1
|
Qiao K, Zhao M, Huang Y, Liang L, Zhang Y. Bitter Perception and Effects of Foods Rich in Bitter Compounds on Human Health: A Comprehensive Review. Foods 2024; 13:3747. [PMID: 39682819 DOI: 10.3390/foods13233747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors. The bitter compounds in foods mainly include alkaloids, polyphenols, terpenoids, amino acids, etc. Foods rich in bitter taste are mostly natural such as beans, nuts, and coffee, etc. Studies have proven that bitter foods have biological activities such as preventing hyperlipidemia, hypertension, hyperglycemia, anti-inflammatory, antitumor, antibacterial, antioxidant, and exhibit neuroprotective effects and other biological activities. The purpose of this review is to explore the bitter perception and the biological activity of bitter compounds, clarify the mechanism of their action on human health, and provide theoretical guidance for the development and application of functional foods.
Collapse
Affiliation(s)
- Kaina Qiao
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxia Zhao
- Food Laboratory of Zhongyuan · Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yan Huang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Stone M, Choi CS, Dey N, Swain G, Stevens T, Sayner SL. Pseudomonas aeruginosa ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment. Am J Physiol Lung Cell Mol Physiol 2024; 327:L756-L768. [PMID: 39316682 PMCID: PMC11560077 DOI: 10.1152/ajplung.00038.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether P. aeruginosa primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with P. aeruginosa expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following P. aeruginosa ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, P. aeruginosa infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent P. aeruginosa.NEW & NOTEWORTHY P. aeruginosa exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. P. aeruginosa infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.
Collapse
Affiliation(s)
- Madeline Stone
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Nandita Dey
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Grace Swain
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| | - Sarah L Sayner
- Department of Physiology and Cell Biology, University South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University South Alabama, Mobile, Alabama, United States
| |
Collapse
|
3
|
Pacini ESA, de Paula Moro R, Godinho RO. Extracellular cAMP elicits contraction of rat vas deferens: Involvement of ecto-5'-nucleotidase and adenosine A 1 receptors. Toxicol Appl Pharmacol 2024; 491:117070. [PMID: 39151807 DOI: 10.1016/j.taap.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
AIMS It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE Our data show that activation of β-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Raíssa de Paula Moro
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
4
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
5
|
Wang MY, Zhang Z, Zhao S, Onodera T, Sun XN, Zhu Q, Li C, Li N, Chen S, Paredes M, Gautron L, Charron MJ, Marciano DK, Gordillo R, Drucker DJ, Scherer PE. Downregulation of the kidney glucagon receptor, essential for renal function and systemic homeostasis, contributes to chronic kidney disease. Cell Metab 2024; 36:575-597.e7. [PMID: 38237602 PMCID: PMC10932880 DOI: 10.1016/j.cmet.2023.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.
Collapse
Affiliation(s)
- May-Yun Wang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Na Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Paredes
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denise K Marciano
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Drucker
- Lunenfeld-TanenbaumResearchInstitute, Mt. Sinai Hospital, Toronto, ON M5G1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Li J, Ma A, Zhang R, Chen Y, Bolyard C, Zhao B, Wang C, Pich T, Li W, Sun N, Ma Q, Wen H, Clinton SK, Carson WE, Li Z, Xin G. Targeting metabolic sensing switch GPR84 on macrophages for cancer immunotherapy. Cancer Immunol Immunother 2024; 73:52. [PMID: 38349405 PMCID: PMC10864225 DOI: 10.1007/s00262-023-03603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024]
Abstract
INTRODUCTION As one of the major components of the tumor microenvironment, tumor-associated macrophages (TAMs) possess profound inhibitory activity against T cells and facilitate tumor escape from immune checkpoint blockade therapy. Converting this pro-tumorigenic toward the anti-tumorigenic phenotype thus is an important strategy for enhancing adaptive immunity against cancer. However, a plethora of mechanisms have been described for pro-tumorigenic differentiation in cancer, metabolic switches to program the anti-tumorigenic property of TAMs are elusive. MATERIALS AND METHODS From an unbiased analysis of single-cell transcriptome data from multiple tumor models, we discovered that anti-tumorigenic TAMs uniquely express elevated levels of a specific fatty acid receptor, G-protein-coupled receptor 84 (GPR84). Genetic ablation of GPR84 in mice leads to impaired pro-inflammatory polarization of macrophages, while enhancing their anti-inflammatory phenotype. By contrast, GPR84 activation by its agonist, 6-n-octylaminouracil (6-OAU), potentiates pro-inflammatory phenotype via the enhanced STAT1 pathway. Moreover, 6-OAU treatment significantly retards tumor growth and increases the anti-tumor efficacy of anti-PD-1 therapy. CONCLUSION Overall, we report a previously unappreciated fatty acid receptor, GPR84, that serves as an important metabolic sensing switch for orchestrating anti-tumorigenic macrophage polarization. Pharmacological agonists of GPR84 hold promise to reshape and reverse the immunosuppressive TME, and thereby restore responsiveness of cancer to overcome resistance to immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianying Li
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Anjun Ma
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruohan Zhang
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chelsea Bolyard
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Bao Zhao
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Thera Pich
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Wantong Li
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Nuo Sun
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Qin Ma
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Haitao Wen
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Steven K Clinton
- Department of Urology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - William E Carson
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Gang Xin
- Department of Microbiology and Immunology, Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA.
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
7
|
Oliva I, Kazi F, Cantwell LN, Thakur GA, Crystal JD, Hohmann AG. Negative allosteric modulation of CB1 cannabinoid receptor signaling decreases intravenous morphine self-administration and relapse in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575900. [PMID: 38293046 PMCID: PMC10827159 DOI: 10.1101/2024.01.16.575900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that pharmacological inhibition of CB1R signaling through negative allosteric modulation (NAM) would reduce the reinforcing properties of morphine and decrease opioid addictive behaviors. By employing i.v. self-administration in mice, we studied the effects of the CB1-biased NAM GAT358 on morphine intake, relapse-like behavior, and motivation to work for morphine infusions. Our data revealed that GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under fixed ratio 1 schedule of reinforcement. GAT358 decreased morphine-seeking behavior after forced abstinence. Moreover, GAT358 dose-dependently decreased the motivation to obtain morphine infusions in a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration is reward specific. Furthermore, GAT58 did not produce motor ataxia in the rota-rod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease opioid-addicted behaviors.
Collapse
|
8
|
Raman-Nair J, Cron G, MacLeod K, Lacoste B. Sex-Specific Acute Cerebrovascular Responses to Photothrombotic Stroke in Mice. eNeuro 2024; 11:ENEURO.0400-22.2023. [PMID: 38164600 PMCID: PMC10849032 DOI: 10.1523/eneuro.0400-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.
