1
|
Chen J, Liu S, Li Y, Zhang Z, Liao N, Shi H, Hu W, Lin Y, Chen Y, Gao B, Huang D, Liang A, Gao W. Deep learning model for automated detection of fresh and old vertebral fractures on thoracolumbar CT. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:1177-1186. [PMID: 39708132 DOI: 10.1007/s00586-024-08623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE To develop a deep learning system for automatic segmentation of compression fracture vertebral bodies on thoracolumbar CT and differentiate between fresh and old fractures. METHODS We included patients with thoracolumbar fractures treated at our Hospital South Campus from January 2020 to December 2023, with prospective validation from January to June 2024, and used data from the North Campus from January to December 2023 for external validation. Fresh fractures were defined as back pain lasting less than 4 weeks, with MRI showing bone marrow edema (BME). We utilized a 3D V-Net for image segmentation and several ResNet and DenseNet models for classification, evaluating performance with ROC curves, accuracy, sensitivity, specificity, precision, F1 score, and AUC. The optimal model was selected to construct deep learning system and its diagnostic efficacy was compared with that of two clinicians. RESULTS The training dataset included 238 vertebras (man/women: 55/183; age: 72.11 ± 11.55), with 59 in internal validation (man/women: 13/46; age: 74.76 ± 8.96), 34 in external validation, and 48 in prospective validation. The 3D V-Net model achieved a DSC of 0.90 on the validation dataset. ResNet18 performed best among classification models, with an AUC of 0.96 in validation, 0.89 in external dataset, and 0.87 in prospective validation, surpassing the two clinicians in both external and prospective validations. CONCLUSION The deep learning model can automatically and accurately segment the vertebral bodies with compression fractures and classify them as fresh or old fractures, thereby assisting clinicians in making clinical decisions.
Collapse
Affiliation(s)
- Jianan Chen
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Song Liu
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Yong Li
- Sun Yat-Sen Memorial Hospital Department of Radiology, Guangzhou, China
| | - Zaoqiang Zhang
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Nianchun Liao
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Huihong Shi
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Wenjun Hu
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Youxi Lin
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Yanbo Chen
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Bo Gao
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China
| | - Dongsheng Huang
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China.
| | - Anjing Liang
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China.
| | - Wenjie Gao
- Sun Yat-Sen Memorial Hospital Department of Orthopedics, Guangzhou, China.
| |
Collapse
|
2
|
Zhang Z, Han J, Ji W, Lou H, Li Z, Hu Y, Wang M, Qi B, Liu S. Improved deep learning for automatic localisation and segmentation of rectal cancer on T2-weighted MRI. J Med Radiat Sci 2024; 71:509-518. [PMID: 38654675 PMCID: PMC11638361 DOI: 10.1002/jmrs.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION The automatic segmentation approaches of rectal cancer from magnetic resonance imaging (MRI) are very valuable to relieve physicians from heavy workloads and enhance working efficiency. This study aimed to compare the segmentation accuracy of a proposed model with the other three models and the inter-observer consistency. METHODS A total of 65 patients with rectal cancer who underwent MRI examination were enrolled in our cohort and were randomly divided into a training cohort (n = 45) and a validation cohort (n = 20). Two experienced radiologists independently segmented rectal cancer lesions. A novel segmentation model (AttSEResUNet) was trained on T2WI based on ResUNet and attention mechanisms. The segmentation performance of the AttSEResUNet, U-Net, ResUNet and U-Net with Attention Gate (AttUNet) was compared, using Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance to agreement (MDA) and Jaccard index. The segmentation variability of automatic segmentation models and inter-observer was also evaluated. RESULTS The AttSEResUNet with post-processing showed perfect lesion recognition rate (100%) and false recognition rate (0), and its evaluation metrics outperformed other three models for two independent readers (observer 1: DSC = 0.839 ± 0.112, HD = 9.55 ± 6.68, MDA = 0.556 ± 0.722, Jaccard index = 0.736 ± 0.150; observer 2: DSC = 0.856 ± 0.099, HD = 11.0 ± 10.1, MDA = 0.789 ± 1.07, Jaccard index = 0.673 ± 0.130). The segmentation performance of AttSEResUNet was comparable and similar to manual variability (DSC = 0.857 ± 0.115, HD = 10.0 ± 10.0, MDA = 0.704 ± 1.17, Jaccard index = 0.666 ± 0.139). CONCLUSION Comparing with other three models, the proposed AttSEResUNet model was demonstrated as a more accurate model for contouring the rectal tumours in axial T2WI images, whose variability was similar to that of inter-observer.
