1
|
Guo J, Shi C, Wang Y, Zhang D, Zhang Q, Zhang X, Wang L, Gong Z. Targeting the HDAC6/Hint2/MICU1 axis to ameliorate acute liver failure via inhibiting NETosis. Life Sci 2025; 366-367:123498. [PMID: 39983829 DOI: 10.1016/j.lfs.2025.123498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
AIMS Acute liver failure (ALF) is marked by extensive inflammation and immune dysregulation, which are closely associated with neutrophil infiltration and NETosis. However, the specific mechanisms that drive NETosis in ALF remain poorly understood. MATERIALS AND METHODS We employed flow cytometry, western blot, qRT-PCR, and cf-DNA assay to investigate the link between NETosis and ALF. The role of HDAC6-mediated deacetylation of histidine triad nucleotide-binding protein 2 (Hint2) was assessed, along with the effects of lentiviral vector-based overexpression and knockdown of Hint2 on mitochondrial function and NETosis. Additionally, CO-IP, IF, protein docking analysis, mCa2+ uptake assay, and mtROS measurement were used to explore the interaction between Hint2 and mitochondrial calcium uniporter complex (MCUc). Finally, experimental neutrophil depletion in mice was conducted to confirm the protective effect of NETosis inhibition in ALF. KEY FINDINGS Our study demonstrated that Hint2 undergoes HDAC6-mediated deacetylation, disrupting mitochondrial dynamics and triggering NETosis during ALF. Furthermore, MICU1 bridges Hint2 and NETosis by regulating mCa2+ homeostasis and mtROS production. Activation of Hint2, either through the HDAC6 inhibitor ACY1215 or via overexpression, increased the level of MICU1 to suppress the opening of the MCUc and the associated mtROS release, thereby inhibiting NETosis. Conversely, Hint2 knockdown induced NETosis by surging mCa2+ overload and mtROS production, while the MCUc inhibitor RU265 mitigates NETosis by blocking mCa2+ influx. SIGNIFICANCE Our findings recognized the HDAC6/Hint2/MICU1 axis as a novel pathway in neutrophils, the inhibition of which intercepts mCa2+ overload and mtROS accumulation, thereby reducing NETosis and facilitating liver recovery during ALF.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci 2025; 26:2196. [PMID: 40076813 PMCID: PMC11900163 DOI: 10.3390/ijms26052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global rise in diabetes prevalence has significantly contributed to the increasing burden of atherosclerotic cardiovascular disease (ASCVD), a leading cause of morbidity and mortality in this population. Diabetes accelerates atherosclerosis through mechanisms such as hyperglycemia, oxidative stress, chronic inflammation, and epigenetic dysregulation, leading to unstable plaques and an elevated risk of cardiovascular events. Despite advancements in controlling traditional risk factors like dyslipidemia and hypertension, a considerable residual cardiovascular risk persists, highlighting the need for innovative therapeutic approaches. Emerging treatments, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, epigenetic modulators, and RNA-based therapies, are showing promise in addressing the unique challenges of diabetes-associated ASCVD. Precision medicine strategies, such as nanoparticle-based drug delivery and cell-specific therapies, offer further potential for mitigating cardiovascular complications. Advances in multiomics and systems biology continue to deepen our understanding of the molecular mechanisms driving diabetes-associated atherosclerosis. This review synthesizes recent advances in understanding the pathophysiology and treatment of diabetes-related atherosclerosis, offering a roadmap for future research and precision medicine approaches to mitigate cardiovascular risk in this growing population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
3
|
Gao R, Liu M, Yang H, Shen Y, Xia N. Epigenetic regulation in coronary artery disease: from mechanisms to emerging therapies. Front Mol Biosci 2025; 12:1548355. [PMID: 39959304 PMCID: PMC11825346 DOI: 10.3389/fmolb.2025.1548355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the primary cause of coronary artery disease (CAD), remains a leading global cause of mortality. It is characterized by the accumulation of cholesterol-rich plaques and inflammation, which narrow the coronary arteries and increase the risk of rupture. To elucidate this complex biological process and improve therapeutic strategies, CAD has been extensively explored from an epigenetic perspective over the past two decades. Epigenetics is a field investigating heritable alterations in gene expression without DNA sequence changes, such as DNA methylation, histone modifications, and non-coding RNAs. Increasing evidence has indicated that the development of CAD is significantly influenced by epigenetic changes. Meanwhile, the impact of epigenetics in CAD is now transitioning from pathophysiology to therapeutics. Focusing on the key epigenetic enzymes and their target genes will help to facilitate the diagnosis and treatment of CAD. This review synthesizes novel epigenetic insights into CAD, addressing the pathological processes, key molecular mechanisms, and potential biomarkers. Furthermore, we discuss emerging therapeutic strategies targeting epigenetic pathways. By focusing on pivotal enzymes and their associated genes, this work aims to advance CAD diagnostics and interventions.
