1
|
Deshpande A, Mahale S, Kanduri C. Beyond the Transcript: Translating Non-Coding RNAs and Their Impact on Cellular Regulation. Cancers (Basel) 2025; 17:1555. [PMID: 40361481 PMCID: PMC12071610 DOI: 10.3390/cancers17091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the human transcriptome and play diverse structural, catalytic, and regulatory roles. The ability of ncRNAs to be translated into functional peptides and microproteins expands our understanding of their regulatory potential beyond their established non-coding functions. Our comprehensive search identified 86 translating "non-coding" RNAs. While translating ncRNAs have traditionally been categorized as "peptide-encoding", in this study, we introduce a novel classification based on amino acid length, distinguishing their products as ncRNA encoded peptides (ncRNA-PEPs), which are less than 60 amino acids, or ncRNA encoded microproteins (ncRNA-MPs) ranging from 61 to 200 amino acids. These peptides and microproteins act as co-regulators in cell signaling, transcriptional regulation, and protein complex assembly, playing a role in both health and disease. We outline the molecular pathways by which ncRNA-PEPs and ncRNA-MPs could govern cell cycle progression, highlighting their influence on cell cycle transitions, oncogenic and tumor suppressor pathways, metabolic homeostasis, autophagy, and on key cell cycle regulators like PCNA, Rad18, and CDK-cyclin complexes. Furthermore, we highlight recent advancements in their detection and characterization, exploring their evolutionary origins, species-specific conservation, and potential therapeutic applications. Our findings underscore the emerging significance of ncRNA-PEPs and ncRNA-MPs as integral regulators of cellular processes, highlighting their functional versatility and opening promising avenues for further research and potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden; (A.D.); (S.M.)
| |
Collapse
|
2
|
Stencel D, Kowalska J, Rzepka Z, Banach K, Karkoszka-Stanowska M, Wrześniok D. The Assessment of the Effect of Autophagy Inhibitors-Chloroquine and 3-Methyladenine on the Antitumor Activity of Trametinib Against Amelanotic Melanoma Cells. Cells 2025; 14:557. [PMID: 40214510 PMCID: PMC11988765 DOI: 10.3390/cells14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
Malignant melanoma, particularly amelanotic melanoma, contributes to a very serious problem in public health. One way to find new therapies is to learn about and understand the molecular pathways that regulate cancer growth and development. In the case of a tumor, the autophagy process can lead to the development or inhibition of cancer. This study aimed to assess the cytotoxicity of connection trametinib (MEK1 and MEK2 kinase inhibitor) with autophagy inhibitors-chloroquine (lysosomal clearance of autophagosomes inhibitor) and 3-methyladenine (phosphatidylinositol 3-kinases inhibitor), on two amelanotic melanoma cell lines (C32 and A-375). The results showed that combination therapy had better anti-proliferative effects than alone therapy in both cell lines. The C32 cell line was more sensitive to 3-methyladenine treatment (alone and in combinations), and the A375 line showed sensitivity to chloroquine and 3-methyladenine (alone and in combinations). The anti-proliferative effect was accompanied by dysregulation of the cell cycle, a decrease in the reduced thiols, the depolarization of the mitochondrial membrane and the level of p44/p42 MAPK. Both inhibitors have the ability to induce apoptosis. Differences in the level of LC3A/B and LC3B proteins between the chloroquine and the 3-methyladenine samples indicate that these drugs inhibit autophagy at different stages. The enhancement of the effect of trametinib by autophagy inhibitors suggests the possibility of combining drugs with anti-cancer potential with modulators of the autophagy process.