Collapse
Affiliation(s)
- Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Gregory Cron
- Neurology Department, Stanford University, Stanford 94305, California
| | - Kathleen MacLeod
- Pharmaceutical Sciences, University of British Colombia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
9
|
Chen J, Li T, Huang D, Gong W, Tian J, Gao X, Qin X, Du G, Zhou Y. Integrating UHPLC-MS/MS quantitative analysis and exogenous purine supplementation to elucidate the antidepressant mechanism of Chaigui granules by regulating purine metabolism. J Pharm Anal 2023; 13:1562-1576. [PMID: 38223448 PMCID: PMC10785246 DOI: 10.1016/j.jpha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
Chaigui granules (CG) are a compound composed of six herbal medicines with significant antidepressant effects. However, the antidepressant mechanism of CG remains unclear. In the present study, we attempted to elucidate the antidepressant mechanism of CG by regulating purine metabolism and purinergic signaling. First, the regulatory effect of CG on purine metabolites in the prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS) rats was analyzed by ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) targeted quantitative analysis. Meanwhile, purinergic receptors (P2X7 receptor (P2X7R), A1 receptor (A1R) and A2A receptor (A2AR)) and signaling pathways (nod-like receptor protein 3 (NLRP3) inflammasome pathway and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway) associated with purine metabolism were analyzed by western blotting and enzyme-linked immunosorbent assay (ELISA). Besides, antidepressant mechanism of CG by modulating purine metabolites to activate purinergic receptors and related signaling pathways was dissected by exogenous supplementation of purine metabolites and antagonism of purinergic receptors in vitro. An in vivo study showed that the decrease in xanthine and the increase in four purine nucleosides were closely related to the antidepressant effects of CG. Additionally, purinergic receptors (P2X7R, A1R and A2AR) and related signaling pathways (NLRP3 inflammasome pathway and cAMP-PKA pathway) were also significantly regulated by CG. The results of exogenous supplementation of purine metabolites and antagonism of purinergic receptors showed that excessive accumulation of xanthine led to activation of the P2X7R-NLRP3 inflammasome pathway, and the reduction of adenosine and inosine inhibited the A1R-cAMP-PKA pathway, which was significantly ameliorated by CG. Overall, CG could promote neuroprotection and ultimately play an antidepressant role by inhibiting the xanthine-P2X7R-NLRP3 inflammasome pathway and activating the adenosine/inosine-A1R-cAMP-PKA pathway.
Collapse
Affiliation(s)
- Jiajun Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Tian Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Dehua Huang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| |
Collapse
|
10
|
Zhang Y, Chen S, Luo L, Greenly S, Shi H, Xu JJ, Yan C. Role of cAMP in Cardiomyocyte Viability: Beneficial or Detrimental? Circ Res 2023; 133:902-923. [PMID: 37850368 PMCID: PMC10807647 DOI: 10.1161/circresaha.123.322652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS For prodeath GsPCRs, we explored β1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in β1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. β1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].
Collapse
Affiliation(s)
- Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Department of Medicine
- Department of Biochemistry and Biophysics
| | - Sarah Greenly
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Hangchuan Shi
- Department of Clinical and Translational Research
- Department of Public Health Sciences; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine
| |
Collapse
|
11
|
Yeon JW, Kim B, Byun J, Jung S, Park J, Han M, Baek SK, Kim TH. Regulation of T Helper Cell Type 2 Immune Response by Controlling Beta-2 Adrenergic Receptor in Dendritic Cells of Patients with Allergic Rhinitis. Int Arch Allergy Immunol 2023; 184:1173-1183. [PMID: 37717570 DOI: 10.1159/000531956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Allergic diseases are mediated by T helper cell type 2 (Th2) cells, which are differentiated by dendritic cells (DCs). Recently, it was reported that cAMP concentration in DCs is important for inducing allergic responses. However, the regulatory function of cAMP in DCs in Th2 immune responses is unclear. It was hypothesized that the regulation of G protein-coupled receptors (GPCRs) to increase cAMP levels in DCs would reduce Th2 immune responses. METHODS Human DCs from patients with allergic rhinitis (AR) and from healthy controls were subjected to next-generation sequencing (NGS) to identify potential GPCR. To investigate the functions of GPCR agonists, the in vitro co-culture experiment that THP-1 cells were differentiated into DCs and cultured with human CD4+ T-cells and an AR animal in vivo model were used. RESULTS Among the GPCRs, the beta-2 adrenergic receptor (ADRB2) of allergic DCs was significantly increased by NGS analysis. The expression of ADRB2 was also increased in Der p 1-treated DCs, which was reduced by treatment with the ADRB2 agonist salbutamol. Salbutamol treatment induced cAMP production in THP-1 derived DCs. In an in vitro co-culture experiment, salbutamol-treated DCs reduced the secretion of Th2 cytokine. In an in vivo AR animal experiment, salbutamol-administered mice showed reduced allergic behavior and Th2 cytokine expression in the nasal mucosa. CONCLUSIONS The regulation of ADRB2 with salbutamol alleviated the allergic response in vitro DC-T cell co-culture and in vivo AR animal models, suggesting that ADRB2 is a therapeutic target for AR and that ADRB2 agonists may be a promising medication for AR.
Collapse
Affiliation(s)
- Ji Woo Yeon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea,
- Neuroscience Research Institute, Korea University, College of Medicine, Seoul, Republic of Korea,
| | - Junhyoung Byun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Semyoung Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Munsoo Han
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
- Mucosal Immunology Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Seung-Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
- Mucosal Immunology Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
- Mucosal Immunology Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Satori NA, Pacini ESA, Godinho RO. Impact of the cAMP efflux and extracellular cAMP-adenosine pathway on airway smooth muscle relaxation induced by formoterol and phosphodiesterase inhibitors. Chem Biol Interact 2023; 382:110630. [PMID: 37442289 DOI: 10.1016/j.cbi.2023.110630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
β2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by β2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that β2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by β2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only β2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.
Collapse
Affiliation(s)
- Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Sitek JD, Kuczeriszka M, Walkowska A, Kompanowska-Jezierska E, Dobrowolski L. Nonselective and A2a-Selective Inhibition of Adenosine Receptors Modulates Renal Perfusion and Excretion Depending on the Duration of Streptozotocin-Induced Diabetes in Rats. Pharmaceuticals (Basel) 2023; 16:ph16050732. [PMID: 37242515 DOI: 10.3390/ph16050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Long-lasting hyperglycaemia may alter the role of adenosine-dependent receptors (P1R) in the control of kidney function. We investigated how P1R activity affects renal circulation and excretion in diabetic (DM) and normoglycaemic (NG) rats; the receptors' interactions with bioavailable NO and H2O2 were also explored. The effects of adenosine deaminase (ADA, nonselective P1R inhibitor) and P1A2a-R-selective antagonist (CSC) were examined in anaesthetised rats, both after short-lasting (2-weeks, DM-14) and established (8-weeks, DM-60) streptozotocin-induced hyperglycaemia, and in normoglycaemic age-matched animals (NG-14, NG-60, respectively). The arterial blood pressure, perfusion of the whole kidney and its regions (cortex, outer-, and inner medulla), and renal excretion were determined, along with the in situ renal tissue NO and H2O2 signals (selective electrodes). The ADA treatment helped to assess the P1R-dependent difference in intrarenal baseline vascular tone (vasodilation in DM and vasoconstriction in NG rats), with the difference being more pronounced between DM-60 and NG-60 animals. The CSC treatment showed that in DM-60 rats, A2aR-dependent vasodilator tone was modified differently in individual kidney zones. Renal excretion studies after the ADA and CSC treatments showed that the balance of the opposing effects of A2aRs and other P1Rs on tubular transport, seen in the initial phase, was lost in established hyperglycaemia. Regardless of the duration of the diabetes, we observed a tonic effect of A2aR activity on NO bioavailability. Dissimilarly, the involvement of P1R in tissue production of H2O2, observed in normoglycaemia, decreased. Our functional study provides new information on the changing interaction of adenosine in the kidney, as well as its receptors and NO and H2O2, in the course of streptozotocin diabetes.
