1
|
Yao J, Ning B, Ding J. The gut microbiota: an emerging modulator of drug resistance in hepatocellular carcinoma. Gut Microbes 2025; 17:2473504. [PMID: 40042184 PMCID: PMC11901387 DOI: 10.1080/19490976.2025.2473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Liver cancer is usually diagnosed at an advanced stage and is the third most common cause of cancer-related death worldwide. In addition to the lack of effective treatment options, resistance to therapeutic drugs is a major clinical challenge. The gut microbiota has recently been recognized as one of the key factors regulating host health. The microbiota and its metabolites can directly or indirectly regulate gene expression in the liver, leading to gut-liver axis dysregulation, which is closely related to liver cancer occurrence and the treatment response. Gut microbiota disturbance may participate in tumor progression and drug resistance through metabolite production, gene transfer, immune regulation, and other mechanisms. However, systematic reviews on the role of the gut microbiota in drug resistance in liver cancer are lacking. Herein, we review the relationships between the gut microbiota and the occurrence and drug resistance of hepatocellular carcinoma, summarize the emerging mechanisms underlying gut microbiota-mediated drug resistance, and propose new personalized treatment options to overcome this resistance.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Cai M, Xue SS, Zhou CH, Feng YC, Liu JZ, Liu R, Wang P, Wang HN, Peng ZW. Effects of fecal microbiota transplantation from patients with generalized anxiety on anxiety-like behaviors: The role of the gut-microbiota-endocannabinoid-brain Axis. J Affect Disord 2025; 381:131-149. [PMID: 40187430 DOI: 10.1016/j.jad.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Intestinal dysbacteriosis is frequently implicated in generalized anxiety disorder (GAD). However, the molecular mechanisms and functional changes of the gut-brain axis in GAD remain largely unexplored. METHODS We investigated anxiety-like behaviors, gut microbiota changes, brain region-specific endocannabinoid (eCB) system alterations, including the expression of cannabinoid type 1 (CB1R), monoacylglycerol lipase (MAGL), and fatty acid amide hydrolase (FAAH) in the hippocampus (Hip), prefrontal cortex (PFC), and amygdala (Amy), as well as plasma medium- and long-chain fatty acids (MLCFAs) in a mouse model of chronic restraint stress (CRS) and antibiotic-treated mice receiving fecal microbiota transplantation from GAD patients (FMT-GAD). Additionally, we assessed the impact of FMT-GAD on anxiety-like behavior in systemic CB1R/FAAH/MAGL knockout mice. RESULTS CRS induced anxiety-like behaviors, suppressed eCB signaling in the brain, and altered the gut microbiota and plasma MLCFA composition in mice. FMT-GAD-treated mice exhibited anxiety-like behaviors, increased FAAH expression in the Hip and Amy, and MAGL expression in the Hip, while reducing CB1R expression in the Hip. FMT-GAD was associated with decreased plasma polyunsaturated fatty acids (PUFAs) and reduced microbiome function for fatty acid biosynthesis. Notably, FMT-GAD intensified anxiety-like behaviors in CB1R-KO mice but failed to induce anxiety-like behaviors in MAGL-KO and FAAH-KO mice. CONCLUSIONS This study demonstrates that the interplay between the gut microbiota and the eCB system modulates GAD-related anxiety-like behaviors.
Collapse
Affiliation(s)
- Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chao Feng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiang-Zheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| | - Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| | - Peng Wang
- Department of Psychiatry, Xi'an Central Hospital, Xi'an 710000, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. Proc Natl Acad Sci U S A 2025; 122:e2422169122. [PMID: 40354538 DOI: 10.1073/pnas.2422169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response and fibrosis is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via infection with the pathogenic bacterial species enterotoxigenic Bacteroides fragilis (ETBF) and implanted particulate material (mean particle size <600 μm) of the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation, increased levels of neutrophils in lymphoid tissues, and altered skeletal muscle gene expression. At the PCL implant site, we found significant changes in the transcriptome of sorted stromal cells between infected and control mice, including differences related to ECM components such as proteoglycans and glycosaminoglycans. However, we did not observe ETBF-induced differences in fibrosis levels. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant.
Collapse
Affiliation(s)
- Brenda Yang
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Natalie Rutkowski
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Anna Ruta
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Elise Gray-Gaillard
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - David R Maestas
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Sean H Kelly
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Kavita Krishnan
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Allen Chen
- Department of Biomedical Engineering, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Joscelyn C Mejías
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Joshua S T Hooks
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Isabel Vanderzee
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Patricia Mensah
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Nazmiye Celik
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Marie Eric
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Peter Abraham
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Ada Tam
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Franck Housseau
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Drew M Pardoll
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
4
|
Wendler Miranda B, Junges LH, Souza EMD, Santana Lunardi P, Müller-Santos M. Harnessing flavonoids to control probiotic function: in situ application of a naringenin-responsive genetic circuit. Microbiol Spectr 2025:e0289024. [PMID: 40277392 DOI: 10.1128/spectrum.02890-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/22/2025] [Indexed: 04/26/2025] Open
Abstract
Efforts to improve probiotics' capabilities through synthetic biology have recently increased. Using naturally occurring plant-based compounds, such as flavonoids, as inputs of genetic circuits introduced in probiotics is a promising strategy to enhance or introduce a beneficial phenotype to the host. However, flavonoid-responsive genetic circuits have not yet been applied in host-microbe conditions. In this work, we have characterized the FdeR-based naringenin-responsive genetic circuit in the probiotic (Escherichia coli Nissle 1917) (EcN), both in vitro and in situ, applying the FdeR system in EcN colonizing mice guts. In culture, the circuit demonstrated a 131-fold activation upon naringenin exposure. In mice, circuit activity was monitored via luminescence produced by Nanoluc in fecal samples following oral gavage of naringenin (100 mg/kg), resulting in a 34-fold luminescence increase. This activation decreased over 24 hours but was reinduced after a second gavage with naringenin. These findings demonstrate the potential of naringenin-responsive genetic circuits to program probiotic phenotypes in vivo through external compound administration. Future studies should evaluate lower naringenin dosages and naringenin-rich foods as alternative inputs. IMPORTANCE Engineering probiotics is a rapidly advancing field in synthetic biology. Genetic circuits, which enable precise and predictable control of microbial phenotypes, are central to this effort. Leveraging natural, plant-based compounds like flavonoids to control gene expression offers a promising strategy for developing next-generation probiotics with enhanced capabilities. This study demonstrates the activity of a flavonoid-responsive genetic circuit during host-microbe interactions. The findings provide a foundation for using beneficial compounds like naringenin as inputs to drive desired phenotypes in vivo. In addition, this work expands the range of genetic circuit inputs, facilitating the design of more sophisticated, multi-input systems for probiotic engineering.
Collapse
Affiliation(s)
- Brenno Wendler Miranda
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Lucas Henrique Junges
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Paula Santana Lunardi
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Biological Oxidations Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Marcelo Müller-Santos
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| |
Collapse
|
5
|
Corbin KD, Igudesman D, Smith SR, Zengler K, Krajmalnik-Brown R. Targeting the Gut Microbiota's Role in Host Energy Absorption With Precision Nutrition Interventions for the Prevention and Treatment of Obesity. Nutr Rev 2025:nuaf046. [PMID: 40233201 DOI: 10.1093/nutrit/nuaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
The field of precision nutrition aims to develop dietary approaches based on individual biological factors such as genomics or the gut microbiota. The gut microbiota, which is the highly individualized and complex community of microbes residing in the colon, is a key contributor to human physiology. Although gut microbes play multiple roles in the metabolism of nutrients, their role in modulating the absorption of dietary energy from foods that escape digestion in the small intestine has the potential to variably affect energy balance and, thus, body weight. The fate of this energy, and its subsequent impact on body weight, is well described in rodents and is emerging in humans. This narrative review is focused on recent clinical evidence of the role of the gut microbiota in human energy balance, specifically its impact on energy available to the human host. Despite recent progress, remaining gaps in knowledge present opportunities for developing and implementing strategies to understand causal microbial mechanisms related to energy balance. We propose that implementing rigorous microbiota-focused measurements in the context of innovative clinical trial designs will elucidate integrated diet-host-gut microbiota mechanisms. These mechanisms are primed to be targets for precision nutrition interventions to optimize energy balance to achieve desired weight outcomes. Given the magnitude and impact of the obesity epidemic, implementing these interventions within comprehensive weight management paradigms has the potential to be of public health significance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Daria Igudesman
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, United States
| |
Collapse
|
6
|
Patterson A, Boyle N, John J, Wang M, Mannochio-Russo H, Pyo JJ, Kim MS, Tian S, Koo I, Anitha M, Tian Y, Morgan E, Murray I, Perdew G, Wu G, Dorrestein P, Bisanz J, Redinbo M. Glucuronidation Metabolomic Fingerprinting to Map Host-Microbe Metabolism. RESEARCH SQUARE 2025:rs.3.rs-6321321. [PMID: 40297700 PMCID: PMC12036448 DOI: 10.21203/rs.3.rs-6321321/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Glucuronidation is an important detoxification pathway that operates in balance with gastrointestinal microbial β-glucuronidase (GUS) enzymes that can regenerate active metabolites from their glucuronidated forms. Although significant progress has been made in characterizing GUS enzymes, methods to comprehensively define the glucuronidome - the collection of glucuronidated metabolites - remain limited. In this study we employed pattern-filtering data science approaches alongside untargeted LC-MS/MS metabolomics to map the glucuronidome in urine, serum, and colon/fecal samples from gnotobiotic and conventional mice. Our findings reveal microbiome-driven shifts in the glucuronidome, highlighting how differential GUS activity can influence host metabolite profiles. Reverse metabolomics of known glucuronidated chemicals and glucuronidation pattern filtering searches in public metabolomics datasets exposed the diversity of glucuronidated metabolites in human and mouse ecosystems. In summary, we present a new glucuronidation fingerprint resource that provides broader access to and analysis of the glucuronidome. By systematically capturing glucuronidation patterns, this resource enhances unknown metabolite annotation efforts and provides new insights into the dynamic relationship between the host and bacterial biotransformation activities.