Collapse
Affiliation(s)
- Zaixian Zhang
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Junqi Han
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Weina Ji
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Henan Lou
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhiming Li
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yabin Hu
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mingjia Wang
- College of Automation and Electronic EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Baozhu Qi
- College of Automation and Electronic EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Shunli Liu
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
3
|
Zhao H, Su Y, Wang Y, Lyu Z, Xu P, Gu W, Tian L, Fu P. Using tumor habitat-derived radiomic analysis during pretreatment 18F-FDG PET for predicting KRAS/NRAS/BRAF mutations in colorectal cancer. Cancer Imaging 2024; 24:26. [PMID: 38342905 PMCID: PMC10860234 DOI: 10.1186/s40644-024-00670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/29/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND To investigate the association between Kirsten rat sarcoma viral oncogene homolog (KRAS) / neuroblastoma rat sarcoma viral oncogene homolog (NRAS) /v-raf murine sarcoma viral oncogene homolog B (BRAF) mutations and the tumor habitat-derived radiomic features obtained during pretreatment 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with colorectal cancer (CRC). METHODS We retrospectively enrolled 62 patients with CRC who had undergone 18F-FDG PET/computed tomography from January 2017 to July 2022 before the initiation of therapy. The patients were randomly split into training and validation cohorts with a ratio of 6:4. The whole tumor region radiomic features, habitat-derived radiomic features, and metabolic parameters were extracted from 18F-FDG PET images. After reducing the feature dimension and selecting meaningful features, we constructed a hierarchical model of KRAS/NRAS/BRAF mutations by using the support vector machine. The convergence of the model was evaluated by using learning curve, and its performance was assessed based on the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis. The SHapley Additive exPlanation was used to interpret the contributions of various features to predictions of the model. RESULTS The model constructed by using habitat-derived radiomic features had adequate predictive power with respect to KRAS/NRAS/BRAF mutations, with an AUC of 0.759 (95% CI: 0.585-0.909) on the training cohort and that of 0.701 (95% CI: 0.468-0.916) on the validation cohort. The model exhibited good convergence, suitable calibration, and clinical application value. The results of the SHapley Additive explanation showed that the peritumoral habitat and a high_metabolism habitat had the greatest impact on predictions of the model. No meaningful whole tumor region radiomic features or metabolic parameters were retained during feature selection. CONCLUSION The habitat-derived radiomic features were found to be helpful in stratifying the status of KRAS/NRAS/BRAF in CRC patients. The approach proposed here has significant implications for adjuvant treatment decisions in patients with CRC, and needs to be further validated on a larger prospective cohort.