Collapse
Affiliation(s)
- Joanna Dorota Sitek
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marta Kuczeriszka
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Leszek Dobrowolski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol 2022; 13:866097. [PMID: 35479074 PMCID: PMC9038211 DOI: 10.3389/fimmu.2022.866097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, β2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of β2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Rosely Oliveira Godinho,
| |
Collapse
|
15
|
Beeraka NM, Vikram PRH, Greeshma MV, Uthaiah CA, Huria T, Liu J, Kumar P, Nikolenko VN, Bulygin KV, Sinelnikov MY, Sukocheva O, Fan R. Recent Investigations on Neurotransmitters' Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies-Glia Dynamics in Stem Cell Therapy. Mol Neurobiol 2022; 59:2009-2026. [PMID: 35041139 DOI: 10.1007/s12035-021-02700-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Periventricular leukomalacia (PVL) and cerebral palsy are two neurological disease conditions developed from the premyelinated white matter ischemic injury (WMI). The significant pathophysiology of these diseases is accompanied by the cognitive deficits due to the loss of function of glial cells and axons. White matter makes up 50% of the brain volume consisting of myelinated and non-myelinated axons, glia, blood vessels, optic nerves, and corpus callosum. Studies over the years have delineated the susceptibility of white matter towards ischemic injury especially during pregnancy (prenatal, perinatal) or immediately after child birth (postnatal). Impairment in membrane depolarization of neurons and glial cells by ischemia-invoked excitotoxicity is mediated through the overactivation of NMDA receptors or non-NMDA receptors by excessive glutamate influx, calcium, or ROS overload and has been some of the well-studied molecular mechanisms conducive to the injury of white matter. Expression of glutamate receptors (GluR) and transporters (GLT1, EACC1, and GST) has significant influence in glial and axonal-mediated injury of premyelinated white matter during PVL and cerebral palsy. Predominantly, the central premyelinated axons express extensive levels of functional NMDA GluR receptors to confer ischemic injury to premyelinated white matter which in turn invoke defects in neural plasticity. Several underlying molecular mechanisms are yet to be unraveled to delineate the complete pathophysiology of these prenatal neurological diseases for developing the novel therapeutic modalities to mitigate pathophysiology and premature mortality of newborn babies. In this review, we have substantially discussed the above multiple pathophysiological aspects of white matter injury along with glial dynamics, and the pharmacotherapies including recent insights into the application of MSCs as therapeutic modality in treating white matter injury.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - P R Hemanth Vikram
- Department of Pharmaceutical Chemistry, JSS Pharmacy College, Mysuru, Karnataka, India
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Tahani Huria
- Faculty of Medicine, Benghazi University, Benghazi, Libya
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), SilaKatamur (Halugurisuk), Changsari, Kamrup, 781101, Assam, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
16
|
Zhang F, Xiong Y, Qin F, Yuan J. Short Sleep Duration and Erectile Dysfunction: A Review of the Literature. Nat Sci Sleep 2022; 14:1945-1961. [PMID: 36325277 PMCID: PMC9621223 DOI: 10.2147/nss.s375571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The meaning of sleep has puzzled people for millennia. In modern society, short sleep duration is becoming a global problem. It has been established that short sleep duration can increase the risk of several diseases, such as cardiovascular and metabolic diseases. Currently, a growing body of research has revealed a possible link between sleep disorders and erectile dysfunction (ED). However, the mechanisms linking short sleep duration and ED are largely unknown. Thus, we provide a review of clinical trials and animal studies. In this review, we propose putative pathways connecting short sleep duration and ED, including neuroendocrine pathways and molecular mechanisms, aiming to pave the way for future research. Meanwhile, the assessment and improvement of sleep quality should be recommended in the diagnosis and treatment of ED patients.
Collapse
Affiliation(s)
- Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
17
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Song H, Chai W, Yang F, Ren M, Chen F, Guan W, Zhang S. Effects of Dietary Monoglyceride and Diglyceride Supplementation on the Performance, Milk Composition, and Immune Status of Sows During Late Gestation and Lactation. Front Vet Sci 2021; 8:714068. [PMID: 34485441 PMCID: PMC8415355 DOI: 10.3389/fvets.2021.714068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Monoglyceride and diglyceride (MGDG) have antiviral and antibacterial properties and act as emulsifiers to increase dietary lipid digestibility. The primary aim of this trial was to investigate the effects of dietary MGDG supplementation on the reproductive performance and health status of sows during late gestation and lactation. One hundred sows (Landrace × Large White, mean parity of 4.59) were randomly allocated to groups receiving two different diets with 4% soybean lipids or 4% MGDG from day 85 of gestation to day 21 of lactation. Milk samples were collected on the day of farrowing (colostrum) and on day 14 of lactation, and blood samples were collected from the sows on days 0, 14, and 21 of lactation. Compared with control sows, sows fed MGDG showed no significant differences in reproductive performance (P > 0.05), but sow back fat thickness loss decreased during lactation (P < 0.05). There was a significant decrease in TNF-α concentrations in colostrum in the MGDG-supplemented sows compared with that in the soybean lipid-supplemented sows (P < 0.05). Dietary MGDG supplementation decreased sow plasma IL-8 concentrations on day 0 of lactation and IL-18 concentrations on days 14 and 21 of lactation (P < 0.05). Administration of MGDG increased the glucose and total cholesterol concentrations in sow plasma on day 14 and day 21, respectively (P < 0.05). The findings in this study suggest that MGDG supplementation could be effective in reducing back fat loss, decreasing inflammatory factor levels, and controlling total cholesterol (TCHO) concentrations during lactation.