Collapse
|
7
|
Liu S, Liu J, Xiang J, Yan R, Li S, Fan Q, Lu L, Wu J, Xue Y, Fu T, Liu J, Li Z. Restorative Effects of Short-Chain Fatty Acids on Corneal Homeostasis Disrupted by Antibiotic-Induced Gut Dysbiosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:770-796. [PMID: 39732390 DOI: 10.1016/j.ajpath.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 12/30/2024]
Abstract
The gut microbiota plays a crucial regulatory role in various physiological processes, yet its impact on corneal homeostasis remains insufficiently understood. Here, the effects of antibiotic-induced gut dysbiosis (AIGD) and germ-free conditions were investigated on circadian gene expression, barrier integrity, nerve density, and immune cell activity in the corneas of mice. Both AIGD and germ-free conditions significantly disrupted the overall transcriptomic profile and circadian transcriptomic oscillations in the cornea, as indicated by RNA sequencing. These molecular disturbances were accompanied by a reduction in corneal epithelial thickness, nerve density, corneal sensitivity, and compromised barrier function. Notably, supplementation with short-chain fatty acids (SCFAs) significantly restored corneal integrity in AIGD mice. Further single-cell sequencing revealed that SCFA receptors G-protein-coupled receptor 109A (Hcar2), olfactory receptor 78 (Olfr78), and G-protein-coupled receptor 43 (Ffar2) are expressed in corneal epithelial basal cells, embryonically derived macrophages, perivascular cells, and γδ T cells, respectively. In conclusion, this study demonstrated that the gut microbiota plays a critical role in corneal physiology by regulating circadian gene expression and maintaining barrier function. These findings enhance our understanding of the gut-eye axis, highlighting the cornea as a target for microbiota-derived metabolic signals and underlining the potential therapeutic value of SCFAs in treating corneal dysfunction.
Collapse
Affiliation(s)
- Sijing Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiangman Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiayan Xiang
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiaxin Wu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Tafesse Y, Köhler A, Sanchez Sanchez G, Rodrigues PB, Verce M, Vitsos P, Verdebout I, Rezwani M, Papadopoulou M, Everard A, Flamand V, Vermijlen D. Maternal Administration of Probiotics Augments IL17-Committed γδ T Cells in the Newborn Lung. Eur J Immunol 2025; 55:e202451051. [PMID: 40259457 DOI: 10.1002/eji.202451051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
The early life period is increasingly being recognized as a window of opportunity to shape immunity, where microbiota and related probiotics have an important impact. Innate γδ T cells are the first T cells generated in utero, populating epithelial tissues such as the lung and contributing to tissue protection through, for example, IL17 production. Here, we studied the influence of maternal microbiota and probiotic supplementation during pregnancy on innate γδ T cells in the lung and thymus of newborn mice. Detailed time-kinetic experiments showed that at birth, the murine lung T cell population was specifically dominated by IL17-committed γδ T cells expressing an invariant Vγ6Vδ1 TCR. Single-cell RNA-sequencing showed that the biased IL17-commitment of perinatal lung γδT cells is highly conserved between mice and humans. While maternal microbiota depletion with antibiotics tended to decrease the frequency of the lung Vγ6 T cells of the offspring at birth, the maternal administration of Lacticaseibacillus rhamnosus (L.rhm.), but not of Bifidobacterium animalis subsp. lactis (B.lac.), increased significantly their frequency, resulting in the augmentation of the IL17-commitment of the mouse lung T cell compartment. Altogether, our data indicate that the maternal microbiota contributes to the shaping of IL17-committed γδT cells in the lungs of newborns and that maternal administration of specific probiotic strains can enhance this process.
Collapse
Affiliation(s)
- Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Patricia Brito Rodrigues
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels, Belgium
| | - Marko Verce
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels, Belgium
| | - Panagiotis Vitsos
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Isoline Verdebout
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Moosa Rezwani
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Amandine Everard
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
9
|
Ayayee P, Custer G, Clayton JB, Price J, Ramer-Tait A, Larsen T. Assessing gut microbial provisioning of essential amino acids to host in a murine model with reconstituted gut microbiomes. RESEARCH SQUARE 2025:rs.3.rs-6255159. [PMID: 40195995 PMCID: PMC11975013 DOI: 10.21203/rs.3.rs-6255159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gut microbial essential amino acid (EAA) provisioning to mammalian hosts remains a critical yet poorly understood aspect of host-microbe nutritional interactions, with significant implications for human and animal health. To investigate microbial EAA contributions in mice with reconstituted gut microbiomes, we analyzed stable carbon isotopes (13C) of six EAAs across multiple organs. Germ-free (GF) mice fed a high-protein diet (18%) were compared to conventionalized (CVZ) mice fed a low-protein diet (10%) following fecal microbiota transplantation 30 days prior and a 20-day dietary intervention. We found no evidence for microbial EAA contributions to host tissues, with 13C-EAA fingerprinting revealing nearly identical patterns between GF and CVZ organs. Both groups maintained their expected microbiome statuses, with CVZ gut microbiota dominated by Firmicutes and Bacteroidetes phyla. These findings raise important questions about the functional capacities of reconstituted gut microbiomes. Future studies should investigate longer adaptation periods, varied dietary protein levels, and complementary analytical techniques to better understand the context-dependent nature of microbial EAA provisioning in mammalian hosts.
Collapse
Affiliation(s)
- Paul Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Gordon Custer
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Thomas Larsen
- Max Planck Institute of Geoanthropology, Jena, Germany
- Institute for Prehistoric and Protohistoric Archaeology, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Min H, Choi KS, Yun S, Jang S. Live Biotherapeutic Products for Metabolic Diseases: Development Strategies, Challenges, and Future Directions. J Microbiol Biotechnol 2025; 35:e2410054. [PMID: 40081885 PMCID: PMC11925753 DOI: 10.4014/jmb.2410.10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
Metabolic diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, have emerged as major global health challenges. Recent research has revealed that the gut microbiome is closely associated with the development of these conditions. The Food and Drug Administration has recognized certain probiotic strains with therapeutic potential, classifying them as live biotherapeutic products (LBPs). LBPs, which are derived from naturally occurring microorganisms, may present an effective strategy for treating metabolic diseases by restoring gut microbiota balance and regulating metabolic functions. This review explores the development of LBPs specifically for metabolic disease treatments, covering every phase from strain identification, non-clinical and clinical trials, manufacturing and formulation to regulatory approval. Furthermore, it addresses the challenges involved in the commercialization of these therapies. By offering critical insights into the research and development of LBPs for metabolic disease treatment, this review aims to contribute to the progress of these promising therapies.
Collapse
Affiliation(s)
- Heonhae Min
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyu-Sung Choi
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Saebom Yun
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
11
|
Richter KM, Wrage M, Krekeler C, De Oliveira T, Conradi LC, Menck K, Bleckmann A. Model systems to study tumor-microbiome interactions in early-onset colorectal cancer. EMBO Mol Med 2025; 17:395-413. [PMID: 39948421 PMCID: PMC11903813 DOI: 10.1038/s44321-025-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major health problem, with an alarming increase of early-onset CRC (EO-CRC) cases among individuals under 50 years of age. This trend shows the urgent need for understanding the underlying mechanisms leading to EO-CRC development and progression. There is significant evidence that the gut microbiome acts as a key player in CRC by triggering molecular changes in the colon epithelium, leading to tumorigenesis. However, a comprehensive collection and comparison of methods to study such tumor-microbiome interactions in the context of EO-CRC is sparse. This review provides an overview of the available in vivo, ex vivo as well as in vitro approaches to model EO-CRC and assess the effect of gut microbes on tumor development and growth. By comparing the advantages and limitations of each model system, it highlights that, while no single model is perfect, each is suitable for studying specific aspects of microbiome-induced tumorigenesis. Taken together, multifaceted approaches can simulate the human body's complexity, aiding in the development of effective treatment and prevention strategies for EO-CRC.
Collapse
Affiliation(s)
- Katharina M Richter
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Marius Wrage
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Kerstin Menck
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
12
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
13
|
Wang QW, Zheng H, Yang Y, Chang X, Du Z, Hang ZN, Li ZS, Liao Z. Distinct microbial signatures and their predictive value in recurrent acute pancreatitis: insights from 5-region 16S rRNA gene sequencing. Front Immunol 2025; 16:1558983. [PMID: 40093002 PMCID: PMC11906328 DOI: 10.3389/fimmu.2025.1558983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Background Recurrent acute pancreatitis (RAP) poses significant clinical challenges, with 32.3% developing to chronic pancreatitis within 5 years. The underlying microbial factors contributing to RAP remain poorly understood. This study aims to identify blood microbial signatures associated with RAP and explore the potential microbial predictors for RAP. Methods In this prospective cohort, 90 acute pancreatitis patients are classified into non-recurrent acute pancreatitis (NRAP, n=68) and RAP (n=22) groups based on the number of pancreatitis episodes. Microbial composition of blood samples is analyzed using 5-region (5R) 16S rRNA gene sequencing. Key microbial taxa and functional predictions are made. A random forest model is used to assess the predictive value of microbial features for RAP. The impact of Staphylococcus hominis (S. hominis) on RAP is further evaluated in an experimental mouse model. Results Linear discriminant analysis effect size (LEfSe) analysis highlights significant microbial differences, with Paracoccus aminovorans, Corynebacterium glucuronolyticum and S. hominis being prominent in RAP. Functional predictions indicate enrichment of metabolic pathways in the RAP group. Random forest analysis identifies key microbial taxa with an AUC value of 0.759 for predicting RAP. Experimental validation shows that S. hominis exacerbates pancreatic inflammation in mice. Conclusions This study identifies distinct clinical and microbial features associated with RAP, emphasizing the role of specific bacterial taxa in pancreatitis recurrence. The findings suggest that microbial profiling could enhance the diagnosis and management of RAP, paving the way for personalized therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Shen Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Jameson KG, Kazmi SA, Ohara TE, Son C, Yu KB, Mazdeyasnan D, Leshan E, Vuong HE, Paramo J, Lopez-Romero A, Yang L, Schweizer FE, Hsiao EY. Select microbial metabolites in the small intestinal lumen regulate vagal activity via receptor-mediated signaling. iScience 2025; 28:111699. [PMID: 39877906 PMCID: PMC11772968 DOI: 10.1016/j.isci.2024.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice. Microbiome-dependent short-chain fatty acids, bile acids, and 3-indoxyl sulfate indirectly stimulate vagal activity in a receptor-dependent manner. Serial perfusion of each metabolite class activates both shared and distinct neuronal subsets with varied response kinetics. Metabolite-induced and receptor-dependent increases in vagal activity correspond with the activation of brainstem neurons. Results from this study reveal that the gut microbiome regulates select metabolites in the intestinal lumen that differentially activate vagal afferent neurons, thereby enabling the microbial modulation of chemosensory signals for gut-brain communication.