Collapse
Affiliation(s)
- Rui Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyi Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol 2025:10.1038/s41569-024-01115-w. [PMID: 39805949 DOI: 10.1038/s41569-024-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cardiovascular and cerebrovascular consequences, such as myocardial infarction and stroke. Moreover, atherosclerosis is a major contributor to cardiovascular-related mortality in individuals with diabetes mellitus. Diabetes aggravates the pathobiological mechanisms that underlie the development of atherosclerosis. Currently available anti-atherosclerotic drugs or strategies solely focus on optimal control of systemic risk factors, including hyperglycaemia and dyslipidaemia, but do not adequately target the diabetes-exacerbated mechanisms of atherosclerotic cardiovascular disease, highlighting the need for targeted, mechanism-based therapies. This Review focuses on emerging pathological mechanisms and related novel therapeutic targets in atherosclerotic cardiovascular disease in patients with diabetes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
5
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Smolak P, Nguyen M, Diamond C, Wescott H, Doedens JR, Schooley K, Snouwaert JN, Bock MG, Harrison D, Watt AP, Koller BH, Gabel CA. Target Cell Activation of a Structurally Novel NOD-Like Receptor Pyrin Domain-Containing Protein 3 Inhibitor NT-0796 Enhances Potency. J Pharmacol Exp Ther 2024; 388:798-812. [PMID: 38253384 DOI: 10.1124/jpet.123.001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1β and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.
Collapse
Affiliation(s)
- Pamela Smolak
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Christine Diamond
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Heather Wescott
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - John R Doedens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Kenneth Schooley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - John N Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Mark G Bock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - David Harrison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Alan P Watt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Christopher A Gabel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| |
Collapse
|
7
|
Furze RC, Molnar J, Parr NJ, Ahmad F, Henry Y, Howe D, Singh R, Toal M, Bassil AK, Bernard SG, Davis RP, Gibson A, Maller NC, Sharp C, Tough DF, Prinjha RK, Lewis HD. Phase 1 and preclinical profiling of ESM-HDAC391, a myeloid-targeted histone deacetylase inhibitor, shows enhanced pharmacology and monocytopaenia. Br J Clin Pharmacol 2022; 88:5238-5256. [PMID: 35655123 PMCID: PMC9796293 DOI: 10.1111/bcp.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS To improve the tolerability and therapeutic application of histone deacetylase inhibitors (HDACi), by application of an esterase-sensitive motif (ESM), to target pharmacological activity directly to mononuclear myeloid cells expressing the processing enzyme carboxylesterase-1 (CES1). METHODS This first-in-human study comprised single and multiple ascending dose cohorts to determine safety and tolerability. Pharmacodynamic parameters included acetylation, cytokine inhibition and intracellular concentrations of processed acid metabolite in isolated monocytes. Mechanistic work was conducted in vitro and in a CES1/Es1elo mouse strain. RESULTS ESM-HDAC391 showed transient systemic exposure (plasma half-life of 21-30 min) but selective retention of processed acid for at least 12 hours, resulting in robust targeted mechanistic engagement (increased acetylation in monocytes plus inhibition of ex vivo stimulated cytokine production). ESM-HDAC391 was well tolerated and clinical toxicities common to non-targeted HDACi were not observed. ESM-HDAC391 treatment was accompanied by the novel finding of a dose-dependent monocyte depletion that was transient and reversible and which plateaued at 0.06 × 109 monocytes/L after repeat dosing with 20 or 40 mg. Characterisation of monocyte depletion in transgenic mice (CES1/Es1elo ) suggested that colony stimulating factor 1 receptor loss on circulating cells contributed to ESM-HDAC-mediated depletion. Further mechanistic investigations using human monocytes in vitro demonstrated HDACi-mediated change in myeloid fate through modulation of colony stimulating factor 1 receptor and downstream effects on cell differentiation. CONCLUSION These findings demonstrate selective targeting of monocytes in humans using the ESM approach and identify monocytopaenia as a novel outcome of ESM-HDACi treatment, with implications for potential benefit of these molecules in myeloid-driven diseases.