Collapse
Affiliation(s)
- Hanqing Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Chai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fei Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, China.,Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Faro D, Boekhoff I, Gudermann T, Breit A. Physiological Temperature Changes Fine-Tune β 2- Adrenergic Receptor-Induced Cytosolic cAMP Accumulation. Mol Pharmacol 2021; 100:203-216. [PMID: 34158361 DOI: 10.1124/molpharm.121.000309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) controls many vital body functions by activating adrenergic receptors (ARs). Average core body temperature (CBT) in mice is 37°C. Of note, CBT fluctuates between 36 and 38°C within 24 hours, but little is known about the effects of CBT changes on the pharmacodynamics of NE. Here, we used Peltier element-controlled incubators and challenged murine hypothalamic mHypoA -2/10 cells with temperature changes of ±1°C. We observed enhanced NE-induced activation of a cAMP-dependent luciferase reporter at 36 compared with 38°C. mRNA analysis and subtype specific antagonists revealed that NE activates β 2- and β 3-AR in mHypoA-2/10 cells. Agonist binding to the β 2-AR was temperature insensitive, but measurements of cytosolic cAMP accumulation revealed an increase in efficacy of 45% ± 27% for NE and of 62% ± 33% for the β 2-AR-selective agonist salmeterol at 36°C. When monitoring NE-promoted cAMP efflux, we observed an increase in the absolute efflux at 36°C. However, the ratio of exported to cytosolic accumulated cAMP is higher at 38°C. We also stimulated cells with NE at 37°C and measured cAMP degradation at 36 and 38°C afterward. We observed increased cAMP degradation at 38°C, indicating enhanced phosphodiesterase activity at higher temperatures. In line with these data, NE-induced activation of the thyreoliberin promoter was found to be enhanced at 36°C. Overall, we show that physiologic temperature changes fine-tune NE-induced cAMP signaling in hypothalamic cells via β 2-AR by modulating cAMP degradation and the ratio of intra- and extracellular cAMP. SIGNIFICANCE STATEMENT: Increasing cytosolic cAMP levels by activation of G protein-coupled receptors (GPCR) such as the β 2-adrenergic receptor (AR) is essential for many body functions. Changes in core body temperature are fundamental and universal factors of mammalian life. This study provides the first data linking physiologically relevant temperature fluctuations to β 2-AR-induced cAMP signaling, highlighting a so far unappreciated role of body temperature as a modulator of the prototypic class A GPCR.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- ARNTL Transcription Factors/metabolism
- Aminopyridines/pharmacology
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cytosol/metabolism
- Forkhead Transcription Factors/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- GTP-Binding Protein alpha Subunits, Gs/physiology
- Hypothalamus/physiology
- Mice
- Neurons/physiology
- Norepinephrine/pharmacology
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/biosynthesis
- Receptors, Adrenergic, beta-3/physiology
- STAT Transcription Factors/metabolism
- Salmeterol Xinafoate/pharmacology
- Signal Transduction/physiology
- Temperature
- Thyrotropin-Releasing Hormone/genetics
- Thyrotropin-Releasing Hormone/metabolism
Collapse
Affiliation(s)
- Dennis Faro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Ingrid Boekhoff
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
20
|
Extracellular metabolism of 3',5'-cyclic AMP as a source of interstitial adenosine in the rat airways. Biochem Pharmacol 2021; 192:114713. [PMID: 34331910 DOI: 10.1016/j.bcp.2021.114713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that β2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.
Collapse
|
21
|
De Araújo JS, da Silva PB, Batista MM, Peres RB, Cardoso-Santos C, Kalejaiye TD, Munday JC, De Heuvel E, Sterk GJ, Augustyns K, Salado IG, Matheeussen A, De Esch I, De Koning HP, Leurs R, Maes L, Soeiro MDNC. Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. J Antimicrob Chemother 2021; 75:958-967. [PMID: 31860098 DOI: 10.1093/jac/dkz516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.
Collapse
Affiliation(s)
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Camila Cardoso-Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Erik De Heuvel
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Irene G Salado
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Iwan De Esch
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry P De Koning
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Rob Leurs
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
22
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
23
|
Makris S, Johansson C. R848 or influenza virus can induce potent innate immune responses in the lungs of neonatal mice. Mucosal Immunol 2021; 14:267-276. [PMID: 32576926 PMCID: PMC7116567 DOI: 10.1038/s41385-020-0314-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023]
Abstract
Innate immune responses are important to protect the neonatal lung, which becomes exposed to commensal and pathogenic microorganisms immediately after birth, at a time when both the lung and the adaptive immune system are still developing. How immune cells in the neonatal lung respond to innate immune stimuli, including toll-like receptor (TLR) agonists, or viruses, is currently unclear. To address this, adult and neonatal mice were intranasally administered with various innate immune stimuli, respiratory syncytial virus (RSV) or influenza virus and cytokine and chemokine levels were quantified. The neonatal lungs responded weakly to RSV and most stimuli but more strongly than adult mice to R848 and influenza virus, both of which activate TLR7 and the inflammasome. Notably, neonatal lungs also contained higher levels of cAMP, a secondary messenger produced following adenosine receptor signaling, than adult lungs and increased responsiveness to R848 was observed in adult mice when adenosine was coadministered. Our data suggest that the neonatal lung may respond preferentially to stimuli that coactivate TLR7 and the inflammasome and that these responses may be amplified by extracellular adenosine. Improved understanding of regulation of immune responses in the neonatal lung can inform the development of vaccine adjuvants for the young.
Collapse
Affiliation(s)
- Spyridon Makris
- Correspondence: Cecilia Johansson (), Tel.: +44 207 594 2531
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
24
|
Ernst O, Failayev H, Athamna M, He H, Tsfadia Y, Zor T. A dual and conflicting role for imiquimod in inflammation: A TLR7 agonist and a cAMP phosphodiesterase inhibitor. Biochem Pharmacol 2020; 182:114206. [DOI: 10.1016/j.bcp.2020.114206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
|
25
|
The quantitative analysis of the mechanism involved in pertussis toxin-mediated cell clustering and its implications in the in vitro quality control of diphtheria tetanus and whole cell pertussis vaccines. Toxicol In Vitro 2020; 70:105029. [PMID: 33059000 DOI: 10.1016/j.tiv.2020.105029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/19/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
Some of the adverse side-effects such as leukocytosis, hyperinsulinemia, hypoglycemia and sensitization to histamine, caused by diphtheria, tetanus and whole cell pertussis (DTwP) vaccines are related to the presence of non-inactivated pertussis toxin (PTx) residues (NiPTxR). The CHO cell clustering assay is an in vitro assay to measure NiPTxR in DTwP vaccines based on the ability of active PTx to cause cellular clustering. To study the biochemical mechanism involved in the clustering effect in CHO cells induced by PTx and by two DTwP vaccines, the levels of total cyclic cAMP were measured and compared to those obtained after treatment with cholera toxin (CTx) able to induce CHO cells elongation instead of cell clustering. Our results showed an increment of cAMP levels by CTx and total cell elongation in CHO cells. However, changes in cAMP levels were not associated with the total clustering induced by PTx or by DTwP vaccines. The high correlation seen between the levels of NiPTxR in the DTwP vaccines determined by the in vivo lethal histamine sensitization (HIST) assay and the in vitro CHO cell clustering assay indicated that the latter could be a suitable alternative test to HIST assay for the toxicological approval and release of batches of DTwP vaccines in their final formulation for human use in accordance with the application of the 3R's principle.