Collapse
Affiliation(s)
- Kelly G. Jameson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sabeen A. Kazmi
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Takahiro E. Ohara
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Celine Son
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristie B. Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donya Mazdeyasnan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Leshan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Long Yang
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felix E. Schweizer
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Massara M, Ballabio M, Dolfi B, Morad G, Wischnewski V, Lamprou E, Lourenco J, Claudinot S, Gallart-Ayala H, Méndez RS, Kauzlaric A, Fournier N, Damania AV, Wong MC, Ivanisevic J, Ajami NJ, Wargo JA, Joyce JA. The bacterial microbiome modulates the initiation of brain metastasis by impacting the gut-to-brain axis. iScience 2025; 28:111874. [PMID: 39995854 PMCID: PMC11848439 DOI: 10.1016/j.isci.2025.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Brain metastases (BrMs) are the most common brain tumors in patients and are associated with poor prognosis. Investigating the systemic and environmental factors regulating BrM biology represents an important strategy to develop effective treatments. Toward this goal, we explored the contribution of the gut microbiome to BrM development by using in vivo breast-BrM models under germ-free conditions or antibiotic treatment. This revealed a detrimental role of gut microbiota in fostering BrM initiation. We thus evaluated the impact of antibiotics and BrM outgrowth on the gut-brain axis. We found the bacterial genus Alistipes was differentially present under antibiotic treatment and BrM progression. In parallel, we quantified circulating metabolites, revealing kynurenic acid as a differentially abundant molecule that impaired the interaction between cancer cells and the brain vasculature in ex vivo functional assays. Together, these results illuminate the potential role of gut microbiota in modulating breast-BrM via the gut-to-brain axis.
Collapse
Affiliation(s)
- Matteo Massara
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Michelle Ballabio
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Bastien Dolfi
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Stéphanie Claudinot
- Germ-free facility, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1066 Epalinges, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rui Santalla Méndez
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Ashish V. Damania
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
| | - Matthew C. Wong
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nadim J. Ajami
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots™, Houston, TX 77054, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Johanna A. Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Liu X, Yang K, Jia Y, Yeertai Y, Wu C, Wang X, Jia Q, Gu Z, Cong J, Ling J. Chaihushugan powder regulates the gut microbiota to alleviate mitochondrial oxidative stress in the gastric tissues of rats with functional dyspepsia. Front Immunol 2025; 16:1549554. [PMID: 40040709 PMCID: PMC11876139 DOI: 10.3389/fimmu.2025.1549554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder associated with oxidative stress (OS) and dysbiosis. Chaihushugan powder (CHSGP) demonstrates efficacy in treating FD; however, the underlying therapeutic mechanism is not yet elucidated. This study aims to investigate the effects of CHSGP on OS and gut microbiota (GM) in FD rats, with a particular emphasis on the role of GM as a potential target for the antioxidant properties of CHSGP. Methods The FD rat model was established with a modified tail-clamp stimulation and the administration of the CHSGP decoction at a dosage of 9.6 g/kg via gavage for a duration of 4 weeks. The GM was depleted by the administration of a cocktail of metronidazole (200 mg/kg), ampicillin (200 mg/kg), neomycin sulfate (200 mg/kg), and vancomycin (100 mg/kg). Fecal microbiota transplantation (FMT) was performed with CHSGP-treated fecal supernatant at a dosage of 10 mL/kg. The gastrointestinal motility was measured using the rates of gastric emptying and small intestine propulsion. Hematoxylin and eosin staining was employed to elucidate the pathological changes, while the transmission electron microscope was used to examine the microstructures of the interstitial cells of Cajal (ICC). Chemiluminescence, colorimetric assay, immunofluorescence co-staining, and western blot assay were employed to identify the OS-related markers (ROS, SOD, NOX4, PRDX1, and TRX2). Sequencing of fecal microbiota was performed utilizing 16S rDNA. Results The CHSGP decoction promoted gastrointestinal motility, protected the microstructure of ICC, and reduced OS in FD rats. The GM composition was also regulated by CHSGP. However, these effects disappeared after microbiota depletion. Fortunately, the FMT therapy reinstated them. Conclusion Chaihushugan powder decoction might regulate the GM to alleviate mitochondrial OS in the gastric tissues of FD rats.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keming Yang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yuebo Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yeliya Yeertai
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenheng Wu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangxiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijian Gu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Cong
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Li B, Sha Z, Mou L, Zhang F, Jia L, Zhu Y, Guo Y, Deng G, Wu H, Wei H, Wu Y, Ye L, Liu C, Li J, Zhang Y. Commensal bacteria education history calibrates the naivety and activation threshold of adaptive antiviral immune system. Front Immunol 2025; 16:1519023. [PMID: 39991160 PMCID: PMC11842381 DOI: 10.3389/fimmu.2025.1519023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Exhaustion of the immune system's ability to adapt to novelty suggests that the changes it undergoes might be a consequence of an evolutionary unpredictable antigenic exposure over a lifetime. Thus, we raise the question of whether a naive immune system can manage new antigens better than an educated immune system. Here, by employing the naive immune system of germ-free (GF) mice without a history of microbial exposure, we compared their adaptive immune responses with those of the conventional (Conv) mice upon new viral infection. Interestingly, the naive GF immune system showed robust T-cell responses, with more potent memory T cells established for long-term protection, even in the condition of primary lower T-cell levels for naive GF mice. Furthermore, we found that the ABX-treated Conv mice showed impaired T-cell responses, compared with the untreated Conv ones. With the microbiota eliminated, the ABX mice still have a history of microbial exposure and education for their immune system. In summary, commensal bacteria education history calibrates the naivety and the activation threshold of the adaptive antiviral immune system.
Collapse
Affiliation(s)
- Baohua Li
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Li Mou
- National Health Commission (NHC) Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Feng Zhang
- Department of Hepatobiliary Surgery, Tongren Municipal People’s Hospital, Tongren, Guizhou, China
| | - Lifeng Jia
- Medical Research Center, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Yan Zhu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Guo
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hong Wei
- Department of Animal Science and Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Changjiang Liu
- National Health Commission (NHC) Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Jian Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yanyan Zhang
- Medical Research Center, Chongqing General Hospital, Chongqing University, Chongqing, China
- College of Life Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, China
- School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Huang C, He Y, Chai P, Liu Z, Su S, Zhang Y, Luo Y, Fu S. Orlistat ameliorates lipid dysmetabolism in high-fat diet-induced mice via gut microbiota modulation. Front Microbiol 2025; 16:1480500. [PMID: 39980690 PMCID: PMC11839628 DOI: 10.3389/fmicb.2025.1480500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Orlistat reduces obesity by inhibiting gastrointestinal lipases, thereby blocking the absorption and accumulation of triglycerides in the intestine. It has been shown to improve lipid metabolism and alter intestinal microbial communities in animals and humans. However, the impact of Orlistat-induced changes in gut microbiota on obesity requires further investigation. In this study, we found that Orlistat significantly improved metabolic disorders, inhibited fat accumulation, and reshaped the structure of intestinal microbiota. Specifically, it reduced α diversity and increased the relative abundance of Verrucomicrobia and Akkermansia. Notably, antibiotic-induced gut microbiota depletion significantly weakened Orlistat's effect on improving metabolic disorders. Furthermore, microbiota transplanted from Orlistat-treated mice effectively alleviated lipid metabolic disorders caused by a high-fat diet. We also observed that Orlistat increased food intake in mice and inhibited the synthesis of appetite-regulating hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon (Gcg). However, antibiotic-depleted microbiota mitigated this inhibitory effect. Interestingly, although Orlistat altered the gut microbiota of mice, transplanting these microbiota did not inhibit the synthesis of appetite-regulating hormones. In summary, our results suggest that Orlistat can reshape the gut microbiota, and the altered gut microbiota works synergistically with Orlistat to improve metabolic disorders. This improvement is related to the increased abundance of Verrucomicrobia and Akkermansia.
Collapse
Affiliation(s)
- Chengyan Huang
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Yuanhui He
- Department of Obstetrics and Gynecology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ping Chai
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Zongxin Liu
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Sirui Su
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Yanhui Zhang
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Yuelan Luo
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Shuiping Fu
- Department of Nursing, Fenyang College, Shanxi Medical University, Fengyang, China
| |
Collapse
|
19
|
Murayama R, Liu G, Zhao MM, Xu D, Zhu TT, Cai Y, Yue Y, Nakamura H, Hashimoto K. Microbiome depletion by broad-spectrum antibiotics does not influence demyelination and remyelination in cuprizone-treated mice. Pharmacol Biochem Behav 2025; 247:173946. [PMID: 39672388 DOI: 10.1016/j.pbb.2024.173946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination. This study aimed to evaluate the impact of microbiome depletion, induced by an antibiotic cocktail (ABX), on demyelination in CPZ-treated mice and the subsequent remyelination following CPZ withdrawal. Our findings indicate that a chronic 4-week oral ABX regimen, administered both during and after a 6-week CPZ exposure, does not affect demyelination or remyelination in the brains of CPZ-treated mice. Specifically, ABX treatment for 2 weeks before and 2 weeks after CPZ exposure, in the final 4 weeks before sacrifice, and for 4 weeks post-CPZ withdrawal, did not significantly alter these processes compared to control mice receiving water instead of ABX. These results indicate that despite effective microbiome depletion, a 4-week oral ABX regimen does not influence demyelination or remyelination in the CPZ model. Thus, it is unlikely that gut microbiota depletion by ABX plays a significant role in these processes. However, further research is needed to fully understand the role of the host microbiome on CPZ-induced demyelination.