Collapse
Affiliation(s)
| | - Judit Molnar
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,GalapagosCambridgeUK
| | - Nigel J. Parr
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,MoonFire Consultancy LtdHertfordshireUK
| | - Faiz Ahmad
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,Galderma R&DFort WorthTXUSA
| | - Yvette Henry
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,YMH‐Management LtdLancashireUK
| | - David Howe
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,SoseiHeptaresCambridgeUK
| | - Rajendra Singh
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,GlaxoSmithKlineCollegevillePAUSA
| | - Martin Toal
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,Conan Biopharma ConsultingWokinghamUK
| | - Anna K. Bassil
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | | | - Robert P. Davis
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - Adele Gibson
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | | | - Catriona Sharp
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - David F. Tough
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - Rab K. Prinjha
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - Huw D. Lewis
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| |
Collapse
|
8
|
Elfiky AMI, Hageman IL, Becker MAJ, Verhoeff J, Li Yim AYF, Joustra VW, Mulders L, Fung I, Rioja I, Prinjha RK, Smithers NN, Furze RC, Mander PK, Bell MJ, Buskens CJ, D’Haens GR, Wildenberg ME, de Jonge WJ. A BET Protein Inhibitor Targeting Mononuclear Myeloid Cells Affects Specific Inflammatory Mediators and Pathways in Crohn’s Disease. Cells 2022; 11:cells11182846. [PMID: 36139421 PMCID: PMC9497176 DOI: 10.3390/cells11182846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Myeloid cells are critical determinants of the sustained inflammation in Crohn’s Disease (CD). Targeting such cells may be an effective therapeutic approach for refractory CD patients. Bromodomain and extra-terminal domain protein inhibitors (iBET) are potent anti-inflammatory agents; however, they also possess wide-ranging toxicities. In the current study, we make use of a BET inhibitor containing an esterase sensitive motif (ESM-iBET), which is cleaved by carboxylesterase-1 (CES1), a highly expressed esterase in mononuclear myeloid cells. Methods: We profiled CES1 protein expression in the intestinal biopsies, peripheral blood, and CD fistula tract (fCD) cells of CD patients using mass cytometry. The anti-inflammatory effect of ESM-iBET or its control (iBET) were evaluated in healthy donor CD14+ monocytes and fCD cells, using cytometric beads assay or RNA-sequencing. Results: CES1 was specifically expressed in monocyte, macrophage, and dendritic cell populations in the intestinal tissue, peripheral blood, and fCD cells of CD patients. ESM-iBET inhibited IL1β, IL6, and TNFα secretion from healthy donor CD14+ monocytes and fCD immune cells, with 10- to 26-fold more potency over iBET in isolated CD14+ monocytes. Transcriptomic analysis revealed that ESM-iBET inhibited multiple inflammatory pathways, including TNF, JAK-STAT, NF-kB, NOD2, and AKT signaling, with superior potency over iBET. Conclusions: We demonstrate specific CES1 expression in mononuclear myeloid cell subsets in peripheral blood and inflamed tissues of CD patients. We report that low dose ESM-iBET accumulates in CES1-expressing cells and exerts robust anti-inflammatory effects, which could be beneficial in refractory CD patients.