Collapse
|
26
|
Poth V, Knapp ML, Niemeyer BA. STIM proteins at the intersection of signaling pathways. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Schneider EH, Hofmeister O, Kälble S, Seifert R. Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in HuT-78 T lymphoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1251-1267. [PMID: 32313990 PMCID: PMC7314729 DOI: 10.1007/s00210-020-01864-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The effects of 100 μM of 3',5'-cGMP, cAMP, cCMP, and cUMP as well as of the corresponding membrane-permeant acetoxymethyl esters on anti-CD3-antibody (OKT3)-induced IL-2 production of HuT-78 cutaneous T cell lymphoma (Sézary lymphoma) cells were analyzed. Only 3',5'-cGMP significantly reduced IL-2 production. Flow cytometric analysis of apoptotic (propidium iodide/annexin V staining) and anti-proliferative (CFSE staining) effects revealed that 3',5'-cGMP concentrations > 50 μM strongly inhibited proliferation and promoted apoptosis of HuT-78 cells (cultured in the presence of αCD3 antibody). Similar effects were observed for the positional isomer 2',3'-cGMP and for 2',-GMP, 3'-GMP, 5'-GMP, and guanosine. By contrast, guanosine and guanosine-derived nucleotides had no cytotoxic effect on peripheral blood mononuclear cells (PBMCs) or acute lymphocytic leukemia (ALL) xenograft cells. The anti-proliferative and apoptotic effects of guanosine and guanosine-derived compounds on HuT-78 cells were completely eliminated by the nucleoside transport inhibitor NBMPR (S-(4-Nitrobenzyl)-6-thioinosine). By contrast, the ecto-phosphodiesterase inhibitor DPSPX (1,3-dipropyl-8-sulfophenylxanthine) and the CD73 ecto-5'-nucleotidase inhibitor AMP-CP (adenosine 5'-(α,β-methylene)diphosphate) were not protective. We hypothesize that HuT-78 cells metabolize guanosine-derived nucleotides to guanosine by yet unknown mechanisms. Guanosine then enters the cells by an NBMPR-sensitive nucleoside transporter and exerts cytotoxic effects. This transporter may be ENT1 because NBMPR counteracted guanosine cytotoxicity in HuT-78 cells with nanomolar efficacy (IC50 of 25-30 nM). Future studies should further clarify the mechanism of the observed effects and address the question, whether guanosine or guanosine-derived nucleotides may serve as adjuvants in the therapy of cancers that express appropriate nucleoside transporters and are sensitive to established nucleoside-derived cytostatic drugs.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Olga Hofmeister
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Solveig Kälble
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
28
|
Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, Joshi B, Hollenberg MD, Reddy SP, Mehta D. PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca 2+ Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Rep 2020; 27:793-805.e4. [PMID: 30995477 DOI: 10.1016/j.celrep.2019.03.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
Alveolar macrophages (AMs), upon sensing pathogens, trigger host defense by activating toll-like receptor 4 (TLR4), but the counterbalancing mechanisms that deactivate AM inflammatory signaling and prevent lethal edema, the hallmark of acute lung injury (ALI), remain unknown. Here, we demonstrate the essential role of AM protease-activating receptor 2 (PAR2) in rapidly suppressing inflammation to prevent long-lasting injury. We show that thrombin, released during TLR4-induced lung injury, directly activates PAR2 to generate cAMP, which abolishes Ca2+ entry through the TRPV4 channel. Deletion of PAR2 and thus the accompanying cAMP generation augments Ca2+ entry via TRPV4, causing sustained activation of the transcription factor NFAT to produce long-lasting TLR4-mediated inflammatory lung injury. Rescuing thrombin-sensitive PAR2 expression or blocking TRPV4 activity in PAR2-null AMs restores their capacity to resolve inflammation and reverse lung injury. Thus, activation of the thrombin-induced PAR2-cAMP cascade in AMs suppresses TLR4 inflammatory signaling to reinstate tissue integrity.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mohammad Tauseef
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Sukriti Baweja
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Ian Rochford
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
29
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
30
|
Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity. Semin Cancer Biol 2020; 68:199-208. [PMID: 32044470 DOI: 10.1016/j.semcancer.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.
Collapse
Affiliation(s)
- Dominique R Perez
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Pediatrics, Division of Hematology-Oncology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
31
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
32
|
Muñoz-Pérez VM, Ortiz MI, Cariño-Cortés R, Fernández-Martínez E, Rocha-Zavaleta L, Bautista-Ávila M. Preterm Birth, Inflammation and Infection: New Alternative Strategies for their Prevention. Curr Pharm Biotechnol 2019; 20:354-365. [PMID: 30961490 DOI: 10.2174/1389201020666190408112013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Worldwide, the progress in reducing neonatal mortality has been very slow. The rate of preterm birth has increased over the last 20 years in low-income and middle-income countries. Its association with increased mortality and morbidity is based on experimental studies and neonatal outcomes from countries with socioeconomic differences, which have considered implementing alternative healthcare strategies to prevent and reduce preterm births. METHODS Currently, there is no widely effective strategy to prevent preterm birth. Pharmacological therapies are directed at inhibiting myometrial contractions to prolong parturition. Some drugs, medicinal plants and microorganisms possess myorelaxant, anti-inflammatory and immunomodulatory properties that have proved useful in preventing preterm birth associated with inflammation and infection. RESULTS This review focuses on the existing literature regarding the use of different drugs, medicinal plants, and microorganisms that show promising benefits for the prevention of preterm birth associated with inflammation and infection. New alternative strategies involving the use of PDE-4 inhibitors, medicinal plants and probiotics could have a great impact on improving prenatal and neonatal outcomes and give babies the best start in life, ensuring lifelong health benefits. CONCLUSION Despite promising results from well-documented cases, only a small number of these alternative strategies have been studied in clinical trials. The development of new drugs and the use of medicinal plants and probiotics for the treatment and/or prevention of preterm birth is an area of growing interest due to their potential therapeutic benefits in the field of gynecology and obstetrics.
Collapse
Affiliation(s)
- Víctor M Muñoz-Pérez
- Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo, Eliseo Ramirez Ulloa 400, Doctores Pachuca de soto, 42090, Mexico
| | - Mario I Ortiz
- Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo, Eliseo Ramirez Ulloa 400, Doctores Pachuca de soto, 42090, Mexico
| | - Raquel Cariño-Cortés
- Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo, Eliseo Ramirez Ulloa 400, Doctores Pachuca de soto, 42090, Mexico
| | - Eduardo Fernández-Martínez
- Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo, Eliseo Ramirez Ulloa 400, Doctores Pachuca de soto, 42090, Mexico
| | - Leticia Rocha-Zavaleta
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Coyoacan, Ciudad de Mexico, Mexico
| | - Mirandeli Bautista-Ávila
- Area Academica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo, Ex Hacienda la Concepcion s/n, ctra. Pachuca- Tilcuautla, Hidalgo 42060, Mexico
| |
Collapse
|
33
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
34
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Bernareggi A, Sciancalepore M, Lorenzon P. Interplay Between Cholinergic and Adenosinergic Systems in Skeletal Muscle. Neuroscience 2019; 439:41-47. [PMID: 31121259 DOI: 10.1016/j.neuroscience.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Since the pioneering works of Ricardo Miledi, the neuromuscular junction represents the best example of a synapse where ACh is the neurotransmitter acting on nicotinic ACh receptors. ATP, co-released with ACh, is promptly degraded to Ado, which acts as a modulator of the cholinergic synaptic activity. Consequently, both ACh and adenosine play a crucial role in controlling the nerve-muscle communication. Apart from their role in the context of synaptic transmission, ACh and adenosine are autocrinally released by skeletal muscle cells, suggesting also a non nerve-driven function of these molecules. Indeed, the existence of cholinergic and adenosinergic systems has been widely described in many other non neuronal cell types. In this review, we will describe the two systems and their interplay in non-innervated differentiating skeletal muscle cells, and in innervated adult skeletal muscle fibers. We believe that the better comprehension of the interactions between the activity of nAChRs and adenosine could help the knowledge of skeletal muscle physiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| |
Collapse
|
36
|
Xia W, Zhang H, Pan Z, Li G, Zhou Q, Hu D, Liu Y. Inhibition of MRP4 alleviates sepsis-induced acute lung injury in rats. Int Immunopharmacol 2019; 72:211-217. [PMID: 30995593 DOI: 10.1016/j.intimp.2019.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
This study was undertaken to examine the regulatory role of multidrug resistance-associated protein 4 (MRP4) in an experimental model of sepsis-induced acute lung injury in rats. Sepsis was induced by cecal ligation and puncture in anesthetized rats. Animals were then randomly assigned to receive intravenous injection of vehicle or MRP4 inhibitor (MK571, 20 mg/kg). The pathological changes were observed by hematoxylin and eosin staining. Lung water content, lung vascular permeability and inflammatory cell count in bronchoalveolar lavage fluid (BALF) were quantified. Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were measured. In addition, lung tissue cyclic adenosine monophosphate (cAMP) levels were examined by enzyme-linked immunosorbent assay. Furthermore, the effects of MRP4 knockdown on lipopolysaccharide (LPS)-induced endothelial permeability and the cytoskeleton of rat pulmonary microvascular endothelial cells (PMVECs) were detected. The protein expression levels of MRP4, Rac1, VE-cadherin, β-catenin and ZO-1 were measured by Western blot analysis. MK571 significantly reduced lung tissue damage, lung water content and lung vascular permeability. Lung tissue cAMP levels were attenuated in MK571-treated animals compared with vehicle controls. MK571 also decreased sepsis-induced inflammatory cell accumulation in BALF. In addition, the MK571 group had significantly lower serum TNF-α and IL-6 levels compared with vehicle controls. Consistently, knockdown of MRP4 protected against LPS-induced increase in the endothelial permeability and the destruction of cytoskeleton in vitro. Furthermore, silencing MRP4 gene significantly reduced MRP4 protein expression and restored the protein expression of Rac1, VE-cadherin, β-catenin and ZO-1 in rat PMVECs in response to LPS stimulation. These data suggest that inhibition of MRP4 significantly alleviates sepsis-induced acute lung injury in rats.