Collapse
Affiliation(s)
- Dominika Stencel
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (J.K.); (Z.R.); (K.B.); (M.K.-S.)
| | | | | | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (J.K.); (Z.R.); (K.B.); (M.K.-S.)
| |
Collapse
|
3
|
Li Y, Xue X, Yu L, Qian J, Li X, Tian M, Yang J, Deng R, Lu C, Xiao C, Liu Y. Recombinant high-density lipoprotein targeted delivery of celastrol to promote foam cells lipophagy against early atherosclerosis. J Nanobiotechnology 2025; 23:237. [PMID: 40119460 PMCID: PMC11929195 DOI: 10.1186/s12951-025-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
INTRODUCTION Atherosclerosis serving as the main underlying factor of cardiovascular disease (CVD) remains the primary cause of mortality and morbidity globally, while the deposition of massive cholesterol in macrophage-derived foam cells exerts pivotal roles in the occurrence and progression of atherosclerosis. Celastrol (CEL) is a bioactive ingredient owning potent capability to modulate lipid metabolism, whereas the poor bioavailability and potential toxicity limit its clinical application. OBJECTIVES This study aims to design a CEL-loaded recombinant high-density lipoprotein (rHDL) delivery platform for active targeting, which may effectively promote lipid degradation in foam cells and reversely transport excessive cholesterol to the liver for metabolism in time. METHODS The rHDL loaded with CEL (CEL-rHDL) was prepared by the thin film dispersion method. Then the anti-atherosclerotic efficacy and targeted delivery to foam cells of atherosclerotic lesions were verified both in vitro and in vivo. RNA-sequence was applied to reveal the potential mechanism against early atherosclerosis, which was further validated through several molecular biology experiments. RESULTS The prepared CEL-rHDL increased the targeting efficiency to foam cells of atherosclerotic lesions, mitigated its off-target toxicity, and improved anti-atherosclerotic efficacy. Importantly, CEL-rHDL decreased lipid storage in foam cells by triggering lipophagy via the activation of Ca2+/CaMKKβ/AMPK/mTOR signaling pathway and reverse cholesterol transport (RCT). CONCLUSION A combination of hypolipidemic chemo-intervention with rHDL participated specific and reverse delivery may offer a promising strategy for biocompatible treatment of early atherosclerosis.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rongjun Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
5
|
Bosch‐Calvet M, Pérez‐Venteo A, Cebria‐Xart A, Garcia‐Cajide M, Mauvezin C. Nuclear stiffness through lamin A/C overexpression differentially modulates chromosomal instability biomarkers. Biol Cell 2025; 117:e12001. [PMID: 40012191 PMCID: PMC11865694 DOI: 10.1111/boc.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND INFORMATION Mitosis is crucial for the faithful transmission of genetic material, and disruptions can result in chromosomal instability (CIN), a hallmark of cancer. CIN is a known driver of tumor heterogeneity and anti-cancer drug resistance, thus highlighting the need to assess CIN levels in cancer cells to design effective targeted therapy. While micronuclei are widely recognized as CIN markers, we have recently identified the toroidal nucleus, a novel ring-shaped nuclear phenotype arising as well from chromosome mis-segregation. RESULTS Here, we examined whether increasing nuclear envelope stiffness through lamin A/C overexpression could affect the formation of toroidal nuclei and micronuclei. Interestingly, lamin A/C overexpression led to an increase in toroidal nuclei while reducing micronuclei prevalence. We demonstrated that chromatin compaction and nuclear stiffness drive the formation of toroidal nuclei. Furthermore, inhibition of autophagy and lysosomal function elevated the frequency of toroidal nuclei without affecting the number of micronuclei in the whole cell population. We demonstrated that this divergence between the two CIN biomarkers is independent of defects in lamin A processing. CONCLUSIONS AND SIGNIFICANCE These findings uncover a complex interplay between nuclear architecture and levels of CIN, advancing our understanding of the mechanisms supporting genomic stability and further contributing to cancer biology.