Collapse
Affiliation(s)
- Rumi Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Cai
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
20
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Nkosi D, Glickman J, Delgado-Gonzalez A, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat Commun 2025; 16:1230. [PMID: 39890778 PMCID: PMC11785740 DOI: 10.1038/s41467-025-56237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Biological and Medical Informatics Program, UCSF, San Francisco, CA, USA
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dingani Nkosi
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | - Jonathan Glickman
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | | | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Hou J, Lv Z, Wang Y, Chen D. The gut microbiota regulates diabetic retinopathy in adult rats. Front Microbiol 2025; 16:1479792. [PMID: 39949626 PMCID: PMC11822567 DOI: 10.3389/fmicb.2025.1479792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Diabetic retinopathy (DR) is the most common complication of diabetes. Neuronal apoptosis, activated microglia, and microvascular changes are early features of DR. The gut microbiota is critical for the maturation and activation of microglia in the brain, and DR patients exhibit gut dysbiosis. However, the effect of the gut microbiota on retinal microglia under normal or diabetic conditions is still unclear. Methods Type 2 diabetes (T2D) was established in male adult Brown Norway (BN) rats, and they were treated with gavage of broad-spectrum antibiotic (ABX) suspension. Retinal fundus fluorescein angiography was performed to observe the dynamic growth process and leakage of blood vessels. Retro-orbital injection of FITC-Dextran was performed to observe the changes in blood-retinal barriers. After treatment with ABX and diabetes lasting for more than 6 months, 16S RNA sequencing of stool samples was performed to determine changes in the gut microbiome and mass spectrometry was used to analyze metabolome changes. IBA1, IB4, and Brn3 staining were performed on adult rats' retinal wholemount or sections to observe the changes in microglia, blood vessels and the number of ganglion cells. Results Long-term (6 months) T2D caused gut dysbiosis with increased average taxa numbers. We showed that broad-spectrum antibiotics (ABXs) gavage can reduce the average number of gut microbiota taxa and retinal microglia in adult male BN rats with or without T2D. Interestingly, adult male BN rats with T2D for more than 6 months showed a loss of retinal ganglion cells (RGCs) without significant changes in retinal microglia or retinal vascular vessels. However, ABX gavage reduced retinal microglia and alleviated RGC damage in these T2D rats. Conclusion Our data suggests that ABX gavage-induced gut dysbiosis can reduce retinal microglia in adult rats and alleviate RGC loss in long-term T2D rats. Targeting the gut microbiota may be a future therapeutic strategy for DR management.
Collapse
Affiliation(s)
- Jueyu Hou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongping Lv
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Siguenza N, Bailey S, Sadegi M, Gootin H, Tiu M, Price JD, Ramer-Tait A, Zarrinpar A. Gut Competition Dynamics of Live Bacterial Therapeutics Are Shaped by Microbiome Complexity, Diet, and Therapeutic Transgenes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634159. [PMID: 39896492 PMCID: PMC11785071 DOI: 10.1101/2025.01.21.634159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Competitive exclusion is conventionally believed to prevent the establishment of a secondary strain of the same bacterial species in the gut microbiome, raising concerns for the deployment of live bacterial therapeutics (LBTs), especially if the bacterial chassis is a strain native to the gut. In this study, we investigated factors influencing competition dynamics in the murine gut using isogenic native Escherichia coli strains. We found that competition outcomes are context-dependent, modulated by microbiome complexity, LBT transgene expression, intestinal inflammation, and host diet. Furthermore, we demonstrated that native LBTs can establish long-term engraftment in the gut alongside a parental strain, with transgene-associated fitness effects influencing competition. We identified various interventions, including strategic dosing and dietary modulation, that significantly enhanced LBT colonization levels by 2 to 3 orders of magnitude. These insights provide a framework for optimizing LBT engraftment and efficacy, supporting their potential translation for human therapeutic applications.
Collapse
Affiliation(s)
- Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sharyl Bailey
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Sadegi
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Hanna Gootin
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Maria Tiu
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA
- The Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA, USA
- Institute of Diabetes and Metabolic Health, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Richards-Corke K, Jiang Y, Yeliseyev V, Zhang Y, Franzosa EA, Wang ZA, Yapa Abeywardana M, Cole PA, Huttenhower C, Bry L, Balskus EP. A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury. ACS Chem Biol 2025; 20:48-55. [PMID: 39778875 PMCID: PMC11744669 DOI: 10.1021/acschembio.3c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels. Here, we demonstrate use of benurestat, a clinical candidate used against ureolytic organisms in encrusted uropathy, to inhibit urease activity in gut bacteria. Benurestat inhibits ammonia production by urease-encoding gut bacteria and is effective against individual microbes and complex gut microbiota. When administered to conventional mice with liver injury induced by thioacetamide exposure, benurestat reduced gut and serum ammonia levels and rescued 100% of mice from lethal acute liver injury. Overall, this study provides an important proof-of-concept for modulating host ammonia levels and microbiota-driven risks for hyperammonemia with gut microbiota-targeted small-molecule inhibitors.
Collapse
Affiliation(s)
- Khyle
C. Richards-Corke
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Yindi Jiang
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Vladimir Yeliseyev
- Brigham
and Women’s Hospital, Massachusetts Host-Microbiome Center, Department of Pathology, Boston, Massachusetts 02115, United States
| | - Yancong Zhang
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Biostatistics, Harvard T. H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Harvard
Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Eric A. Franzosa
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Biostatistics, Harvard T. H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Harvard
Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zhipeng A. Wang
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Desai
Sethi Urology Institute & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Maheeshi Yapa Abeywardana
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Phillip A. Cole
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Curtis Huttenhower
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Biostatistics, Harvard T. H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Harvard
Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Lynn Bry
- Brigham
and Women’s Hospital, Massachusetts Host-Microbiome Center, Department of Pathology, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Department of Pathology, Boston, Massachusetts 02115, United States
| | - Emily P. Balskus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Amelung CD, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Gerecht S, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632473. [PMID: 39868312 PMCID: PMC11760420 DOI: 10.1101/2025.01.13.632473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic Bacteroides fragilis (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation and increased levels of neutrophils in the blood, spleen, and bone marrow. At the PCL implant site, we found significant changes in the transcriptome of sorted fibroblasts but did not observe gross ETBF- induced differences in the fibrosis levels after 6 weeks. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant. Significance Statement The foreign body response to implants leads to chronic inflammation and fibrosis that can be highly variable in the general patient population. Here, we demonstrate that gut dysbiosis via enteric infection promoted systemic inflammation and increased immune cell recruitment to an anatomically distant implant site. These results implicate the gut microbiota as a potential source of variability in the clinical biomaterial response and illustrate that the local tissue environment can be influenced by host factors that modulate systemic interactions.
Collapse
|
25
|
Weagley J, Makimaa H, Cárdenas LAC, Romani A, Sullender M, Aggarwal S, Hogarty M, Rodgers R, Kennedy E, Foster L, Schriefer LA, Baldridge MT. Dynamics of Bacterial and Viral Transmission in Experimental Microbiota Transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633206. [PMID: 39868290 PMCID: PMC11761045 DOI: 10.1101/2025.01.15.633206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Mouse models are vital tools for discerning the relative contributions of host and microbial genetics to disease, often requiring the transplantation of microbiota between different mouse strains. Transfer methods include antibiotic treatment of recipients and colonization using either co-housing with donors or the transplantation of fecal or cecal donor material. However, the efficiency and dynamics of these methods in reconstituting recipients with donor microbes is not well understood. We thus directly compared co-housing, fecal transplantation, and cecal transplantation methods. Donor mice from Taconic Biosciences, possessing distinct microbial communities, served as the microbial source for recipient mice from Jackson Laboratories, which were treated with antibiotics to disrupt their native microbiota. We monitored microbial populations longitudinally over the course of antibiotics treatment and reconstitution using 16S rRNA gene sequencing, quantitative PCR, and shotgun sequencing of viral-like particles. As expected, antibiotic treatment rapidly depleted microbial biomass and diversity, with slow and incomplete natural recovery of the microbiota in non-transplanted control mice. While all transfer methods reconstituted recipient mice with donor microbiota, co-housing achieved this more rapidly for both bacterial and viral communities. This study provides valuable insights into microbial transfer methods, enhancing reproducibility and informing best practices for microbiota transplantation in mouse models.
Collapse
Affiliation(s)
- James Weagley
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis Alberto Chica Cárdenas
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Romani
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meagan Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Hogarty
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Taitz JJ, Tan J, Ni D, Potier-Villette C, Grau G, Nanan R, Macia L. Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways. Front Immunol 2025; 15:1493991. [PMID: 39850904 PMCID: PMC11754057 DOI: 10.3389/fimmu.2024.1493991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics. Methods Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control). Caecal microbiota composition was assessed via 16S rRNA sequencing and caecal metabolites were quantified with NMR spectroscopy. Immune profiles of spleen and mesenteric lymph nodes (MLNs) were assessed by flow cytometry, and splenocytes assessed for ex vivo cytokine production. A generalised additive model approach was used to examine the relationship between global antibiotic consumption and IBD incidence. Results Antibiotics significantly altered gut microbiota composition, reducing alpha-diversity. Acetate and butyrate were significantly reduced in antibiotic groups, while propionate and succinate increased in Vancomycin and PmB-treated mice, respectively. The MLNs and spleen showed changes only to DC numbers. Splenocytes from antibiotic-treated mice stimulated ex vivo exhibited increased production of TNF. Epidemiological analysis revealed a positive correlation between global antibiotic consumption and IBD incidence. Discussion Our findings demonstrate that antibiotic-mediated dysbiosis results in significantly altered short-chain fatty acid levels but immune homeostasis in spleen and MLNs at steady state is mostly preserved. Non-specific activation of splenocytes ex vivo, however, revealed mice with perturbed microbiota had significantly elevated production of TNF. Thus, this highlights antibiotic-mediated disruption of the gut microbiota may program the host towards dysregulated immune responses, predisposing to the development of TNF-associated autoimmune or chronic inflammatory disease.
Collapse
Affiliation(s)
- Jemma J. Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Winters AD, Francescutti DM, Kracht DJ, Chaudhari DS, Zagorac B, Angoa-Perez M. The Gut Microbiome Regulates the Psychomotor Effects and Context-Dependent Rewarding Responses to Cocaine in Germ-Free and Antibiotic-Treated Animal Models. Microorganisms 2025; 13:77. [PMID: 39858845 PMCID: PMC11767876 DOI: 10.3390/microorganisms13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation (p = 0.013), which was restored after conventionalization. GF mice also showed reduced cocaine-conditioned place preference (CPP) (p = 0.002), which normalized after conventionalization. Dopaminergic function, critical for psychomotor responses and reward, was microbiome-dependent, with increased dopamine levels (p = 0.009) and normalized turnover ratios after conventionalization. In the ABX model, microbiome depletion reduced both cocaine-induced locomotion and CPP responses (p ≤ 0.009), further supporting the role of gut microbes in modulating psychomotor and reward behaviors. ABX-treated mice also showed significant declines in microbial diversity, shifts in bacterial structure, and dysregulation in metabolic, immune, and neurotransmitter pathways (p ≤ 0.0001), including alterations in short-chain fatty acids and gamma-aminobutyric acid metabolism. These findings highlight the gut microbiome's critical role in regulating cocaine's psychomotor and rewarding effects, offering insights into potential therapeutic strategies for cocaine use disorder.