Collapse
Affiliation(s)
- Wenfang Xia
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanming Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
37
|
Sayner SL, Choi CS, Maulucci ME, Ramila KC, Zhou C, Scruggs AK, Yarbrough T, Blair LA, King JA, Seifert R, Kaever V, Bauer NN. Extracellular vesicles: another compartment for the second messenger, cyclic adenosine monophosphate. Am J Physiol Lung Cell Mol Physiol 2019; 316:L691-L700. [PMID: 30758991 PMCID: PMC6483015 DOI: 10.1152/ajplung.00282.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
The second messenger, cAMP, is highly compartmentalized to facilitate signaling specificity. Extracellular vesicles (EVs) are submicron, intact vesicles released from many cell types that can act as biomarkers or be involved in cell-to-cell communication. Although it is well recognized that EVs encapsulate functional proteins and RNAs/miRNAs, currently it is unclear whether cyclic nucleotides are encapsulated within EVs to provide an additional second messenger compartment. Using ultracentrifugation, EVs were isolated from the culture medium of unstimulated systemic and pulmonary endothelial cells. EVs were also isolated from pulmonary microvascular endothelial cells (PMVECs) following stimulation of transmembrane adenylyl cyclase (AC) in the presence or absence of the phosphodiesterase 4 inhibitor rolipram over time. Whereas cAMP was detected in EVs isolated from endothelial cells derived from different vascular beds, it was highest in EVs isolated from PMVECs. Treatment of PMVECs with agents that increase near-membrane cAMP led to an increase in cAMP within corresponding EVs, yet there was no increase in EV number. Elevated cell cAMP, measured by whole cell measurements, peaked 15 min after treatment, yet in EVs the peak increase in cAMP was delayed until 60 min after cell stimulation. Cyclic AMP was also increased in EVs collected from the perfusate of isolated rat lungs stimulated with isoproterenol and rolipram, thus corroborating cell culture findings. When added to unperturbed confluent PMVECs, EVs containing elevated cAMP were not barrier disruptive like cytosolic cAMP but maintained monolayer resistance. In conclusion, PMVECs release EVs containing cAMP, providing an additional compartment to cAMP signaling.
Collapse
Affiliation(s)
- Sarah L Sayner
- Department of Physiology Cell Biology, University of South Alabama , Mobile, Alabama
- Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Chung-Sik Choi
- Department of Physiology Cell Biology, University of South Alabama , Mobile, Alabama
| | - Marcy E Maulucci
- Department of Physiology Cell Biology, University of South Alabama , Mobile, Alabama
| | - K C Ramila
- Department of Physiology Cell Biology, University of South Alabama , Mobile, Alabama
| | - Chun Zhou
- Department of Physiology Cell Biology, University of South Alabama , Mobile, Alabama
| | - April K Scruggs
- Department of Physiology Pharmacology, University of South Alabama , Mobile, Alabama
- Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Thomas Yarbrough
- Department of Physiology Biochemistry, University of South Alabama , Mobile, Alabama
- Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Leslie A Blair
- Department of Physiology Pharmacology, University of South Alabama , Mobile, Alabama
- Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Judy A King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health , Shreveport, Louisiana
| | - Roland Seifert
- Institute of Pharmacology, Hanover Medical School , Hanover , Germany
| | - Volkhard Kaever
- Research Core Unit, Metabolomics, Hanover Medical School , Hanover , Germany
| | - Natalie N Bauer
- Department of Physiology Pharmacology, University of South Alabama , Mobile, Alabama
- Center for Lung Biology, University of South Alabama , Mobile, Alabama
| |
Collapse
|
38
|
Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling. Anal Bioanal Chem 2019; 411:4481-4508. [PMID: 30927013 DOI: 10.1007/s00216-019-01774-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR-G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR-G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.
Collapse
|
39
|
Imidazole Derivatives as Promising Agents for the Treatment of Chagas Disease. Antimicrob Agents Chemother 2019; 63:AAC.02156-18. [PMID: 30670432 DOI: 10.1128/aac.02156-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
More than 100 years after being first described, Chagas disease remains endemic in 21 Latin American countries and has spread to other continents. Indeed, this disease, which is caused by the protozoan parasite Trypanosoma cruzi, is no longer just a problem for the American continents but has become a global health threat. Current therapies, i.e., nifurtimox and benznidazole (Bz), are far from being adequate, due to their undesirable effects and their lack of efficacy in the chronic phases of the disease. In this work, we present an in-depth phenotypic evaluation in T. cruzi of a new class of imidazole compounds, which were discovered in a previous phenotypic screen against different trypanosomatids and were designed as potential inhibitors of cAMP phosphodiesterases (PDEs). The confirmation of several activities similar or superior to that of Bz prompted a synthesis program of hit optimization and extended structure-activity relationship aimed at improving drug-like properties such as aqueous solubility, which resulted in additional hits with 50% inhibitory concentration (IC50) values similar to that of Bz. The cellular effects of one representative hit, compound 9, on bloodstream trypomastigotes were further investigated. Transmission electron microscopy revealed cellular changes, after just 2 h of incubation with the IC50 concentration, that were consistent with induced autophagy and osmotic stress, mechanisms previously linked to cAMP signaling. Compound 9 induced highly significant increases in both cellular and medium cAMP levels, confirming that inhibition of T. cruzi PDE(s) is part of its mechanism of action. The potent and selective activity of this imidazole-based PDE inhibitor class against T. cruzi constitutes a successful repurposing of research into inhibitors of mammalian PDEs.