Collapse
Affiliation(s)
- Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yexin Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Kim M, Park T, Oh BY, Kim MJ, Cho BJ, Son IT. Performance reporting design in artificial intelligence studies using image-based TNM staging and prognostic parameters in rectal cancer: a systematic review. Ann Coloproctol 2024; 40:13-26. [PMID: 38414120 PMCID: PMC10915525 DOI: 10.3393/ac.2023.00892.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
PURPOSE The integration of artificial intelligence (AI) and magnetic resonance imaging in rectal cancer has the potential to enhance diagnostic accuracy by identifying subtle patterns and aiding tumor delineation and lymph node assessment. According to our systematic review focusing on convolutional neural networks, AI-driven tumor staging and the prediction of treatment response facilitate tailored treat-ment strategies for patients with rectal cancer. METHODS This paper summarizes the current landscape of AI in the imaging field of rectal cancer, emphasizing the performance reporting design based on the quality of the dataset, model performance, and external validation. RESULTS AI-driven tumor segmentation has demonstrated promising results using various convolutional neural network models. AI-based predictions of staging and treatment response have exhibited potential as auxiliary tools for personalized treatment strategies. Some studies have indicated superior performance than conventional models in predicting microsatellite instability and KRAS status, offer-ing noninvasive and cost-effective alternatives for identifying genetic mutations. CONCLUSION Image-based AI studies for rectal can-cer have shown acceptable diagnostic performance but face several challenges, including limited dataset sizes with standardized data, the need for multicenter studies, and the absence of oncologic relevance and external validation for clinical implantation. Overcoming these pitfalls and hurdles is essential for the feasible integration of AI models in clinical settings for rectal cancer, warranting further research.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Taeyong Park
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang, Korea
| | - Bo Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Min Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bum-Joo Cho
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang, Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
5
|
Xiang Y, Li S, Song M, Wang H, Hu K, Wang F, Wang Z, Niu Z, Liu J, Cai Y, Li Y, Zhu X, Geng J, Zhang Y, Teng H, Wang W. KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients. BMC Med Imaging 2023; 23:210. [PMID: 38087207 PMCID: PMC10717608 DOI: 10.1186/s12880-023-01173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Mutated KRAS may indicate an invasive nature and predict prognosis in locally advanced rectal cancer (LARC). We aimed to establish a radiomic model using pretreatment T2W MRIs to predict KRAS status and explore the association between the KRAS status or model predictions and lung metastasis. METHODS In this retrospective multicentre study, LARC patients from two institutions between January 2012 and January 2019 were randomly divided into training and testing cohorts. Least absolute shrinkage and selection operator (LASSO) regression and the support vector machine (SVM) classifier were utilized to select significant radiomic features and establish a prediction model, which was validated by radiomic score distribution and decision curve analysis. The association between the model stratification and lung metastasis was investigated by Cox regression and Kaplan‒Meier survival analysis; the results were compared by the log-rank test. RESULTS Overall, 103 patients were enrolled (73 and 30 in the training and testing cohorts, respectively). The median follow-up was 38.1 months (interquartile range: 26.9, 49.4). The radiomic model had an area under the curve (AUC) of 0.983 in the training cohort and 0.814 in the testing cohort. Using a cut-off of 0.679 defined by the receiver operating characteristic (ROC) curve, patients with a high radiomic score (RS) had a higher risk for lung metastasis (HR 3.565, 95% CI 1.337, 9.505, p = 0.011), showing similar predictive performances for the mutant and wild-type KRAS groups (HR 3.225, 95% CI 1.249, 8.323, p = 0.016, IDI: 1.08%, p = 0.687; NRI 2.23%, p = 0.766). CONCLUSIONS We established and validated a radiomic model for predicting KRAS status in LARC. Patients with high RS experienced more lung metastases. The model could noninvasively detect KRAS status and may help individualize clinical decision-making.
Collapse
Affiliation(s)
- Yirong Xiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shuai Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Maxiaowei Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hongzhi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengwei Wang
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Zhi Wang
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, China
| | - Zhiyong Niu
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, China
| | - Jin Liu
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jianhao Geng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yangzi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
6
|
O’Sullivan NJ, Temperley HC, Horan MT, Corr A, Mehigan BJ, Larkin JO, McCormick PH, Kavanagh DO, Meaney JFM, Kelly ME. Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers (Basel) 2023; 15:5816. [PMID: 38136361 PMCID: PMC10741704 DOI: 10.3390/cancers15245816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Radiogenomics, a sub-domain of radiomics, refers to the prediction of underlying tumour biology using non-invasive imaging markers. This novel technology intends to reduce the high costs, workload and invasiveness associated with traditional genetic testing via the development of 'imaging biomarkers' that have the potential to serve as an alternative 'liquid-biopsy' in the determination of tumour biological characteristics. Radiogenomics also harnesses the potential to unlock aspects of tumour biology which are not possible to assess by conventional biopsy-based methods, such as full tumour burden, intra-/inter-lesion heterogeneity and the possibility of providing the information of tumour biology longitudinally. Several studies have shown the feasibility of developing a radiogenomic-based signature to predict treatment outcomes and tumour characteristics; however, many lack prospective, external validation. We performed a systematic review of the current literature surrounding the use of radiogenomics in rectal cancer to predict underlying tumour biology.