Collapse
Affiliation(s)
- Andrew D. Winters
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Dina M. Francescutti
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - David J. Kracht
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Diptaraj S. Chaudhari
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Branislava Zagorac
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Mariana Angoa-Perez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Kelly C, Sartor RB, Rawls JF. Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies. Am J Physiol Gastrointest Liver Physiol 2025; 328:G17-G31. [PMID: 39499254 PMCID: PMC11901386 DOI: 10.1152/ajpgi.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
Collapse
Affiliation(s)
- Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
29
|
Lusk S, Memos NK, Rauschmayer A, Ray RS. The microbiome is dispensable for normal respiratory function and chemoreflexes in mice. Front Physiol 2024; 15:1481394. [PMID: 39712189 PMCID: PMC11659286 DOI: 10.3389/fphys.2024.1481394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Increasing evidence indicates an association between microbiome composition and respiratory homeostasis and disease, particularly disordered breathing, such as obstructive sleep apnea. Previous work showing respiratory disruption is limited by the methodology employed to disrupt, eliminate, or remove the microbiome by antibiotic depletion. Our work utilized germ-free mice born without a microbiome and described respiratory alterations. We used whole-body flow through barometric plethysmography to assay conscious and unrestrained C57BL/6J germ-free (GF, n = 24) and specific-pathogen-free (SPF, n = 28) adult mice (with an intact microbiome) in normoxic (21% O2,79% N2) conditions and during challenges in hypercapnic (5% CO2, 21% O2, 74% N2) and hypoxic (10% O2, 90% N2) environments. Following initial plethysmography analysis, we performed fecal transplants to test the ability of gut microbiome establishment to rescue any observed phenotypes. Data were comprehensively analyzed using our newly published respiratory analysis software, Breathe Easy, to identify alterations in respiratory parameters, including ventilatory frequency, tidal volume, ventilation, apnea frequency, and sigh frequency. We also considered possible metabolic changes by analyzing oxygen consumption, carbon dioxide production, and ventilatory equivalents of oxygen. We also assayed GF and SPF neonates in an autoresuscitation assay to understand the effects of the microbiome on cardiorespiratory stressors in early development. We found several differences in baseline and recovery cardiorespiratory parameters in the neonates and differences in body weight at both ages studied. However, there was no difference in the overall survival of the neonates, and in contrast to prior studies utilizing gut microbial depletion, we found no consequential respiratory alterations in GF versus SPF adult mice at baseline or following fecal transplant in any groups. Interestingly, we did see alterations in oxygen consumption in the GF adult mice, which suggests an altered metabolic demand. Results from this study suggest that microbiome alteration in mice may not play as large a role in respiratory outcomes when a less severe methodology to eliminate the microbiome is utilized.
Collapse
Affiliation(s)
- Savannah Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Nicoletta K. Memos
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrea Rauschmayer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Russell S. Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, McNair Medical Institute, Houston, TX, United States
| |
Collapse
|
30
|
Chen T, Wang N, Hao Y, Fu L. Fecal microbiota transplantation from postmenopausal osteoporosis human donors accelerated bone mass loss in mice. Front Cell Infect Microbiol 2024; 14:1488017. [PMID: 39703374 PMCID: PMC11655470 DOI: 10.3389/fcimb.2024.1488017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Objectives To investigate the effect of gut microbiota from postmenopausal osteoporosis patients on bone mass in mice. Methods Fecal samples were collected from postmenopausal women with normal bone mass (Con, n=5) and postmenopausal women with osteoporosis (Op, n=5). Microbial composition was identified by shallow shotgun sequencing. Then fecal samples were transplanted into pseudo-sterile mice previously treated with antibiotics for 4 weeks. These mice were categorized into two groups: the Vehicle group (n=7) received fecal samples from individuals with normal bone mass, and the FMT group (n=7) received fecal samples from individuals with osteoporosis. After 8 weeks, bone mass, intestinal microbial composition, intestinal permeability and inflammation were assessed, followed by a correlation analysis. Results The bone mass was significantly reduced in the FMT group. Microbiota sequencing showed that Shannon index (p < 0.05) and Simpson index (p < 0.05) were significantly increased in Op groups, and β diversity showed significant differences. the recipient mice were similar. linear discriminant analysis effect size (LEfSe) analysis of mice showed that Halobiforma, Enterorhabdus, Alistipes, and Butyricimonas were significantly enriched in the FMT group. Lachnospiraceae and Oscillibacter were significantly enriched in the Vehicle group. H&E staining of intestinal tissues showed obvious intestinal mucosal injury in mice. Intestinal immunohistochemistry showed that the expression of Claudin and ZO-1 in the intestinal tissue of the FMT group mice was decreased. The FITC-Dextran (FD-4) absorption rate and serum soluble CD14 (sCD14) content were increased in FMT mice. Correlation analysis showed that these dominant genera were significantly associated with bone metabolism and intestinal permeability, and were associated with the enrichment of specific enzymes. Serum and bone tissue inflammatory cytokines detection showed that the expression of TNF-α and IL-17A in the FMT group were significantly increased. Conclusion Overall, our findings suggested gut microbiota from postmenopausal osteoporosis patients accelerate bone mass loss in mice. Aberrant gut microbiota might play a causal role in the process of bone mass loss mediated by inflammation after the destruction of the intestinal barrier.
Collapse
Affiliation(s)
- Tinglong Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| |
Collapse
|
31
|
Voziki A, Deda O, Kachrimanidou M. The Efficacy of Fecal Microbiota Transplantation in Mouse Models Infected with Clostridioides difficile from the Perspective of Metabolic Profiling: A Systematic Review. Metabolites 2024; 14:677. [PMID: 39728458 DOI: 10.3390/metabo14120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives: This systematic review evaluates the effectiveness of fecal microbiota transplantation (FMT) in treating Clostridioides difficile infection (CDI) in mouse models using a metabolomics-based approach. Methods: A comprehensive search was conducted in three databases (PubMed, Scopus, Google Scholar) from 10 April 2024 to 17 June 2024. Out of the 460 research studies reviewed and subjected to exclusion criteria, only 5 studies met all the inclusion criteria and were analyzed. Results: These studies consistently showed that FMT effectively restored gut microbiota and altered metabolic profiles, particularly increasing short-chain fatty acids (SCFAs) and secondary bile acids, which inhibited C. difficile growth. FMT proved superior to antibiotic and probiotic treatments in re-establishing a healthy gut microbiome, as evidenced by significant changes in the amino acid and carbohydrate levels. Despite its promise, variability in the outcomes-due to factors such as immune status, treatment protocols, and donor microbiome differences-underscores the need for standardization. Rather than pursuing immediate standardization, the documentation of factors such as donor and recipient microbiome profiles, preparation methods, and administration details could help identify optimal configurations for specific contexts and patient needs. In all the studies, FMT was successful in restoring the metabolic profile in mice. Conclusions: These findings align with the clinical data from CDI patients, suggesting that FMT holds potential as a therapeutic strategy for gut health restoration and CDI management. Further studies could pave the way for adoption in clinical practice.
Collapse
Affiliation(s)
- Anna Voziki
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Graef F, Wei Y, Garbe A, Seemann R, Zenzes M, Tsitsilonis S, Duda GN, Zaslansky P. Increased cancellous bone mass accompanies decreased cortical bone mineral density and higher axial deformation in femurs of leptin-deficient obese mice. J Mech Behav Biomed Mater 2024; 160:106745. [PMID: 39317095 DOI: 10.1016/j.jmbbm.2024.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Leptin is a pleiotropic hormone that regulates food intake and energy homeostasis with enigmatic effects on bone development. It is unclear if leptin promotes or inhibits bone growth. The aim of this study was to characterize the micro-architecture and mechanical competence of femur bones of leptin-deficient mice. MATERIALS AND METHODS Right femur bones of 15-week old C57BL/6 (n = 9) and leptin-deficient (ob/ob, n = 9) mice were analyzed. Whole bones were scanned using micro-CT and morphometric parameters of the cortex and trabeculae were assessed. Elastic moduli were determined from microindentations in midshaft cross-sections. Mineral densities were determined using quantitative backscatter scanning electron microscopy. 3D models of the distal femur metaphysis, cleared from trabecular bone, were meshed and used for finite element simulations of axial loading to identify straining differences between ob/ob and C57BL/6 controls. RESULTS Compared with C57BL/6 controls, ob/ob mice had significantly shorter bones. ob/ob mice showed significantly increased cancellous bone volume and trabecular thickness. qBEI quantified a ∼7% lower mineral density in ob/ob mice in the distal femur metaphysis. Indentation demonstrated a significantly reduced Young's modulus of 12.14 [9.67, 16.56 IQR] GPa for ob/ob mice compared to 23.12 [20.70, 26.57 IQR] GPa in C57BL/6 mice. FEA revealed greater deformation of cortical bone in ob/ob as compared to C57BL/6 mice. CONCLUSION Leptin deficient ob/ob mice have a softer cortical bone in the distal femur metaphysis but an excessive amount of cancellous bone, possibly as a response to increased deformation of the bones during axial loading. Both FEA and direct X-ray and electron microscopy imaging suggest that the morphology and micro-architecture of ob/ob mice have inferior biomechanical properties suggestive of a reduced mechanical competence.
