaker C, Affolter K, Scaife CL, Yip-Schneider M, Schmidt CM, Firpo MA, Mulvihill SJ, Koay EJ, Wang H, Wistuba II, Maitra A, Solis LM, Sen S. Diminished Immune Surveillance during Histologic Progression of Intraductal Papillary Mucinous Neoplasms Offers a Therapeutic Opportunity for Cancer Interception. Clin Cancer Res 2022; 28:1938-1947. [PMID: 35491652 PMCID: PMC9069801 DOI: 10.1158/1078-0432.ccr-21-2585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/02/2021] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Intraductal papillary mucinous neoplasms (IPMN) are bona fide precursors to pancreatic ductal adenocarcinoma (PDAC). While genomic alterations during multistep IPMN progression have been well cataloged, the accompanying changes within the tumor immune microenvironment (TIME) have not been comprehensively studied. Herein, we investigated TIME-related alterations during IPMN progression, using multiplex immunofluorescence (mIF) coupled with high-resolution image analyses. EXPERIMENTAL DESIGN Two sets of formalin-fixed, paraffin-embedded tissue samples from surgically resected IPMNs were analyzed. The training set of 30 samples consisted of 11 low-grade IPMN (LG-IPMN), 17 high-grade IPMN (HG-IPMN), and 2 IPMN with PDAC, while a validation set of 93 samples comprised of 55 LG-IPMN and 38 HG-IPMN. The training set was analyzed with two panels of immuno-oncology-related biomarkers, while the validation set was analyzed with a subset of markers found significantly altered in the training set. RESULTS Cell types indicative of enhanced immune surveillance, including cytotoxic and memory T cells, and antigen-experienced T cells and B cells, were all found at higher densities within isolated LG-IPMNs compared with HG-IPMNs. Notably, the TIME of LG-IPMNs that had progressed at the time of surgical resection (progressor LGD) resembled that of the synchronous HG-IPMNs, underscoring that attenuated immune surveillance occurs even in LG-IPMNs destined for progression. CONCLUSIONS Our findings provide a basis for interception of cystic neoplasia to PDAC, through maintenance of sustained immune surveillance using vaccines and other prevention approaches.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naohiro Uraoka
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Shen
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Qiao
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mei Jiang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shanyu Zhang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara Mino
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Lu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renganayaki Pandurengan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kajsa Affolter
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | | | - C. Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Eugene J. Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
36
|
Goyal G, Prabhala P, Mahajan G, Bausk B, Gilboa T, Xie L, Zhai Y, Lazarovits R, Mansour A, Kim MS, Patil A, Curran D, Long JM, Sharma S, Junaid A, Cohen L, Ferrante TC, Levy O, Prantil‐Baun R, Walt DR, Ingber DE. Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organ-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103241. [PMID: 35289122 PMCID: PMC9109055 DOI: 10.1002/advs.202103241] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/08/2021] [Indexed: 05/13/2023]
Abstract
Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
Collapse
Affiliation(s)
- Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Pranav Prabhala
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Bruce Bausk
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tal Gilboa
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Liangxia Xie
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Roey Lazarovits
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Adam Mansour
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Min Sun Kim
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Aditya Patil
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Danielle Curran
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Jaclyn M. Long
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Sanjay Sharma
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Limor Cohen
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Thomas C. Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Rachelle Prantil‐Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - David R. Walt
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Vascular Biology Program and Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02139USA
| |
Collapse
|
37
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
38
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
39
|
Wang J, Jiang D, Zheng X, Li W, Zhao T, Wang D, Yu H, Sun D, Li Z, Zhang J, Zhang Z, Hou L, Jiang G, Fei K, Zhang F, Yang K, Zhang P. Tertiary lymphoid structure and decreased CD8 + T cell infiltration in minimally invasive adenocarcinoma. iScience 2022; 25:103883. [PMID: 35243243 PMCID: PMC8873609 DOI: 10.1016/j.isci.2022.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Knowledge of the tumor microenvironment (TME) in patients with early lung cancer, especially in comparison with the matched adjacent tissues, remains lacking. To characterize TME of early-stage lung adenocarcinoma, we performed RNA-seq profiling on 58 pairs of minimally invasive adenocarcinoma (MIA) tumors and matched adjacent normal tissues. MIA tumors exhibited an adaptive TME characterized by high CD4+ T cell infiltration, high B-cell activation, and low CD8+ T cell infiltration. The high expression of markers for B cells, activated CD4+ T cells, and follicular helper T (Tfh) cells in bulk MIA samples and three independent single-cell RNA-seq datasets implied tertiary lymphoid structures (TLS) formation. Multiplex immunohistochemistry staining validated TLS formation and revealed an enrichment of follicular regulatory T cells (Tfr) in TLS follicles, which may explain the lower CD8+ T cell infiltration and attenuated anti-tumor immunity in MIA. Our study demonstrates how integrating transcriptome and pathology characterize TME and elucidate potential mechanisms of tumor immune evasion.