Collapse
Affiliation(s)
- Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Ishtu L. Hageman
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marte A. J. Becker
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Jan Verhoeff
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Andrew Y. F. Li Yim
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent W. Joustra
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lieven Mulders
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ivan Fung
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Inmaculada Rioja
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Rab K. Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | | | - Rebecca C. Furze
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Palwinder K. Mander
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Matthew J. Bell
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +31205668163 or +31625387973
| |
Collapse
|
9
|
Cao X, Zhang M, Li H, Chen K, Wang Y, Yang J. Histone Deacetylase9 Represents the Epigenetic Promotion of M1 Macrophage Polarization and Inflammatory Response via TLR4 Regulation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7408136. [PMID: 35941971 PMCID: PMC9356872 DOI: 10.1155/2022/7408136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
Atherosclerosis is a chronic inflammatory response mediated by various factors, where epigenetic regulation involving histone deacetylation is envisaged to modulate the expression of related proteins by regulating the binding of transcription factors to DNA, thereby influencing the development of atherosclerosis. The mechanism of atherosclerosis by histone deacetylation is partly known; hence, this project aimed at investigating the role of histone deacetylase 9 (HDAC9) in atherosclerosis. For this purpose, serum was separated from blood samples following clotting and centrifugation from atherosclerotic and healthy patients (n = 40 each), and then, various tests were performed. The results indicated that toll-like receptor 4 (TLR4) was not only positively correlated to the HDAC9 gene, but was also upregulated in atherosclerosis, where it was also significantly upregulated in the atherosclerosis cell model of oxidized low-density lipoprotein-induced macrophages. Conversely, the TLR4 was significantly downregulated in instances of loss of HDAC9 function, cementing the bridging relationship between HDAC9 and macrophage polarization, where the HDAC9 was found to upregulate M1 macrophage polarization which translated into the release of higher content of proinflammatory cytokines such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), which tend to significantly decrease following the deletion of TLR4. Hence, this study reports novel relation between epigenetic control and atherosclerosis, which could partly be explained by histone deacetylation.
Collapse
Affiliation(s)
- Xi Cao
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Man Zhang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Li
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Kaiming Chen
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Central Laboratory of Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Jia Yang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Elfiky AMI, Ghiboub M, Li Yim AYF, Hageman IL, Verhoeff J, de Krijger M, van Hamersveld PHP, Welting O, Admiraal I, Rahman S, Garcia-Vallejo JJ, Wildenberg ME, Tomlinson L, Gregory R, Rioja I, Prinjha RK, Furze RC, Lewis HD, Mander PK, Heinsbroek SEM, Bell MJ, de Jonge WJ. Carboxylesterase-1 Assisted Targeting of HDAC Inhibitors to Mononuclear Myeloid Cells in Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:668-681. [PMID: 34633041 PMCID: PMC9089418 DOI: 10.1093/ecco-jcc/jjab176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Histone deacetylase inhibitors [HDACi] exert potent anti-inflammatory effects. Because of the ubiquitous expression of HDACs, clinical utility of HDACi is limited by off-target effects. Esterase-sensitive motif [ESM] technology aims to deliver ESM-conjugated compounds to human mononuclear myeloid cells, based on their expression of carboxylesterase 1 [CES1]. This study aims to investigate utility of an ESM-tagged HDACi in inflammatory bowel disease [IBD]. METHODS CES1 expression was assessed in human blood, in vitro differentiated macrophage and dendritic cells, and Crohn's disease [CD] colon mucosa, by mass cytometry, quantitative polymerase chain reaction [PCR], and immunofluorescence staining, respectively. ESM-HDAC528 intracellular retention was evaluated by mass