Collapse
Affiliation(s)
- Niall J. O’Sullivan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Hugo C. Temperley
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Michelle T. Horan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Alison Corr
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
| | - Brian J. Mehigan
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - John O. Larkin
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Paul H. McCormick
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Dara O. Kavanagh
- Department of Surgery, Tallaght University Hospital, D24 NR0A Dublin, Ireland
- Department of Surgery, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - James F. M. Meaney
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Michael E. Kelly
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Trinity St. James’s Cancer Institute (TSJCI), D08 NHY1 Dublin, Ireland
| |
Collapse
|
7
|
Di Costanzo G, Ascione R, Ponsiglione A, Tucci AG, Dell’Aversana S, Iasiello F, Cavaglià E. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:406-421. [PMID: 37455833 PMCID: PMC10344900 DOI: 10.37349/etat.2023.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed.
Collapse
Affiliation(s)
- Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Raffaele Ascione
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Giacoma Tucci
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Francesca Iasiello
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| |
Collapse
|
8
|
Zhang G, Xu Z, Zheng J, Wang M, Ren J, Wei X, Huan Y, Zhang J. Prognostic value of multi b-value DWI in patients with locally advanced rectal cancer. Eur Radiol 2023; 33:1928-1937. [PMID: 36219237 DOI: 10.1007/s00330-022-09159-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate the potential of multi b-value DWI in predicting the prognosis of patients with locally advanced rectal cancer (LARC). METHODS From 2015 to 2019, a total of 161 patients with LARC were enrolled and randomly sampled into a training set (n = 113) and validation set (n = 48). Multi b-value DWI (b = 0~1500 s/mm2) scans were postprocessed to generate functional parameters, including apparent diffusion coefficient (ADC), Dt, Dp, f, distributed diffusion coefficient (DDC), and α. Histogram features of each functional parameter were submitted into Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate COX analysis to generate DWI_score based on the training set. The prognostic model was constructed with functional parameter, DWI_score, and clinicopathologic factors by using univariate and multivariate COX analysis on the training set and verified on the validation set. RESULTS Multivariate COX analysis revealed that DWI_score was an independent indicator for 5-year progression-free survival (PFS, HR = 5.573, p < 0.001), but not for overall survival (OS, HR = 2.177, p = 0.051). No mean value of functional parameters was correlated with PFS or OS. Prognostic model for 5-year PFS based on DWI_score, TNM-stage, mesorectal fascia (MRF), and extramural venous invasion (EMVI) showed good performance both in the training set (AUC = 0.819) and validation set (AUC = 0.815). CONCLUSIONS The DWI_score based on histogram features of multi b-value DWI functional parameters was an independent factor for PFS of LARC and the prognostic model with a combination of DWI_score and clinicopathologic factors could indicate the progression risk before treatment. KEY POINTS • Mean value of functional parameters obtained from multi b-value DWI might not be useful to assess the prognosis of LARC. • The DWI_score based on histogram features of multi b-value DWI functional parameters was an independent prognosis factor for PFS of LARC. • Prognostic model based on DWI_score and clinicopathologic factors could indicate the progression risk of LARC before treatment.