Collapse
Affiliation(s)
- Jin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dongbo Jiang
- Department of Immunology, School of Basic Medicine, Air-Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Wang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Tian Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Di Wang
- Tissue Bank, Department of Pathology, Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huansha Yu
- Tissue Bank, Department of Pathology, Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongqing Sun
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhe Zhang
- Department of Gynecologic Oncology, Chinese PLA General Hospital, Beijing, China
| | - Likun Hou
- Tissue Bank, Department of Pathology, Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Kun Yang
- Department of Immunology, School of Basic Medicine, Air-Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
41
|
Wang S, Xie K, Liu T. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters. Front Immunol 2021; 12:690112. [PMID: 34367148 PMCID: PMC8335396 DOI: 10.3389/fimmu.2021.690112] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
The immunotherapeutic treatment of various cancers with an increasing number of immune checkpoint inhibitors (ICIs) has profoundly improved the clinical management of advanced diseases. However, just a fraction of patients clinically responds to and benefits from the mentioned therapies; a large proportion of patients do not respond or quickly become resistant, and hyper- and pseudoprogression occur in certain patient populations. Furthermore, no effective predictive factors have been clearly screened or defined. In this review, we discuss factors underlying the elucidation of potential immunotherapeutic resistance mechanisms and the identification of predictive factors for immunotherapeutic responses. Considering the heterogeneity of tumours and the complex immune microenvironment (composition of various immune cell subtypes, disease processes, and lines of treatment), checkpoint expression levels may not be the only factors underlying immunotherapy difficulty and resistance. Researchers should consider the tumour microenvironment (TME) landscape in greater depth from the aspect of not only immune cells but also the tumour histology, molecular subtype, clonal heterogeneity and evolution as well as micro-changes in the fine structural features of the tumour area, such as myeloid cell polarization, fibroblast clusters and tertiary lymphoid structure formation. A comprehensive analysis of the immune and molecular profiles of tumour lesions is needed to determine the potential predictive value of the immune landscape on immunotherapeutic responses, and precision medicine has become more important.
Collapse
Affiliation(s)
- Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Kun Xie
- German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Tengfei Liu
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Aoyama S, Nakagawa R, Mulé JJ, Mailloux AW. Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Front Immunol 2021; 12:675538. [PMID: 34054863 PMCID: PMC8160316 DOI: 10.3389/fimmu.2021.675538] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized lymphocytes and antigen-presenting cells that occur in solid tissues as part of a chronic inflammation response. Sharing structural and functional characteristics with conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell zones, marginal zones with antigen presenting cells, reticular stromal networks, and high endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive immune activation within the periphery. TLS share many signaling axes and leukocyte recruitment schemes with SLO regarding their formation and function. In cancer, their presence confers positive prognostic value across a wide spectrum of indications, spurring interest in their artificial induction as either a new form of immunotherapy, or as a means to augment other cell or immunotherapies. Here, we review approaches for inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to TLS formation and that often mirror conventional SLO organogenesis. This review also addresses biomaterials that have been or might be suitable for iTLS, and discusses remaining challenges facing iTLS manufacturing approaches for clinical translation.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Ryosuke Nakagawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - James J. Mulé
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Adam W. Mailloux
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
43
|