Collapse
Affiliation(s)
- F Graef
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - Y Wei
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - A Garbe
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - R Seemann
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - M Zenzes
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany
| | - S Tsitsilonis
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - P Zaslansky
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany.
| |
Collapse
|
33
|
Luo M, Han Y, Chen Y, Du H, Chen B, Gao Z, Wang Q, Cao Y, Xiao H. Unveiling the role of gut microbiota in curcumin metabolism using antibiotic-treated mice. Food Chem 2024; 460:140706. [PMID: 39096800 DOI: 10.1016/j.foodchem.2024.140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Curcumin might exert its therapeutic effects by interacting with gut microbiota. However, the role of gut microbiota in curcumin metabolism in vivo remains poorly understood. To address this, we used antibiotics to deplete gut microbiota and compared curcumin metabolism in control and antibiotic-treated mice. Using Q-TOF and triple quadrupole mass spectrometry, we identified and quantified curcumin metabolites, revealing distinct metabolic pathways in these two mice groups. The novel metabolites, hexahydro-dimethyl-curcumin and hexahydro-didemethyl-curcumin were exclusively derived from gut microbiota. Additionally, gut bacteria deconjugated curcumin metabolites back into their bioactive forms. Moreover, control mice exhibited significantly lower curcumin degradation, suggesting a protective role of gut microbiota against degradation. In conclusion, our results indicated that gut microbiota might enhance the effectiveness of curcumin by deconjugation, production of active metabolites, and protection against degradation in the large intestine. This study enhances our understanding of the interactions between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Bin Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
34
|
Xie Q, Sun J, Sun M, Wang Q, Wang M. Perturbed microbial ecology in neuromyelitis optica spectrum disorder: Evidence from the gut microbiome and fecal metabolome. Mult Scler Relat Disord 2024; 92:105936. [PMID: 39418776 DOI: 10.1016/j.msard.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating immune-mediated ailment, which is influenced by genetic, epigenetic, and environmental elements. The escalating incidence of NMOSD in recent years implies alterations in environmental risk factors. Recent research has established a correlation between gut microbiomes and the development of NMOSD. METHODS Metagenomic shotgun sequencing and gas chromatography-mass spectrometry (GC-MS) were employed to assess alterations of the structure and function in the fecal microbiome, as well as levels of short-chain fatty acids (SCFAs) in fecal and blood samples, among individuals with neuromyelitis optica spectrum disorder (NMOSD) during the acute phase (n = 25), the remission phase (n = 11), and a group of healthy controls (HCs) (n = 24). We further explored the correlation between gut microbiota and the pathogenesis of NMOSD through fecal microbiota transplantation (FMT). The gut microbiome from human donors diagnosed with NMOSD or HCs was transplanted into germ-free mice, followed by an analysis of the alterations in the structure and functionality of the transplanted mice's gut microbiome. Additionally, the impact of microbiome transfer on the immunity and spinal cord of germ-free mice was assessed through various techniques, including ELISA, flow cytometry, western blot, histopathology, and transcriptome sequencing. RESULTS (1) At the taxonomic levels of genus and species, there were significant differences in the α-diversity of the microbiome between HCs and NMOSD patients in the acute phase, with NMOSD patients having higher species diversity. (2) In the acute phase, the gut microbiota of NMOSD patients was characterized by Ruminococcaceae_unclassified, Campylobacter, Parabacteroides, Lactobacillus, Akkermansia, Streptococcus oralis, Clostridium leptum, Clostridium asparagiforme, Firmicutes bacterium CAG 238, and Lactobacillus fermentum. (3) The relative abundances of Coprobacter, Turicimonas, Gemmiger, Enterobacter, Roseburia sp.CAG 471, Veillonella tobetsuensis, Proteobacteria bacterium CAG 139, Ruminococcus bicirculans, Lactococcus lactis, Flavonifractor plautii, and Streptococcus cristatus were notably lower in patients experiencing remission compared to NMOSD patients in the acute phase, On the other hand, the relative abundances of Flavonifractor (P = 0.049) and Clostridium aldenense (P = 0.049) were significantly higher. Following medication, the gut microbiome distribution in NMOSD patients during remission closely resembled that of healthy controls (HCs). (4) Compared with HCs, acetate levels in the feces of patients with NMOSD in the acute phase were significantly lower. (5) In addition, we transplanted feces from NMOSD patients into germ-free mice and revealed a significant increase in the levels of IL-6, IL-17A, and IL-23 in the blood of mice belonging to the NMOSD fecal transplantation (NFMT) group. Additionally, the IL-10 level exhibited a significant reduction. Moreover, the proportion of Th17 cells displayed a significant increase, while the proportion of Treg cells exhibited a significant decrease in the spleens of NFMT mice. CONCLUSION Patients in the acute phase of neuromyelitis optica spectrum disorder (NMOSD) exhibited imbalances in their gut microbiota and a deficiency in short-chain fatty acids (SCFAs). Following drug treatment, the composition of intestinal microbes in NMOSD patients during the remission phase closely resembled that of the healthy control population. The FMT experiment provided evidence of the significant association between intestinal flora and the pathogenesis of NMOSD. Consequently, investigating gut microbiota and identifying novel microbial markers hold promise for the diagnosis and treatment of NMOSD patients.
Collapse
Affiliation(s)
- QinFang Xie
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - MengJiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| | - ManXia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
35
|
Zhang Y, Wang H, Sang Y, Liu M, Wang Q, Yang H, Li X. Gut microbiota in health and disease: advances and future prospects. MedComm (Beijing) 2024; 5:e70012. [PMID: 39568773 PMCID: PMC11577303 DOI: 10.1002/mco2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
The gut microbiota plays a critical role in maintaining human health, influencing a wide range of physiological processes, including immune regulation, metabolism, and neurological function. Recent studies have shown that imbalances in gut microbiota composition can contribute to the onset and progression of various diseases, such as metabolic disorders (e.g., obesity and diabetes) and neurodegenerative conditions (e.g., Alzheimer's and Parkinson's). These conditions are often accompanied by chronic inflammation and dysregulated immune responses, which are closely linked to specific forms of cell death, including pyroptosis and ferroptosis. Pathogenic bacteria in the gut can trigger these cell death pathways through toxin release, while probiotics have been found to mitigate these effects by modulating immune responses. Despite these insights, the precise mechanisms through which the gut microbiota influences these diseases remain insufficiently understood. This review consolidates recent findings on the impact of gut microbiota in these immune-mediated and inflammation-associated conditions. It also identifies gaps in current research and explores the potential of advanced technologies, such as organ-on-chip models and the microbiome-gut-organ axis, for deepening our understanding. Emerging tools, including single-bacterium omics and spatial metabolomics, are discussed for their promise in elucidating the microbiota's role in disease development.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| | - Hong Wang
- School of Traditional Chinese Medicine Southern Medical University Guangzhou China
| | - Yiwei Sang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| | - Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| | - Qing Wang
- School of Life Sciences Beijing University of Chinese Medicine Beijing China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs China Academy of Chinese Medical Sciences Beijing China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases Experimental Research Center China Academy of Chinese Medical Sciences Beijing China
| |
Collapse
|
36
|
Kato R, Yamamoto T, Ogata H, Miyata K, Hayashi S, Gershon MD, Kadowaki M. Indigenous gut microbiota constitutively drive release of ciliary neurotrophic factor from mucosal enteric glia to maintain the homeostasis of enteric neural circuits. Front Immunol 2024; 15:1372670. [PMID: 39606241 PMCID: PMC11598343 DOI: 10.3389/fimmu.2024.1372670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS. Male C57BL/6 SPF mice at 12 weeks of age were given a cocktail of four antibiotics (ABX) orally to induce dysbiosis (ABX mice). As early as six hours after ABX administration, the weight of the cecum of ABX mice increased to be significantly greater than that of vehicle-treated animals; moreover, ABX-induced dysbiosis reduced the density of enteric nerve fibers (marked by tubulin-β3 immunoreactivity) in the lamina propria of the proximal colon to approximately 60% that of control. TAK242, a TLR4 antagonist, significantly lowered the nerve fiber density in the lamina propria of the proximal colonic mucosa to approximately 60% that of vehicle-treated SPF mice. We thus developed and tested the hypothesis that mucosal glia expressing TLR4 are activated by enteric bacteria and release neurotrophic factors that contribute to the maintenance of enteric neural circuits. Neurotrophic factors in the mucosa of the SPF mouse proximal colon were examined immunohistochemically. Ciliary neurotrophic factor (CNTF) was abundantly expressed in the lamina propria; most of the CNTF immunoreactivity was observed in mucosal glia (marked by S100β immunoreactivity). Administration of CNTF (subcutaneously, 0.3 mg/kg, 3 doses, 2 hours apart) to ABX mice significantly increased mucosal nerve fiber density in the ABX mouse proximal colon to nearly control levels. The effect of CNTF on enteric mucosal nerve fibers was examined in isolated preparations of proximal colon of ABX mice. As it did in vivo, exposure to CNTF in vitro significantly increased enteric mucosal nerve fiber density in the ABX-treated colon. In conclusion, our evidence suggests that gut microbiota constitutively activate TLR4 signaling in enteric mucosal glia, which secrete CNTF in response. The resulting bacterial-driven glial release of CNTF helps to maintain the integrity of enteric mucosal nerve fibers.
Collapse
Affiliation(s)
- Ryo Kato
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Hanako Ogata
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Kana Miyata
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Michael D. Gershon
- Departments of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| |
Collapse
|
37
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
38
|
Fernandez‐Sanchez J, Rodgers R, Maknojia AA, Shaikh N, Yan H, Mejia ME, Hendricks H, Jenq RR, Reddy P, Banerjee R, Schraw JM, Baldridge MT, King KY. Antibiotic-associated neutropenia is marked by the depletion of intestinal Lachnospiraceae and associated metabolites in pediatric patients. Hemasphere 2024; 8:e70038. [PMID: 39525856 PMCID: PMC11543857 DOI: 10.1002/hem3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Prolonged antibiotic exposure causes dangerous hematologic side effects, including neutropenia, in up to 34% of patients. Murine studies established a link between the intestinal microbiota and hematopoiesis. To identify factors that predispose to neutropenia in pediatric patients, we evaluated changes in microbiota-derived metabolites and intestinal microbiota composition after prolonged courses of antibiotics. In this multi-center study, patients with infections requiring anticipated antibiotic treatment of two or more weeks were enrolled. Stool samples were obtained at the start and completion of antibiotics or at neutropenia onset (prospective arm). Some patients were enrolled in a retrospective arm in which a stool sample was collected at the time of neutropenia during antibiotic therapy and 2-4 weeks after completion of antibiotics with recovery of blood counts. We identified 10 patients who developed neutropenia on antibiotics and 29 controls matched for age, sex, race, and ethnicity. Clinical data demonstrated no association between neutropenia and the type of infection or antibiotic used; however, patients with neutropenia were admitted to the intensive care unit more often and received longer courses of antibiotics. Reduced intestinal microbiome richness and, specifically, decreased abundance of Lachnospiraceae family members correlated with neutropenia. Untargeted stool metabolomic profiling revealed several metabolites that were depleted exclusively in patients with neutropenia, including members of the urea cycle pathway, pyrimidine metabolism, and fatty acid metabolism that are known to be produced by Lachnospiraceae. Our study shows a relationship between intestinal microbiota disruption and abnormal hematopoiesis and identifies taxa and metabolites likely to contribute to microbiota-sustained hematopoiesis.