Collapse
Affiliation(s)
- Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No.127, Chang Le West Road, Xi'an, 710032, Shaanxi, China
| | - Ziliang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No.127, Chang Le West Road, Xi'an, 710032, Shaanxi, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mian Wang
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnostics, GE Healthcare China, Beijing, China
| | - Xiaocheng Wei
- Department of MR Research, GE Healthcare China, Beijing, China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No.127, Chang Le West Road, Xi'an, 710032, Shaanxi, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No.127, Chang Le West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Wong C, Fu Y, Li M, Mu S, Chu X, Fu J, Lin C, Zhang H. MRI-Based Artificial Intelligence in Rectal Cancer. J Magn Reson Imaging 2023; 57:45-56. [PMID: 35993550 DOI: 10.1002/jmri.28381] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Rectal cancer (RC) accounts for approximately one-third of colorectal cancer (CRC), with death rates increasing in patients younger than 50 years old. Magnetic resonance imaging (MRI) is routinely performed for tumor evaluation. However, the semantic features from images alone remain insufficient to guide treatment decisions. Functional MRIs are useful for revealing microstructural and functional abnormalities and nevertheless have low or modest repeatability and reproducibility. Therefore, during the preoperative evaluation and follow-up treatment of patients with RC, novel noninvasive imaging markers are needed to describe tumor characteristics to guide treatment strategies and achieve individualized diagnosis and treatment. In recent years, the development of artificial intelligence (AI) has created new tools for RC evaluation based on MRI. In this review, we summarize the research progress of AI in the evaluation of staging, prediction of high-risk factors, genotyping, response to therapy, recurrence, metastasis, prognosis, and segmentation with RC. We further discuss the challenges of clinical application, including improvement in imaging, model performance, and the biological meaning of features, which may also be major development directions in the future. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Chinting Wong
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Mingyang Li
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Shengnan Mu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Xiaotong Chu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Jiahui Fu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Chenghe Lin
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| |
Collapse
|
10
|
Liu H, Yin H, Li J, Dong X, Zheng H, Zhang T, Yin Q, Zhang Z, Lu M, Zhang H, Wang D. A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer. J Magn Reson Imaging 2022; 56:1659-1668. [PMID: 35587946 DOI: 10.1002/jmri.28237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recent studies showed the potential of MRI-based deep learning (DL) for assessing treatment response in rectal cancer, but the role of MRI-based DL in evaluating Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation remains unclear. PURPOSE To develop a DL method based on T2-weighted imaging (T2WI) and clinical factors for noninvasively evaluating KRAS mutation in rectal cancer. STUDY TYPE Retrospective. SUBJECTS A total of 376 patients (108 women [28.7%]) with histopathology-confirmed rectal adenocarcinoma and KRAS mutation status. FIELD STRENGTH/SEQUENCE A 3 T, turbo spin echo T2WI and single-shot echo-planar diffusion-weighted imaging (b = 0, 1000 sec/mm2 ). ASSESSMENT A clinical model was constructed with clinical factors (age, gender, carcinoembryonic antigen level, and carbohydrate antigen 199 level) and MRI features (tumor length, tumor location, tumor stage, lymph node stage, and extramural vascular invasion), and two DL models based on modified MobileNetV2 architecture were evaluated for diagnosing KRAS mutation based on T2WI alone (image model) or both T2WI and clinical factors (combined model). The clinical usefulness of these models was evaluated through calibration analysis and decision curve analysis (DCA). STATISTICAL TESTS Mann-Whitney U test, Chi-squared test, Fisher's exact test, logistic regression analysis, receiver operating characteristic curve (ROC), Delong's test, Hosmer-Lemeshow test, interclass correlation coefficients, and Fleiss kappa coefficients (P < 0.05 was considered statistically significant). RESULTS All the nine clinical-MRI characteristics were included for clinical model development. The clinical model, image model, and combined model in the testing cohort demonstrated good calibration and achieved areas under the curve (AUCs) of 0.668, 0.765, and 0.841, respectively. The combined model showed improved performance compared to the clinical model and image model in two cohorts. DCA confirmed the higher net benefit of the combined model than the other two models when the threshold probability is between 0.05 and 0.85. DATA CONCLUSION The proposed combined DL model incorporating T2WI and clinical factors may show good diagnostic performance. Thus, it could potentially serve as a supplementary approach for noninvasively evaluating KRAS mutation in rectal cancer. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongkun Yin