Elashiry M, Elashiry MM, Elsayed R, Rajendran M, Auersvald C, Zeitoun R, Rashid MH, Ara R, Meghil MM, Liu Y, Arbab AS, Arce RM, Hamrick M, Elsalanty M, Brendan M, Pacholczyk R, Cutler CW. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J Extracell Vesicles 2020; 9:1795362. [PMID: 32944183 PMCID: PMC7480413 DOI: 10.1080/20013078.2020.1795362] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bone degenerative diseases represent a major threat to the health and well-being of the population, particularly those with advanced age. This study isolated exosomes (EXO), natural nano-particles, from dendritic cells, the “directors” of the immune response, to examine the immunobiology of DC EXO in mice, and their ability to reprogram immune cells responsible for experimental alveolar bone loss in vivo. Distinct DC EXO subtypes including immune-regulatory (regDC EXO), loaded with TGFB1 and IL10 after purification, along with immune stimulatory (stimDC EXO) and immune “null” immature (iDCs EXO) unmodified after purification, were delivered via I.V. route or locally into the soft tissues overlying the alveolar bone. Locally administrated regDC EXO showed high affinity for inflamed sites, and were taken up by both DCs and T cells in situ. RegDC EXO-encapsulated immunoregulatory cargo (TGFB1 and IL10) was protected from proteolytic degradation. Moreover, maturation of recipient DCs and induction of Th17 effectors was suppressed by regDC EXO, while T-regulatory cell recruitment was promoted, resulting in inhibition of bone resorptive cytokines and reduction in osteoclastic bone loss. This work is the first demonstration of DC exosome-based therapy for a degenerative alveolar bone disease and provides the basis for a novel treatment strategy.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA, Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Mythily Rajendran
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Carol Auersvald
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Rana Zeitoun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Department of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Mohammad H Rashid
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Roxan Ara
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Ali S Arbab
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Roger M Arce
- Department of Periodontics and Oral Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Mohammed Elsalanty
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Marshall Brendan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Rafal Pacholczyk
- Georgia Cancer Center, Augusta, GA, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| |
Collapse
|
44
|
Li Q, Zhang D, He W, Chen T, Yan Z, Gao X, Chen L, Zheng X, Xu B, Lu B, Jiang J. CD8 + T cells located in tertiary lymphoid structures are associated with improved prognosis in patients with gastric cancer. Oncol Lett 2020; 20:2655-2664. [PMID: 32782582 PMCID: PMC7400769 DOI: 10.3892/ol.2020.11828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
The presence of tumor infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) in tumor tissues are of great prognostic significance in several types of human cancer. The present study investigated the density of TILs and TLSs in gastric cancer (GC) tissues and their association with pathological parameters. Moreover, the clinical significance of follicular CD8+ cytotoxic T cells present within the germinal centers of the tumor-associated TLSs was investigated. Immunohistochemistry and H&E staining were used to examine the infiltration and distribution patterns of TILs, TLSs and germinal center (gc) CD8+ TILs in tumor tissues obtained from 63 patients with GC. The number of TILs, TLSs, combination of TILs and TLSs (TILs-TLSs) and gcCD8+ TILs were used to define tumoral immune parameters, and the prognostic value of these parameters was assessed. The analysis revealed that patients with GC with increased levels of TILs, TLSs, or gcCD8+ TILs exhibited improved overall survival. In addition, gcCD8+ TILs levels were significantly associated with patient age, histological grade and pTN stage. Increased levels of TILs-TLSs were positively associated with nerve invasion, tumor thrombus, nodal metastasis and histological grade. Multivariate Cox regression analysis revealed that TILs-TLSs and gcCD8+ TILs were independent prognostic factors. The data obtained in the present study demonstrated that high levels of tumoral immune parameters are important independent prognostic predictors for human GC. The results also suggested a possible role of gcCD8+ TILs in tumor immune surveillance.