spectrometry. Clinical efficacy of ESM-HDAC528 was tested in dextran sulphate sodium [DSS]-induced colitis and T cell transfer colitis models using transgenic mice expressing human CES1 under the CD68 promoter. RESULTS CES1 mRNA was highly expressed in human blood CD14+ monocytes, in vitro differentiated and lipopolysaccharide [LPS]-stimulated macrophages, and dendritic cells. Specific hydrolysis and intracellular retention of ESM-HDAC528 in CES1+ cells was demonstrated. ESM-HDAC528 inhibited LPS-stimulated IL-6 and TNF-α production 1000 times more potently than its control, HDAC800, in CES1high monocytes. In healthy donor peripheral blood, CES1 expression was significantly higher in CD14++CD16- monocytes compared with CD14+CD16++ monocytes. In CD-inflamed colon, a higher number of mucosal CD68+ macrophages expressed CES1 compared with non-inflamed mucosa. In vivo, ESM-HDAC528 reduced monocyte differentiation in the colon and significantly improved colitis in a T cell transfer model, while having limited potential in ameliorating DSS-induced colitis. CONCLUSIONS We demonstrate that monocytes and inflammatory macrophages specifically express CES1, and can be preferentially targeted by ESM-HDAC528 to achieve therapeutic benefit in IBD.
Collapse
Affiliation(s)
- Ahmed M I Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Andrew Y F Li Yim
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
- Department of Clinical Genetics, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ishtu L Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Manon de Krijger
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Iris Admiraal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Laura Tomlinson
- Discovery DMPK, IVIVT, GSK Medicines Research Centre, Stevenage, UK
| | - Richard Gregory
- Discovery DMPK, IVIVT, GSK Medicines Research Centre, Stevenage, UK
| | - Inmaculada Rioja
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Rebecca C Furze
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Huw D Lewis
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | | | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Matthew J Bell
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Rubio C, Avendaño-Ortiz J, Ruiz-Palomares R, Karaivanova V, Alberquilla O, Sánchez-Domínguez R, Casalvilla-Dueñas JC, Montalbán-Hernández K, Lodewijk I, Rodríguez-Izquierdo M, Munera-Maravilla E, Nunes SP, Suárez-Cabrera C, Pérez-Crespo M, Martínez VG, Morales L, Pérez-Escavy M, Alonso-Sánchez M, Lozano-Rodríguez R, Cueto FJ, Aguirre LA, Guerrero-Ramos F, Paramio JM, López-Collazo E, Dueñas M. Toward Tumor Fight and Tumor Microenvironment Remodeling: PBA Induces Cell Cycle Arrest and Reduces Tumor Hybrid Cells' Pluripotency in Bladder Cancer. Cancers (Basel) 2022; 14:287. [PMID: 35053451 PMCID: PMC8773853 DOI: 10.3390/cancers14020287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is the second most frequent cancer of the genitourinary system. The most successful therapy since the 1970s has consisted of intravesical instillations of Bacillus Calmette-Guérin (BCG) in which the tumor microenvironment (TME), including macrophages, plays an important role. However, some patients cannot be treated with this therapy due to comorbidities and severe inflammatory side effects. The overexpression of histone deacetylases (HDACs) in BC has been correlated with macrophage polarization together with higher tumor grades and poor prognosis. Herein we demonstrated that phenylbutyrate acid (PBA), a HDAC inhibitor, acts as an antitumoral compound and immunomodulator. In BC cell lines, PBA induced significant cell cycle arrest in G1, reduced stemness markers and increased PD-L1 expression with a corresponding reduction in histone 3 and 4 acetylation patterns. Concerning its role as an immunomodulator, we found that PBA reduced macrophage IL-6 and IL-10 production as well as CD14 downregulation and the upregulation of both PD-L1 and IL-1β. Along this line, PBA showed a reduction in IL-4-induced M2 polarization in human macrophages. In co-cultures of BC cell lines with human macrophages, a double-positive myeloid-tumoral hybrid population (CD11b+EPCAM+) was detected after 48 h, which indicates BC cell-macrophage fusions known as tumor hybrid cells (THC). These THC were characterized by high PD-L1 and stemness markers (SOX2, NANOG, miR-302) as compared with non-fused (CD11b-EPCAM+) cancer cells. Eventually, PBA reduced stemness markers along with BMP4 and IL-10. Our data indicate that PBA could have beneficial properties for BC management, affecting not only tumor cells but also the TME.