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Jinning Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zheng
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufeng Yin
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyang Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minda Lu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiling Zhang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Mao Q, Zhou MT, Zhao ZP, Liu N, Yang L, Zhang XM. Role of radiomics in the diagnosis and treatment of gastrointestinal cancer. World J Gastroenterol 2022; 28:6002-6016. [PMID: 36405385 PMCID: PMC9669820 DOI: 10.3748/wjg.v28.i42.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main causes of cancer death. Preoperative risk stratification is critical to guide patient management, but traditional imaging studies have difficulty predicting its biological behavior. The emerging field of radiomics allows the conversion of potential pathophysiological information in existing medical images that cannot be visually recognized into high-dimensional quantitative image features. Tumor lesion characterization, therapeutic response evaluation, and survival prediction can be achieved by analyzing the relationships between these features and clinical and genetic data. In recent years, the clinical application of radiomics to GIC has increased dramatically. In this editorial, we describe the latest progress in the application of radiomics to GIC and discuss the value of its potential clinical applications, as well as its limitations and future directions.
Collapse
Affiliation(s)
- Qi Mao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Mao-Ting Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zhang-Ping Zhao
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Ning Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
12
|
Fontaine P, Andrearczyk V, Oreiller V, Abler D, Castelli J, Acosta O, De Crevoisier R, Vallières M, Jreige M, Prior JO, Depeursinge A. Cleaning Radiotherapy Contours for Radiomics Studies, is it Worth it? A Head and Neck Cancer Study. Clin Transl Radiat Oncol 2022; 33:153-158. [PMID: 35243026 PMCID: PMC8881196 DOI: 10.1016/j.ctro.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
PET images features are more stable across different delineation of the same target. Shape family features are more stable. The survival model based on Dedicated contours achieved better performance for predicting PFS. A vast majority of studies in the radiomics field are based on contours originating from radiotherapy planning. This kind of delineation (e.g. Gross Tumor Volume, GTV) is often larger than the true tumoral volume, sometimes including parts of other organs (e.g. trachea in Head and Neck, H&N studies) and the impact of such over-segmentation was little investigated so far. In this paper, we propose to evaluate and compare the performance between models using two contour types: those from radiotherapy planning, and those specifically delineated for radiomics studies. For the latter, we modified the radiotherapy contours to fit the true tumoral volume. The two contour types were compared when predicting Progression-Free Survival (PFS) using Cox models based on radiomics features extracted from FluoroDeoxyGlucose-Positron Emission Tomography (FDG-PET) and CT images of 239 patients with oropharyngeal H&N cancer collected from five centers, the data from the 2020 HECKTOR challenge. Using Dedicated contours demonstrated better performance for predicting PFS, where Harell’s concordance indices of 0.61 and 0.69 were achieved for Radiotherapy and Dedicated contours, respectively. Using automatically Resegmented contours based on a fixed intensity range was associated with a C-index of 0.63. These results illustrate the importance of using clean dedicated contours that are close to the true tumoral volume in radiomics studies, even when tumor contours are already available from radiotherapy treatment planning
Collapse
Affiliation(s)
- Pierre Fontaine
- Univ Rennes, CLCC Eugene Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
- Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Vincent Andrearczyk
- Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Valentin Oreiller
- Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Daniel Abler
- Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Joel Castelli
- Univ Rennes, CLCC Eugene Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Oscar Acosta
- Univ Rennes, CLCC Eugene Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Renaud De Crevoisier
- Univ Rennes, CLCC Eugene Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Martin Vallières
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Adrien Depeursinge
- Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|