Collapse
Affiliation(s)
- Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Wenting He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Tongbing Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhantao Yan
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xie Gao
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, P.R. China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, P.R. China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, P.R. China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu 213003, P.R. China.,Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
45
|
He W, Zhang D, Liu H, Chen T, Xie J, Peng L, Zheng X, Xu B, Li Q, Jiang J. The High Level of Tertiary Lymphoid Structure Is Correlated With Superior Survival in Patients With Advanced Gastric Cancer. Front Oncol 2020; 10:980. [PMID: 32733793 PMCID: PMC7358602 DOI: 10.3389/fonc.2020.00980] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background: A tertiary lymphoid structure (TLS) is a crucial component of the tumor microenvironment, which reflects the anti-tumor immune response in the host. The aim of the present study was to carry out a histopathological evaluation for TLS and assess its prognostic value in gastric cancer (GC). Methods: A total of 1,033 cases that have received a gastrectomy were reviewed, including 914 in the primary cohort and 119 in the validation cohort. TLS was assessed by optical microscopy and verified by immunohistochemistry. A total of five histopathological evaluation methods were compared in the primary cohort and validated in the validation cohort. In addition, MECA-79 and CD21 were used to verify the accuracy of the histopathological scoring system for TLS. The association among TLS, clinicopathological parameters, and patient prognosis was analyzed. Results: TLS as assessed by morphology and immunohistochemistry were significantly correlated and consistent. The morphological evaluation of TLS was accurate. Typically, the high level of TLS was significantly correlated with tumor size (P = 0.047), histological grade (P = 0.039), pTN stage (P = 0.044), and WHO subtype (P < 0.001). In addition, TLShi was a positive indicator of overall survival, as determined by Kaplan–Meier survival (P = 0.038) and multivariate Cox regression analyses (hazard ratio = 0.794, 95% CI: 0.668–0.942, P = 0.008). According to the results, TLShi had a positive effect on the primary cohort patients with pTN stages II and III (P = 0.027, P = 0.042). Conclusions: The histopathological evaluation of TLS was accurate. Diagnosis based solely on hematoxylin and eosin staining of the sections did not easily distinguish tumor-associated TLS. The density of TLS in the center of the tumor was found to be more indicative of patient prognosis than TLS in the invasive margin, with the levels of total TLS shown to best correlate with overall survival in patients with advanced-stage GC.
Collapse
Affiliation(s)
- Wenting He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hong Liu
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tongbing Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Xie
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lei Peng
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| |
Collapse
|
46
|
Marinkovic T, Marinkovic D. Biological mechanisms of ectopic lymphoid structure formation and their pathophysiological significance. Int Rev Immunol 2020; 40:255-267. [PMID: 32631119 DOI: 10.1080/08830185.2020.1789620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ectopic lymphoid structures (ELS) or tertiary lymphoid organs are structures with the organization similar to the one of secondary lymphoid organs, formed in non-lymphoid tissues. They are considered to be an important site for the lymphocytic physiological and pathological role in conditions such are chronic infections, autoimmune diseases, cancer, and allograft rejection. Although similar to the secondary lymphoid tissues, the initiation of ELS formation is not preprogramed and requires chronic inflammation, expression of homeostatic chemokines, and lymphotoxin beta receptor activation. Importantly, while ELS formation may be considered beneficiary in antimicrobial and antitumor immunity, the persistence of these active lymphoid structures within the tissue increase the chance for development of autoimmunity and lymphoma. This paper is providing an overview of biological mechanisms involved in ELS formation, as well as the overview of the pathophysiological role of these structures. In addition, the paper discusses the possibility to therapeutically target ELS formation, bearing in mind their bivalent nature and role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Tatjana Marinkovic
- Department of Medical Sciences, Western Serbia Academy of Applied Sciences, Uzice, Serbia
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Munoz-Erazo L, Rhodes JL, Marion VC, Kemp RA. Tertiary lymphoid structures in cancer - considerations for patient prognosis. Cell Mol Immunol 2020; 17:570-575. [PMID: 32415259 DOI: 10.1038/s41423-020-0457-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid formations that form within nonlymphoid tissue. They share structural and functional characteristics with secondary lymphoid structures such as lymph nodes and can contain B-cell follicles and germinal centers surrounded by a T-cell region. TLS have been described in several types of cancers and are usually associated with positive patient outcomes. However, TLS differ vastly in cellular composition and location within tissue types. In this review, we discuss factors confounding the interpretation of the evidence for a prognostic role for TLS in cancer and frame these factors in the context of translation to regular clinical use.