Collapse
Affiliation(s)
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Arushana A. Maknojia
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Nusrat Shaikh
- Department of Pediatrics, Center for Research AdvancementBaylor College of MedicineHoustonTexasUSA
| | - Hannah Yan
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Marlyd E. Mejia
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Hope Hendricks
- Department of Pediatrics, Division of Infectious DiseasesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular TherapyMD Anderson Cancer CenterHoustonTexas
| | - Pavan Reddy
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonTexasUSA
| | - Ritu Banerjee
- Department of Pediatrics, Division of Pediatric Infectious DiseasesVanderbilt University Medical Center, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Jeremy M. Schraw
- Department of Pediatrics, Division of Hematology–OncologyBaylor College of MedicineHoustonTexasUSA
- Department of Pediatrics, Center for Epidemiology and Population HealthBaylor College of MedicineHoustonTexasUSA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Katherine Y. King
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
- Department of Pediatrics, Division of Infectious DiseasesCenter for Cell and Gene Therapy, Baylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| |
Collapse
|
39
|
Delgado-Ocaña S, Cuesta S. From microbes to mind: germ-free models in neuropsychiatric research. mBio 2024; 15:e0207524. [PMID: 39207144 PMCID: PMC11481874 DOI: 10.1128/mbio.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The gut-microbiota-brain axis refers to the bidirectional communication system between the gut, its microbial community, and the brain. This interaction involves a complex interplay of neural pathways, chemical transmitters, and immunological mechanisms. Germ-free animal models have been extensively employed to investigate gut-microbiota-brain interactions, significantly contributing to our current understanding of the role of intestinal microbes in brain function. However, despite the many benefits, this absence of microbiota is not futile. Germ-free animals present physiological and neurodevelopmental alterations that can persist even after reconstitution with normal microbiota. Therefore, the main goal of this minireview is to discuss how some of the inherent limitations of this model can interfere with the conclusion obtained when using these animals to study the complex nature of neuropsychiatric disorders. Furthermore, we examine the inclusion and use of antibiotic-based treatments as an alternative in the research of gut-brain interactions.
Collapse
Affiliation(s)
- Susana Delgado-Ocaña
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
40
|
Horwell E, Ferreira W, Hong H, Bearn P, Cutting S. Modelling a Western Lifestyle in Mice: A Novel Approach to Eradicating Aerobic Spore-Forming Bacteria from the Colonic Microbiome and Assessing Long-Term Clinical Outcomes. Biomedicines 2024; 12:2274. [PMID: 39457587 PMCID: PMC11504893 DOI: 10.3390/biomedicines12102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION The environmentally acquired aerobic spore-forming (EAS-Fs) bacteria that are ubiquitous in nature (e.g., soil) are transient colonisers of the mammalian gastro-intestinal tract. Without regular exposure, their numbers quickly diminish. These species of bacteria have been suggested to be essential to the normal functioning of metabolic and immunogenic health. The modern Western lifestyle restricts exposure to these EAS-Fs, possibly explaining part of the pathogenesis of many Western diseases. To date, the only animal studies that address specific microbiome modelling are based around germ-free animals. We have designed a new animal model that specifically restricts exposure to environmental sources of bacteria. METHODOLOGY A new protocol, termed Super Clean, which involves housing mice in autoclaved individually ventilated cages (IVCs), with autoclaved food/water and strict ascetic handling practice was first experimentally validated. The quantification of EAS-Fs was assessed by heat-treating faecal samples and measuring colony-forming units (CFUs). This was then compared to mice in standard conditions. Mice were housed in their respective groups from birth until 18 months. Stool samples were taken throughout the experiment to assess for abundance in transiently acquired environmental bacteria. Clinical, biochemical, histological, and gene expression markers were analysed for diabetes, hypercholesterolaemia, obesity, inflammatory bowel disease, and non-alcoholic fatty liver disease (the "diseases of the West"). RESULTS Our results show that stringent adherence to the Super Clean protocol produces a significantly decreased abundance of aerobic spore-forming Bacillota after 21 days. This microbiomic shift was correlated with significantly increased levels of obesity and impaired glucose metabolism. There was no evidence of colitis, liver disease or hypercholesterolaemia. CONCLUSIONS This new murine model successfully isolates EAS-Fs and has potential utility for future research, allowing for an investigation into the clinical impact of living in relative hygienic conditions.
Collapse
Affiliation(s)
- Edward Horwell
- Colorectal Surgical Unit, Ashford & St Peter’s Hospitals NHS Foundation Trust, London KT16 0PZ, UK; (E.H.); (P.B.)
- Biomedical Science Unit, Royal Holloway University of London, London TW20 0EY, UK; (W.F.); (H.H.)
| | - William Ferreira
- Biomedical Science Unit, Royal Holloway University of London, London TW20 0EY, UK; (W.F.); (H.H.)
| | - Huynh Hong
- Biomedical Science Unit, Royal Holloway University of London, London TW20 0EY, UK; (W.F.); (H.H.)
| | - Philip Bearn
- Colorectal Surgical Unit, Ashford & St Peter’s Hospitals NHS Foundation Trust, London KT16 0PZ, UK; (E.H.); (P.B.)
| | - Simon Cutting
- Biomedical Science Unit, Royal Holloway University of London, London TW20 0EY, UK; (W.F.); (H.H.)
| |
Collapse
|
41
|
Esposito P, Dubé-Zinatelli E, Gandelman M, Liu E, Cappelletti L, Liang J, Ismail N. The enduring effects of antimicrobials and lipopolysaccharide on the cellular mechanisms and behaviours associated with neurodegeneration in pubertal male and female CD1 mice. Neuroscience 2024; 557:67-80. [PMID: 39127344 DOI: 10.1016/j.neuroscience.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Puberty is a sensitive developmental period during which stressors can cause lasting brain and behavioural deficits. While the acute effects of pubertal lipopolysaccharide (LPS) and antimicrobial (AMNS) treatments are known, their enduring impacts on neurodegeneration-related mechanisms and behaviours remain unclear. This study examined these effects in male and female mice. At five weeks old, mice received 200ul of either broad-spectrum antimicrobials or water through oral gavage twice daily for seven days. At six weeks of age, they received an intraperitoneal injection of either saline or LPS. Four weeks later, adult mice underwent neurodegeneration-related behavioural tests, including the rotarod, forepaw stride length, reversed grid hang, open field, and buried pellet tests. Two days after the final test, brain and ileal samples were collected. Results showed that female mice treated with both AMNS and LPS exhibited deficits in neuromuscular strength, while males treated with LPS alone showed increased anxiety-like behaviours. Males treated with AMNS alone had decreased sigma-1 receptor (S1R) expression in the cornu ammonis 1 (CA1) and dentate gyrus (DG), while females treated with both AMNS and LPS had decreased S1R expression. Additionally, males treated with either LPS or AMNS had lower glial-derived neurotrophic factor receptor alpha-1 (GFRA1) expression in the primary motor cortex (M1) than females. Mice treated with LPS alone had decreased GFRA1 expression in the DG and decreased S1R expression in the secondary motor cortex (M2). These findings suggest that pubertal AMNS and LPS treatments may lead to enduring changes in biomarkers and behaviours related to neurodegeneration.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eleni Dubé-Zinatelli
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Michelle Gandelman
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Ella Liu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Luna Cappelletti
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
42
|
Yang S, Tong L, Li X, Zhang Y, Chen H, Zhang W, Zhang H, Chen Y, Chen R. A novel clinically relevant human fecal microbial transplantation model in humanized mice. Microbiol Spectr 2024; 12:e0043624. [PMID: 39162553 PMCID: PMC11448399 DOI: 10.1128/spectrum.00436-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The intact immune system of mice exhibits resistance to colonization by exogenous microorganisms, but the gut microbiota profiles of the humanized mice and the patterns of human fecal microbiota colonization remain unexplored. Humanized NCG (huNCG) mice were constructed by injected CD34 +stem cells. 16S rRNA sequencing and fecal microbiota transplantation (FMT) technologies were used to detect the differences in microbiota and selective colonization ability for exogenous community colonization among three mice cohorts (C57BL/6J, NCG, and huNCG). Flow cytometry analysis showed that all huNCG mice had over 25% hCD45 +in peripheral blood. 16S rRNA gene sequence analysis showed that compared with NCG mice, the gut microbiota of huNCG mice were significantly altered. After FMT, the principal coordinates analysis (PCoA) showed that the gut microbial composition of huNCG mice (huNCG-D9) was similar to that of donors. The relative abundance of Firmicutes and Bacteroidetes were significantly increased in huNCG mice compared to NCG mice. Further comparison of ASV sequences revealed that Bacteroides plebeius, Bacteroides finegoldii, Escherichia fergusonii, Escherichia albertii, Klebsiella pneumoniae, and Klebsiella variicola exhibited higher abundance and stability in huNCG mice after FMT. Furthermore, PICRUSt2 analysis showed that huNCG mice had significantly enhanced metabolism and immunity. This study demonstrated that humanized mice are more conducive to colonization within the human gut microbiota, which provides a good method for studying the association between human diseases and microbiota.IMPORTANCEThe gut microbiota and biomarkers of humanized mice are systematically revealed for the first time. The finding that human fecal microbiota colonize humanized mice more stably provides new insights into the study of interactions between immune responses and gut microbiota.
Collapse
Affiliation(s)
- Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuchen Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
43
|
Gopinath D, Pandiar D, Li Z, Panda S. Rodent models for oral microbiome research: considerations and challenges- a mini review. FRONTIERS IN ORAL HEALTH 2024; 5:1439091. [PMID: 39421460 PMCID: PMC11484444 DOI: 10.3389/froh.2024.1439091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Rodent models have been commonly employed in oral microbiota research to investigate the relationship between bacteria and oral disease. Nevertheless, to apply the knowledge acquired from studies conducted on rodents to a human context, it is crucial to consider the significant spatial and temporal parallels and differences between the oral microbiota of mice and humans. Initially, we outline the comparative physiology and microbiology of the oral cavity of rodents and humans. Additionally, we highlight the strong correlation between the oral microbiome of rodents and genetic makeup, which is influenced by factors including vendor, husbandry practices, and environmental conditions. All of these factors potentially impact the replicability of studies on rodent microbiota and the resulting conclusions. Next, we direct our attention toward the diversity in the microbiome within mice models of disease and highlight the diversity that may potentially affect the characteristics of diseases and, in turn, alter the ability to replicate research findings and apply them to real-world situations. Furthermore, we explore the practicality of oral microbial models for complex oral microbial diseases in future investigations by examining the concept of gnotobiotic and germ-free mouse models. Finally, we stress the importance of investigating suitable techniques for characterizing and managing genetically modified organisms. Future research should consider these aspects to improve oral microbiome research's translational potential.