Collapse
Affiliation(s)
- Carolina Rubio
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - José Avendaño-Ortiz
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Raquel Ruiz-Palomares
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
| | - Viktoriya Karaivanova
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28029 Madrid, Spain; (O.A.); (R.S.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28029 Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28029 Madrid, Spain; (O.A.); (R.S.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28029 Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain
| | - José Carlos Casalvilla-Dueñas
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Karla Montalbán-Hernández
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Iris Lodewijk
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Marta Rodríguez-Izquierdo
- Uro-Oncology Unit, 12 de Octubre University Hospital, Av Córdoba s/n, 28041 Madrid, Spain; (M.R.-I.); (F.G.-R.)
| | - Ester Munera-Maravilla
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Sandra P. Nunes
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Cristian Suárez-Cabrera
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Miriam Pérez-Crespo
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Víctor G. Martínez
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Lucía Morales
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Mercedes Pérez-Escavy
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Miguel Alonso-Sánchez
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Roberto Lozano-Rodríguez
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Francisco J. Cueto
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Luis A. Aguirre
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Félix Guerrero-Ramos
- Uro-Oncology Unit, 12 de Octubre University Hospital, Av Córdoba s/n, 28041 Madrid, Spain; (M.R.-I.); (F.G.-R.)
| | - Jesús M. Paramio
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Eduardo López-Collazo
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Marta Dueñas
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| |
Collapse
|
12
|
Verberk SGS, Kuiper KL, Lauterbach MA, Latz E, Van den Bossche J. The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis. Trends Mol Med 2021; 27:1095-1105. [PMID: 34635427 DOI: 10.1016/j.molmed.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
ATP-citrate lyase (Acly) is the target of the new class low-density lipoprotein-cholesterol (LDL-C)-lowering drug bempedoic acid (BA). Acly is a key metabolic enzyme synthesizing acetyl-CoA as the building block of cholesterol and fatty acids. Treatment with BA lowers circulating lipid levels and reduces systemic inflammation, suggesting a dual benefit of this drug for atherosclerosis therapy. Recent studies have shown that targeting Acly in macrophages can attenuate inflammatory responses and decrease atherosclerotic plaque vulnerability. Therefore, it could be beneficial to extend the application of Acly inhibition from solely lipid-lowering by liver-specific inhibition to also targeting macrophages in atherosclerosis. Here, we outline the possibilities of targeting Acly and describe the future needs to translate these findings to the clinic.