Collapse
Affiliation(s)
- Luis Munoz-Erazo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Janet L Rhodes
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Valentine C Marion
- Ecole Normale Superieure de Lyon, Lyon, France and Universite Claude Bernard Lyon 1, Lyon, France
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
48
|
Li H, Wang J, Liu H, Lan T, Xu L, Wang G, Yuan K, Wu H. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging (Albany NY) 2020; 12:3451-3472. [PMID: 32087064 PMCID: PMC7066901 DOI: 10.18632/aging.102821] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023]
Abstract
Tumor-associated tertiary lymphoid structures (TLS) play a critical role in the progression of various tumors. However, the dynamics of lymphocyte recruitment during hepatocellular carcinoma (HCC) clinical progression have not been fully elucidated. In the present study, tissue microarrays and hematoxylin-eosin staining were used to evaluate the existence and degree of TLS in HCC patients. Nine immune biomarkers in intratumoral tissues were examined by immunohistochemical staining. A total of 462 patients were recruited for the study. Kaplan-Meier analysis showed that TLS was inversely correlated with the risk of early tumor recurrence (P=0.014), whereas no association was found between TLS and overall survival. Cox regression analysis identified TLS as an independent prognostic factor for early HCC recurrence (P=0.005). In addition, TLS was associated with increased intratumoral CD3+, CD8+, CD20+, and decreased infiltration of Foxp3+ and CD68+ cells. A lower density of PD1+, TIM3+, and LAG3+ were found in TLS+ cases. Sub-analysis revealed the prognostic value of TLS on early-stage HCC (BCLC 0-A, TNM stage I-II) and HCC with solitary nodule. The validation cohort verified the prognostic value of TLS in early-stage HCC patients. These results suggest that TLS-targeted immune-modulating therapies may be a potential strategy for effective immune-mediated tumor suppression.
Collapse
Affiliation(s)
- Hui Li
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinju Wang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hailing Liu
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Lan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Xu
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Genshu Wang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510006, China
| | - Kefei Yuan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Wu
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Benninghoff AD, Hintze KJ, Monsanto SP, Rodriguez DM, Hunter AH, Phatak S, Pestka JJ, Van Wettere AJ, Ward RE. Consumption of the Total Western Diet Promotes Colitis and Inflammation-Associated Colorectal Cancer in Mice. Nutrients 2020; 12:nu12020544. [PMID: 32093192 PMCID: PMC7071445 DOI: 10.3390/nu12020544] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Consumption of a Western type diet is a known risk factor for colorectal cancer. Our group previously developed the total Western diet (TWD) for rodents with energy and nutrient profiles that emulate a typical Western diet. In this study, we tested the hypothesis that consumption of the TWD would enhance colitis, delay recovery from gut injury and promote colon tumorigenesis. In multiple experiments using the azoxymethane + dextran sodium sulfate or ApcMin/+ mouse models of colitis-associated colorectal carcinogenesis (CAC), we determined that mice fed TWD experienced more severe and more prolonged colitis compared to their counterparts fed the standard AIN93G diet, ultimately leading to markedly enhanced colon tumorigenesis. Additionally, this increased tumor response was attributed to the micronutrient fraction of the TWD, and restoration of calcium and vitamin D to standard amounts ameliorated the tumor-promoting effects of TWD. Finally, exposure to the TWD elicited large scale, dynamic changes in mRNA signatures of colon mucosa associated with interferon (IFN) response, inflammation, innate immunity, adaptive immunity, and antigen processing pathways, among others. Taken together, these observations indicate that consumption of the TWD markedly enhanced colitis, delayed recovery from gut injury, and enhanced colon tumorigenesis likely via extensive changes in expression of immune-related genes in the colon mucosa.
Collapse
Affiliation(s)
- Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- USTAR Applied Nutrition Research, 9815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- Correspondence: ; Tel.: +01-435-797-8649
| | - Korry J. Hintze
- USTAR Applied Nutrition Research, 9815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- Department of Nutrition, Dietetics and Food Sciences, 8700 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Stephany P. Monsanto
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Daphne M. Rodriguez
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Ashli H. Hunter
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Sumira Phatak
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - James J. Pestka
- Department of Food Science and Human Nutrition, the Institute for Integrative Toxicology, and the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Arnaud J. Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Robert E. Ward
- USTAR Applied Nutrition Research, 9815 Old Main Hill, Utah State University, Logan, UT 84322, USA
- Department of Nutrition, Dietetics and Food Sciences, 8700 Old Main Hill, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
50
|
Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 2020; 20:294-307. [DOI: 10.1038/s41577-019-0257-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
|