Collapse
Affiliation(s)
- Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| |
Collapse
|
44
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
45
|
Xu Y, Li Y, Yan Q, Mao X, Yang S, Jiang Z. The Function and Mechanism of Laminaripentaose Prepared from Curdlan for the Amelioration of the Cognitive Dysfunctions in Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19904-19919. [PMID: 39215716 DOI: 10.1021/acs.jafc.4c05163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Functional oligosaccharides induce specific alterations in gut microbiota, potentially providing physiological benefits. However, the effects of laminaripentaose (LPA) on metabolic syndrome and the mechanism underlying it have not been intensively investigated yet. This study aimed to determine the effects of LPA on obesity and obesity-induced cognition impairment in mice. C57BL/6N mice fed with a high-fat diet received an LPA treatment for 12 weeks. An antibiotic intervention was further applied to evaluate the effects of the gut microbiota on cognitive functions. LPA treatment (500 mg/kg) reduced the weight gain by 32.4%. Furthermore, LPA improved memory functions and reduced hippocampal insulin resistance and neuronal injury. LPA markedly reduced systemic low-grade inflammation and intestinal barrier injury. Moreover, LPA increased gut beneficial bacteria, and Butyricimonas and Bifidobacterium were increased by 94.0 and 422.7%, respectively, accompanied by increased fecal short-chain fatty acids. Interestingly, antibiotic cocktail treatment abrogated the beneficial effects of LPA on cognition, which further suggests that LPA may attenuate obesity-induced cognition impairment via the gut-brain axis. Our findings provide the first evidence for the potential of dietary LPA to prevent obesity and obesity-associated complications.
Collapse
Affiliation(s)
- Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
46
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
47
|
Lippincott RA, O’Connor J, Neff CP, Lozupone C, Palmer BE. Deciphering HIV-associated inflammation: microbiome's influence and experimental insights. Curr Opin HIV AIDS 2024; 19:228-233. [PMID: 38884255 PMCID: PMC11305906 DOI: 10.1097/coh.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW To review novel experimental approaches for studying host:microbe interactions and their role in intestinal and systemic inflammation in people living with HIV (PLWH). RECENT FINDINGS Inflammation in PLWH is impacted by interactions between the microbiome, the intestinal epithelium, and immune cells. This complex interplay is not fully understood and requires a variety of analytical techniques to study. Using a multiomic systems biology approach provides hypothesis generating data on host:microbe interactions that can be used to guide further investigation. The direct interactions between host cells and microbes can be elucidated using peripheral blood mononuclear cells (PBMCs), lamina propria mononuclear cells (LPMC's) or human intestinal organoids (HIO). Additionally, the broader relationship between the host and the microbiome can be explored using animal models such as nonhuman primates and germ-free and double humanized mice. SUMMARY To explore complex host:microbe relationships, hypotheses are generated and investigations are guided by multiomic data, while causal components are identified using in-vitro and in-vivo assays.
Collapse
Affiliation(s)
| | - John O’Connor
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
48
|
Thabet E, Dief AE, Arafa SAF, Yakout D, Ali MA. Antibiotic-induced gut microbe dysbiosis alters neurobehavior in mice through modulation of BDNF and gut integrity. Physiol Behav 2024; 283:114621. [PMID: 38925433 DOI: 10.1016/j.physbeh.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Gut microbiota is essential for intestinal integrity and brain functions. Herein we aimed to investigate the effects of alteration of gut microbiome using broad-spectrum antibiotics on CD 1 male mice (germ-modified group (GM). Moreover, we co-administrated probiotics with or without antibiotics for four weeks and evaluated if probiotics could reverse these behavioral and intestinal effects. GM, co-administered antibiotics and probiotics, and probiotics-only groups were compared to control mice of the same sex, age, and weight that did not receive either drug (n=12 in all groups). Cultivation of aerobic and anaerobic bacteria was evaluated by fecal culture of all groups. We tested exploratory behavior, anxiety, memory, depression-like behavior, and hippocampal and frontal lobe BDNF protein level alterations in response to antibiotics and its downstream effect on the PI3K/Akt1/Bcl2 pathway. Intestinal integrity was evaluated using gene expression analysis of ZO-1, claudin, and occludin genes. Additionally, the inflammatory TLR4 and p-p38 MAPK pathways in the intestines were investigated. Twice-daily administration of oral antibiotics for four weeks significantly reduced total bacterial count and upregulated TLR4 and p-p38.GM mice showed a significant reduction in BDNF(P =0.04), impaired spatial memory, and long-term memory as evidenced by decreased T maze correct alternation trails and shortened retention time in the passive avoidance test in GM(P =0.01). Passive avoidance showed significantly increased latency after probiotics intake. Depressive-like behavior was more pronounced in GM mice as assessed by the tail suspension test (P =0.01). GM showed significant upregulation(p<0.001) of the TLR4 and p-p38 MAPK pathway. Co-administration of probiotics with antibiotics showed an increase in BDNF levels, and upregulation of the cell survival PI3K/Akt1/Bcl2 pathway, significantly higher relative abundance in the firmucutes members, a significant decrease in the Firmicutes/Bacteroidetes ratio and downregulation of TLR4 and p-p38 MAPK. The tight junction proteins ZO-1, claudin and occludin were downregulated by antibiotic administration for four weeks and restored by probiotics. Collectively, the data suggest that long-term use of antibiotics appears to disrupt the intestinal epithelial barrier and alter neurobehavioral qualities specifically, long-term memory and exploratory drive, possibly through the reduction of BDNF, and probiotics partially reverse these effects. Our study emphasizes the effect of prolonged intake of antibiotics on production of dysbiosis as well as the impact of the antibiotic induced intestinal inflammation on neurobehavioral aspects in mice as the memory and anxiety-like behavior. We also reveal that co-administration of probiotics can reverse these changes.
Collapse
Affiliation(s)
- Eman Thabet
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Abeer E Dief
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shams A-F Arafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Dalia Yakout
- Department of Clinical Pharmacology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
49
|
Jia R, Shao S, Zhang P, Yuan Y, Rong W, An Z, Lv S, Feng Y, Liu N, Feng Q, Wang Y, Li Q. PRM1201 effectively inhibits colorectal cancer metastasis via shaping gut microbiota and short- chain fatty acids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155795. [PMID: 38878524 DOI: 10.1016/j.phymed.2024.155795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND PRM1201 is a traditional medicine with beneficial effects against colorectal cancer (CRC) metastasis. However, the underlying mechanism of this action remains to be determined. HYPOTHESIS Remodeling microbiota and short-chain fatty acids (SCFAs) metabolism might be a potential mechanism to explain the anti-metastatic action of PRM1201, as this gut-microbiota dependent effect involves downregulation of histone deacetylation and EMT. METHODS To investigate this possibility, clinical specimens were sequenced and the correlation between the anti-metastatic efficacy of PRM1201 and the restoration of SCFA-producing bacteria was studied. To obtain solid causal evidence, a mouse metastasis model was established to detect the influence of PRM1201 on cancer metastasis. Specifically, 16S amplicon sequencing, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, and bacterial manipulation were used to examine the gut microbiota-driven anti-metastatic action of PRM1201. RESULTS Clinical data showed that PRM1201 increased both the number of SCFA-producing bacteria and generation of SCFAs in the feces of CRC patients. A positive correlation between the anti-metastatic efficacy of PRM1201 and the restoration of SCFAs observed. The animal experiments demonstrated that PRM1201 effectively blocked CRC metastasis in a dose-dependent manner. PRM1201 treatment modulated the composition of gut microbiota, and promoted the proliferation of beneficial SCFAs producers such as Akkermansia, Lachnospiraceae_NK4A136_group and Blautia, while simultaneously reducing the abundance of pathogenic bacteria like Escherichia-Shigella. In addition, PRM1201 led to augmentation of SCFAs content. Further results indicated that the anti-cancer metastatic mechanism of PRM1201 was linked to inhibition of histone deacetylation and suppression of epithelial-to-mesenchymal transition (EMT) in metastatic lesions. Microbiota depletion treatment and fecal microbiota transplantation (FMT) underscored the microbiota-dependent nature of this phenomenon. Moreover, this anti-colorectal cancer metastatic effect and mechanism of total SCFAs and single SCFA were also confirmed. CONCLUSION In summary, PRM1201 exerts its anti-metastatic effects by modulating SCFA-producing bacteria and enhancing the production of SCFAs. Furthermore, the prebiotic-like actions of PRM1201, along with the PRM1201-treated bacteria, function as inhibitors of histone deacetylases (DHACs) thereby effectively suppressing EMT events.
Collapse
Affiliation(s)
- Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pingping Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Yuan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenqing Rong
- Department of Medical Oncology, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Ziming An
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Institute of Liver Diseases, Shanghai 201203, China
| | - Sheng Lv
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Institute of Liver Diseases, Shanghai 201203, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qin Feng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Institute of Liver Diseases, Shanghai 201203, China; Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Li
- Department of Chinese Medicine & Integrative Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, 2560 Chunshen Road, Shanghai 201104, China.
| |
Collapse
|
50
|
Wilcox RS, Marenda MS, Devlin JM, Wilks CR. Antimicrobial use in laboratory rodent facilities in Australia and New Zealand- a cross-sectional survey of veterinarians and facility managers. PLoS One 2024; 19:e0292908. [PMID: 39178211 PMCID: PMC11343402 DOI: 10.1371/journal.pone.0292908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/24/2024] [Indexed: 08/25/2024] Open
Abstract
This cross-sectional study surveyed veterinarians and facility managers to characterise the use of antimicrobials in laboratory rodent facilities within Australia and New Zealand. Most facilities (71%) reported routine administration of antimicrobials. The indications for antibiotic use reflected those described in publications and differed significantly to reasons for use in non-laboratory animals. Antimicrobials used include those of critical importance to human health, and access to these drugs is unregulated, as prescription-only classes are ordered through research catalogues, without human or veterinary physician prescriptions. The ways in which antimicrobials are used in Australian and New Zealand rodent facilities are likely contributing to antimicrobial resistance within rodent populations, particularly as they are largely administered in drinking water, risking subtherapeutic dosing. Much antimicrobial use reported is unnecessary and could be replaced with changes to husbandry and handling. The generation of resistance in both pathogenic and commensal microbes may also represent a work health and safety issue for humans working with these animals. Reported disposal of antimicrobials included discharge into wastewater, without inactivation, and some respondents reported disposal of substrate, or soiled bedding, nesting material, and disposable enrichment items, from treated animals and medicated feed into landfill, without prior inactivation. Environmental contamination with resistant microbes and antimicrobials is a significant driver of antimicrobial resistance. As such, significant opportunities exist to implement judicious and responsible use of antimicrobials within research rodent facilities in Australia and New Zealand, with a particular focus on instituting aseptic surgery, optimising dosing regimens, and inactivation of medicated water and substrate before disposal.
Collapse
Affiliation(s)
- Rebbecca S. Wilcox
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc S. Marenda
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Joanne M. Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin R. Wilks
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|