Collapse
Affiliation(s)
- Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kirsten L Kuiper
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mario A Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
14
|
Jin F, Li J, Guo J, Doeppner TR, Hermann DM, Yao G, Dai Y. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab022. [PMID: 35919269 PMCID: PMC9241575 DOI: 10.1093/ehjopen/oeab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022]
Abstract
Epigenomic and epigenetic research has been providing several new insights into a variety of diseases caused by non-resolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterial walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g. TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodelling of macrophages through DNA methylation or histone modifications (e.g. methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 1 Dong Dan Dahua Road, Dong Cheng District, Beijing 100730, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun 130021, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Robert-Koch-Str. 40 37075, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130041, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, Institute of Translational Medicine, The First Hospital of Jilin University, 519 Dong Min Zhu Street, Changchun, Jilin 130061, China
| |
Collapse
|
15
|
Khan A, Paneni F, Jandeleit-Dahm K. Cell-specific epigenetic changes in atherosclerosis. Clin Sci (Lond) 2021; 135:1165-1187. [PMID: 33988232 PMCID: PMC8314213 DOI: 10.1042/cs20201066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cerebrovascular and cardiovascular consequences such as heart failure and stroke and is a major contributor to cardiovascular-related mortality worldwide. Atherosclerosis development is a complex process that involves specific structural, functional and transcriptional changes in different vascular cell populations at different stages of the disease. The application of single-cell RNA sequencing (scRNA-seq) analysis has discovered not only disease-related cell-specific transcriptomic profiles but also novel subpopulations of cells once thought as homogenous cell populations. Vascular cells undergo specific transcriptional changes during the entire course of the disease. Epigenetics is the instruction-set-architecture in living cells that defines and maintains the cellular identity by regulating the cellular transcriptome. Although different cells contain the same genetic material, they have different epigenomic signatures. The epigenome is plastic, dynamic and highly responsive to environmental stimuli. Modifications to the epigenome are driven by an array of epigenetic enzymes generally referred to as writers, erasers and readers that define cellular fate and destiny. The reversibility of these modifications raises hope for finding novel therapeutic targets for modifiable pathological conditions including atherosclerosis where the involvement of epigenetics is increasingly appreciated. This article provides a critical review of the up-to-date research in the field of epigenetics mainly focusing on in vivo settings in the context of the cellular role of individual vascular cell types in the development of atherosclerosis.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Francesco Paneni
- Cardiovascular Epigenetics and Regenerative Medicine, Centre for Molecular Cardiology, University of Zurich, Switzerland
| | - Karin A.M. Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
16
|
Ghiboub M, Elfiky AMI, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. J Pers Med 2021; 11:336. [PMID: 33922725 PMCID: PMC8145108 DOI: 10.3390/jpm11050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R. Harker
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - David F. Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
17
|
Davis FM, Tsoi LC, Melvin WJ, denDekker A, Wasikowski R, Joshi AD, Wolf S, Obi AT, Billi AC, Xing X, Audu C, Moore BB, Kunkel SL, Daugherty A, Lu HS, Gudjonsson JE, Gallagher KA. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J Exp Med 2021; 218:211922. [PMID: 33779682 PMCID: PMC8008365 DOI: 10.1084/jem.20201839] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-β regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB–mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II–induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI.,Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI.,Department of Computation Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sonya Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Christopher Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Bethany B Moore
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI.,Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
18
|