Collapse
|
40
|
Goswami S. G protein-coupled receptor signaling in cardiovascular system: Specificity versus diversity. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2019. [DOI: 10.4103/jpcs.jpcs_37_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Arizmendi N, Kulka M. Adenosine activates Gα s proteins and inhibits C3a-induced activation of human mast cells. Biochem Pharmacol 2018; 156:157-167. [PMID: 30099007 DOI: 10.1016/j.bcp.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023]
Abstract
Anaphylatoxin C3a and adenosine receptors (AR) are implicated in the inflammatory process associated with allergic rhinitis and asthma by modifying mast cell (MC) responses. Possible interactions between these G-protein coupled receptor (GPCR) pathways in MCs have not yet been demonstrated. LAD2 human MC were stimulated with C3a in the presence or absence of AR agonists and antagonists and their adhesion, chemotaxis and mediator release were measured. The pan-specific AR agonist, 5'-N-Ethylcarboxamidoadenosine (NECA) inhibited C3a-induced LAD2 cell migration, adhesion, degranulation, production of CCL2, and ERK1/2 phosphorylation. The selective A2A receptor agonist CGS 21680 inhibited C3a-mediated degranulation, while the A2B and A3 receptor agonists BAY 60-6583 and IB-MECA, respectively, had no effect. Moreover, an A2A receptor antagonist SCH 58261 blocked the inhibitory effect of NECA on C3a-induced degranulation, suggesting that inhibition of degranulation was mediated through the A2A receptor. NECA increased intracellular cAMP in C3a-activated mast cells, suggesting that Gαs protein signals are required for adenosine-induced inhibition of C3a-mediated human mast cell activation. The adenylyl cyclase inhibitor SQ 22536 attenuated the inhibitory effect of NECA on C3a-activated degranulation, and the A2A agonist CSG 21680 potentiated the inhibition of mast cell activation mediated by the A2A receptor. Our results suggest that adenosine inhibits C3a-mediated activation of human mast cells, possibly through a Gαs protein-dependent pathway.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada; Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
42
|
Pacini ESA, Sanders-Silveira S, O Godinho R. The Extracellular cAMP-Adenosine Pathway in Airway Smooth Muscle. J Pharmacol Exp Ther 2018; 366:75-83. [PMID: 29685885 DOI: 10.1124/jpet.118.247734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
In the respiratory tract, intracellular cAMP has a key role in the smooth muscle relaxation induced by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. In other tissues, cAMP also works as an extracellular messenger, after its efflux and interstitial conversion to adenosine by ectoenzymes. The aim of this study was to identify cAMP efflux and the "extracellular cAMP-adenosine pathway" in the airway smooth muscle. First, we tested the ability of β2-adrenoceptor agonists formoterol or fenoterol to increase the extracellular cAMP in isolated tracheal rings from adult male Wistar rats. The effects of adenosine, cAMP, 8-Br-cAMP, fenoterol, or formoterol were also evaluated in the isometric contraction of control or carbachol (CCh) precontracted tracheas, normalized as the percentage of CCh-induced response. Fenoterol and formoterol induced 70%-80% relaxation and increased extracellular cAMP levels by up to 280%-450%. Although exogenous cAMP or adenosine evoked phasic contractions, the membrane-permeable cAMP analog 8-Br-cAMP induced relaxation of CCh-precontracted tracheas. The simultaneous inhibition of adenosine degradation/uptake with EHNA [erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride] plus uridine increased by 3-fold the maximum cAMP-induced contraction, whereas it was significantly reduced by AMPCP [adenosine 5'-(α,β-methylene)diphosphate; an ecto-5'-nucleotidase inhibitor], and by adenosine receptor antagonists CGS-15943 (nonselective) or DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (A1 selective). Finally, CGS-15943 shifted to the left the concentration-relaxation curve for fenoterol. In conclusion, our results show that airway smooth muscle expresses the extracellular cAMP-adenosine pathway associated with contracting effects mediated by A1 receptors. The cAMP efflux triggered by fenoterol/formoterol indicates that the extracellular cAMP-adenosine pathway may play a role in balancing the relaxant effects of β2-adrenoceptor agonists in airways, which may impact their bronchodilation effects.
Collapse
Affiliation(s)
- Enio S A Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Sarah Sanders-Silveira
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rosely O Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
43
|
cUMP hydrolysis by PDE3B. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:891-905. [PMID: 29808231 DOI: 10.1007/s00210-018-1512-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
Previous results indicate that the phosphodiesterase PDE3B hydrolyzes cUMP. Also, almost 50 years ago, cUMP-hydrolytic activity was observed in rat adipose tissue. We intended to characterize the enzyme kinetics of PDE3B-mediated cUMP hydrolysis, to determine the PDE3B binding mode of cUMP, and to analyze cUMP hydrolysis in adipocyte preparations. Educts (cNMPs) and products (NMPs) of the PDE reactions as well as intracellular cNMPs were quantitated by HPLC-coupled tandem mass spectrometry. PDE3B expression was determined by qPCR and Western blot. Docking studies were performed with the PDE3B crystal structure PDB ID 1SO2 (complex with a dihydropyridazine inhibitor). PDE3B hydrolyzed cUMP (Km ~ 550 μM, Vmax ~ 76 μmol/min/mg) and cAMP (Km ~ 0.7 μM, Vmax ~ 4.3 μmol/min/mg) in a milrinone (PDE3-selective inhibitor)-sensitive manner (Ki for inhibition of cUMP hydrolysis: 205 nM). cUMP forms one hydrogen bond with PDE3B (uracil 3-NH with side chain oxygen of Q988). Two hydrogen bonds stabilize cAMP binding. cCMP does not interact with PDE3B. Possibly, the cytosine base cannot form hydrogen bonds with PDE3B, and the 4-NH2 group clashes with L987 of the enzyme. Adipocyte differentiation of 3T3-L1 MBX cells increased mRNA of PDE3B, but not of PDE3A. Significant amounts of cUMP were detected in differentiated and undifferentiated 3T3-L1 MBX cells. 3T3-L1 MBX adipocyte lysates and rat epididymal adipose tissue membranes contained milrinone-sensitive cUMP-hydrolytic activity. PDE3B is a low-affinity and high-velocity phosphodiesterase for cUMP. The cUMP-hydrolyzing activity described almost 50 years ago for rat adipose tissue is caused by PDE3, probably by the isoform PDE3B.
Collapse
|
44
|
Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathogens 2018; 7:pathogens7020048. [PMID: 29693583 PMCID: PMC6027212 DOI: 10.3390/pathogens7020048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Collapse
|
45
|
cAMP, cGMP and Amyloid β: Three Ideal Partners for Memory Formation. Trends Neurosci 2018; 41:255-266. [PMID: 29501262 DOI: 10.1016/j.tins.2018.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 02/03/2023]
Abstract
cAMP and cGMP are well established second messengers required for long-term potentiation (LTP) and memory formation/consolidation. By contrast, amyloid β (Aβ), mostly known as one of the main culprits for Alzheimer's disease (AD), has received relatively little attention in the context of plasticity and memory. Of note, however, low physiological concentrations of Aβ seem necessary for LTP induction and for memory formation. This should come as no surprise, since hormesis emerged as a central dogma in biology. Additionally, recent evidence indicates that Aβ is one of the downstream effectors for cAMP and cGMP to trigger synaptic plasticity and memory. We argue that these emerging findings depict a new scenario that should change the general view on the amyloidogenic pathway, and that could have significant implications for the understanding of AD and its pharmacological treatment in the future.