Wang C, Nan X, Pei S, Zhao Y, Wang X, Ma S, Ma G. Salidroside and isorhamnetin attenuate urotensin II-induced inflammatory response in vivo and in vitro: Involvement in regulating the RhoA/ROCK II pathway. Oncol Lett 2021; 21:292. [PMID: 33732368 PMCID: PMC7905674 DOI: 10.3892/ol.2021.12553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Urotensin II (UII), a vital vasoconstrictor peptide, causes an inflammatory response in the pathogenesis of atherosclerosis. Previous studies have reported that the Ras homolog gene family, member A (RhoA)/Rho kinases (ROCK) pathway modulates the inflammatory response of the atherosclerotic process. However, to the best of our knowledge, whether the RhoA/ROCK pathway mediates the inflammatory effect of UII has not been previously elucidated. Salidroside and isorhamnetin are two early developed antioxidant Tibetan drugs, both displaying cardioprotective effects against atherosclerosis. Therefore, the aim of the present study was to investigate the protective effects of salidroside, isorhamnetin or combination of these two drugs on the UII-induced inflammatory response in vivo (rats) or in vitro [primary vascular smooth muscle cells (VSMCs)], as well as to examine the role of the RhoA/ROCK pathway in these processes. The levels of inflammatory markers were measured via ELISA. The mRNA and protein expression levels of RhoA and ROCK II were detected using reverse transcription-quantitative PCR assay and western blot analysis. It was demonstrated that salidroside, isorhamnetin and both in combination decreased the levels of the serum pro-inflammatory cytokines TNF-α and IL-1β, as well as increased the levels of the anti-inflammatory cytokine IL-10 and macrophage migration inhibitory factor in rats with subacute infusion of UII and in the culture supernatant from primary VSMCs-exposed to UII. Moreover, salidroside, isorhamnetin and both in combination attenuated the mRNA and protein expression levels of RhoA and ROCK II in vivo and in vitro, at concentrations corresponding to human therapeutic blood plasma concentrations. Thus, these drugs could inhibit the RhoA/ROCK II pathway under UII conditions. The combination of salidroside and isorhamnetin did not display a stronger inhibitory effect on the inflammatory response and the RhoA/ROCK II pathway compared with salidroside and isorhamnetin in isolation. Collectively, the results indicated that salidroside, isorhamnetin and both in combination inhibited the RhoA/ROCK II pathway, which then attenuated the inflammatory response under UII-induced conditions, resulting in cardioprotection in atherosclerosis.
Collapse
Affiliation(s)
- Chenjing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaodong Nan
- Intensive Care Unit, Gansu Provincial Corps Hospital of Chinese People's Armed Police Force, Lanzhou, Gansu 730050, P.R. China
| | - Shuyan Pei
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Yu Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaokun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Shijie Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Guoyan Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review discusses the current developments on epigenetic inhibition as treatment for atherosclerosis. RECENT FINDINGS The first phase III clinical trial targeting epigenetics in cardiovascular disease (CVD), BETonMACE, using the bromodomain inhibitor apabetalone (RVX-208) showed no significant effect on major adverse cardiovascular events (MACE) in patients with type II diabetes, low HDL-c and a recent acute coronary artery event compared with its placebo arm. SUMMARY Preclinical and clinical studies suggest that targeting epigenetics in atherosclerosis is a promising novel therapeutic strategy against CVD. Interfering with histone acetylation by targeting histone deacetylates (HDACs) and bromodomain and extraterminal domain (BET) proteins demonstrated encouraging results in modulating disease progression in model systems. Although the first phase III clinical trial targeting BET in CVD showed no effect on MACE, we suggest that there is sufficient potential for future clinical usage based on the outcomes in specific subgroups and the fact that the study was slightly underpowered. Lastly, we propose that there is future window for targeting repressive histone modifications in atherosclerosis.
Collapse
Affiliation(s)
- Annette E. Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity
| | - Kim E. Dzobo
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity
| |
Collapse
|
20
|
Alharthi J, Latchoumanin O, George J, Eslam M. Macrophages in metabolic associated fatty liver disease. World J Gastroenterol 2020; 26:1861-1878. [PMID: 32390698 PMCID: PMC7201150 DOI: 10.3748/wjg.v26.i16.1861] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named non-alcoholic fatty liver disease is the most common liver disorder in many countries. The inflammatory subtype termed steatohepatitis is a driver of disease progression to cirrhosis, hepatocellular carcinoma, liver transplantation, and death, but also to extrahepatic complications including cardiovascular disease, diabetes and chronic kidney disease. The plasticity of macrophages in response to various environmental cues and the fact that they can orchestrate cross talk between different cellular players during disease development and progression render them an ideal target for drug development. This report reviews recent advances in our understanding of macrophage biology during the entire spectrum of MAFLD including steatosis, inflammation, fibrosis, and hepatocellular carcinoma, as well as for the extra-hepatic manifestations of MAFLD. We discuss the underlying molecular mechanisms of macrophage activation and polarization as well as cross talk with other cell types such as hepatocytes, hepatic stellate cells, and adipose tissue. We conclude with a discussion on the potential translational implications and challenges for macrophage based therapeutics for MAFLD.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| |
Collapse
|