Collapse
|
46
|
Increased Gi protein signaling potentiates the negative chronotropic effect of adenosine in the SHR right atrium. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:513-522. [PMID: 29470593 DOI: 10.1007/s00210-018-1482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
Hypertension is a risk factor for cardiovascular diseases, which have been associated with dysfunction of sympathetic and purinergic neurotransmission. Therefore, herein, we evaluated whether modifications of adenosine receptor signaling may contribute to the cardiac dysfunction observed in hypertension. Isolated right atria from spontaneously hypertensive (SHR) or normotensive Wistar rats (NWR) were used to investigate the influence of adenosine receptor signaling cascade in the cardiac chronotropism. Our results showed that adenosine, the endogenous agonist of adenosine receptors, and CPA, a selective agonist of A1 receptor, decreased the atrial chronotropism of NWR and SHR in a concentration- and time-dependent manner, culminating in cardiac arrest (0 bpm). Interestingly, a 3-fold lower concentration of adenosine was required to induce the negative chronotropic effect in SHR atria. Pre-incubation of tissues from both strains with DPCPX, a selective A1 receptor antagonist, inhibited the negative chronotropic effect of CPA, while simultaneous inhibition of A2 and A3 receptors, with ZM241385 and MRS1523, did not change the adenosine chronotropic effects. Moreover, 1 μg/ml pertussis toxin, which inactivates the Gαi protein subunit, reduced by 80% the negative chronotropic effects of adenosine in the NWR atrium, with minor effects in SHR tissue. These data indicate that the negative chronotropic effect of adenosine in right atrium depends exclusively on the activation of A1 receptors. Moreover, the distinct responsiveness of NWR and SHR atria to pertussis toxin reveals that the enhanced negative chronotropic response of SHR right atrium is probably due to an increased activity of Gαi protein-mediated.
Collapse
|
47
|
Camara H, da Silva Junior ED, Garcia AG, Jurkiewicz A, Rodrigues JQD. Cardiac arrest induced by muscarinic or adenosine receptors agonists is reversed by DPCPX through double mechanism. Eur J Pharmacol 2018; 819:9-15. [PMID: 28974348 DOI: 10.1016/j.ejphar.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
In the right atrium (RA), adenosine and acetylcholine inhibit the pacemaker function of the sinoatrial node and induce cardiac arrest. Pre-incubation of receptor antagonists is known to inhibit the cardiac arrest induced by these agonists; however, the effect of antagonist administration after established cardiac arrest has not been described. Therefore, we assessed whether specific receptor antagonists could revert cardiac arrest induced by adenosine and muscarinic receptors activation. RA isolated from adults Wistar rats were mounted in an organ bath containing Krebs solution. Cardiac arrest was induced by adenosine or ATP (1mM), the A1 adenosine receptor agonist CPA (0.1-1µM), and muscarinic receptor agonists, carbachol (0.3-1µM) and acetylcholine (1mM). After establishing the cardiac arrest, the A1 adenosine receptor antagonist DPCPX (0.3-30µM), the muscarinic receptor antagonist atropine (10nM to 100µM) or the phosphodiesterase inhibitor IBMX (10-300µM) were incubated in order to check for the return of spontaneous contractions. DPCPX reversed the cardiac arrest induced by adenosine, ATP and CPA. In addition, atropine reversed the cardiac arrest induced by carbachol. Unexpectedly, DPCPX also reversed the cardiac arrest induced by carbachol. Similarly to DPCPX, the phosphodiesterase inhibitor IBMX reversed the cardiac arrest induced by adenosine, CPA and carbachol. The antagonism of adenosine and acetylcholine receptors activation, as well as phosphodiesterase inhibition, are able to revert cardiac arrest. DPCPX restore spontaneous contractions via the selective antagonism of A1 adenosine receptor and through a secondary mechanism likely related to phosphodiesterase inhibition.
Collapse
Affiliation(s)
- Henrique Camara
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Antônio G Garcia
- Instituto Teófilo Hernando, Universidad Autonoma de Madrid, Madrid, Spain
| | - Aron Jurkiewicz
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | | |
Collapse
|
48
|
Phosri S, Bunrukchai K, Parichatikanond W, Sato VH, Mangmool S. Epac is required for exogenous and endogenous stimulation of adenosine A 2B receptor for inhibition of angiotensin II-induced collagen synthesis and myofibroblast differentiation. Purinergic Signal 2018; 14:141-156. [PMID: 29322373 DOI: 10.1007/s11302-017-9600-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/25/2017] [Indexed: 12/31/2022] Open
Abstract
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.
Collapse
Affiliation(s)
- Sarawuth Phosri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Kwanchai Bunrukchai
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Vilasinee H Sato
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
49
|
Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S. The Role of Adenosine Receptors in Psychostimulant Addiction. Front Pharmacol 2018; 8:985. [PMID: 29375384 PMCID: PMC5767594 DOI: 10.3389/fphar.2017.00985] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors (AR) are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS), adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC), through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A), as well as with other subtypes (e.g., A2A/D2), opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are partly responsible for the psychomotor and reinforcing effects of psychostimulant drugs, such as cocaine and amphetamine, and the stimulation of A2A receptor is proposed as a potential therapeutic target for the treatment of drug addiction. The overall analysis of presented data provide evidence that excitatory modulation of A1 and A2A receptors constitute promising tools to counteract psychostimulants addiction.
Collapse
Affiliation(s)
- Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Carlos A. Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Nursing and Physiotherapy, University of Castilla-La Mancha, Toledo, Spain
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
50
|
Yang FW, Fu Y, Li Y, He YH, Mu MY, Liu QC, Long J, Lin SD. Prostaglandin E1 protects hepatocytes against endoplasmic reticulum stress-induced apoptosis via protein kinase A-dependent induction of glucose-regulated protein 78 expression. World J Gastroenterol 2017; 23:7253-7264. [PMID: 29142472 PMCID: PMC5677201 DOI: 10.3748/wjg.v23.i40.7253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the protective effect of prostaglandin E1 (PGE1) against endoplasmic reticulum (ER) stress-induced hepatocyte apoptosis, and to explore its underlying mechanisms. METHODS Thapsigargin (TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinoma-derived cell line HepG2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RT-PCR. Apoptotic index and cell viability of L02 cells and HepG2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. RESULTS Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and HepG2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein (CHOP), glucose-regulated protein (GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and mRNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phospho-eukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A (PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78. CONCLUSION Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathway-dependent induction of GRP78 expression.
Collapse
Affiliation(s)
- Fang-Wan Yang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Yu Fu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
- Department of Infectious Diseases, Heze Municipal Hospital, Heze 274000, Shandong Province, China
| | - Ying Li
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Mao-Yuan Mu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Qi-Chuan Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Jun Long
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| | - Shi-De Lin
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
| |
Collapse
|