Collapse
Affiliation(s)
- Mireia Bosch‐Calvet
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Alejandro Pérez‐Venteo
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Alex Cebria‐Xart
- Institut de Recerca Sant Joan de Déu (IRSJD)BarcelonaSpain
- Cancer Science Programme, Laboratory of Pediatric Cancer EpigeneticsInstitute for Research in Biomedicine (IRB Barcelona)BarcelonaSpain
| | - Marta Garcia‐Cajide
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Caroline Mauvezin
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| |
Collapse
|
6
|
Kumar R, Arrowood C, Schott MB, Nazarko TY. Microlipophagy from Simple to Complex Eukaryotes. Cells 2025; 14:141. [PMID: 39851569 PMCID: PMC11764314 DOI: 10.3390/cells14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes and disease pathogenesis. While fungal, plant, and algal cells use microlipophagy, the most prominent form of lipophagy in animal cells is macrolipophagy. However, recent studies showed that animal cells can also use microlipophagy to metabolize their lipid droplets. Therefore, to no surprise, microlipophagy is conserved from simple unicellular to the most complex multicellular eukaryotes, and many eukaryotic cells can operate both forms of lipophagy. Macrolipophagy is the most studied and better understood at the molecular level, while our understanding of microlipophagy is very sparse. This review will discuss microlipophagy from the perspective of its conservation in eukaryotes and its importance in diseases. To better appreciate the conserved nature of microlipophagy, different organisms and types of cells in which microlipophagy has been reported are also shown in a tabular form. We also point toward the gaps in our understanding of microlipophagy, including the signaling behind microlipophagy, especially in the cells of complex multicellular organisms.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Colin Arrowood
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
7
|
de Andrade Borges A, Ouverney G, Arruda ATS, Ribeiro AV, Ribeiro RCB, de Souza AS, da Fonseca ACC, de Queiroz LN, de Almeida ECP, Pontes B, Rabelo VWH, Ferreira V, Abreu PA, de Carvalho da Silva F, da Silva Magalhaes Forezi L, Robbs BK. Determination of Inhibitory Effect of PKM2 Enzyme and Antitumoral Activity of Novel Coumarin-naphthoquinone Hybrids. Curr Med Chem 2025; 32:359-379. [PMID: 38877863 DOI: 10.2174/0109298673298471240605072658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 02/19/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science. OBJECTIVE This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC). METHODS Given the significance of both naphthoquinones and coumarins as essential pharmacophores/ privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma. RESULTS By several in vitro, in silico, and in vivo approaches, we demonstrated that compound 6e was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound 6e was non-hemolytic and tolerated in vivo at 50 mg/kg with an LD50 of 62.5 mg/kg. Furthermore, compound 6e did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, 6e had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity in vitro. CONCLUSION We assert that compound 6e shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.
Collapse
Grants
- 1A 301873/2019-4, 301873/2019-4 CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico
- E-26/010.101106/2018, E-26/202, 787/2019, E-26/10.002250/2019, E-26/210.085/2022, E-26/010.001318/2019, E-26/211.343/2021, E-26/210.068/2021, E-26/203.191/2017-JCNE, E-26 /202.800/2017-CNE, E-26/010.101106/2018, E-26/200 .870/2021-CNE, E-26/201.369/2021-JCNE, E-26/010/ 001687/2015, E-26/202.787/2019, E-26/210.514/2019, E-26/10.002250/2019, E-26/211.343/2021, E-26/210. 085/2022, E-26/210.068/2021 FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
- 001 Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES)
Collapse
Affiliation(s)
- Amanda de Andrade Borges
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Gabriel Ouverney
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Afonso Thales Sousa Arruda
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Amanda Vieira Ribeiro
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Ruan Carlos Busquet Ribeiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Acacio Silva de Souza
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Programa de Pós-graduação em Odontologia, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Lucas Nicolau de Queiroz
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Elan Cardozo Paes de Almeida
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Vitor Won-Held Rabelo
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Vitor Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, CEP , Macaé, 27965-045, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Luana da Silva Magalhaes Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, CEP, Niterói, 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Departamento de Ciência Básica, Universidade Federal Fluminense, Campus Universitário de Nova Friburgo, CEP, Nova Friburgo, 28625-650, RJ, Brazil
| |
Collapse
|
8
|
Fortini F, Vieceli Dalla Sega F, Lazzarini E, Aquila G, Sysa-Shah P, Bertero E, Ascierto A, Severi P, Ouambo Talla AW, Schirone A, Gabrielson K, Morciano G, Patergnani S, Pedriali G, Pinton P, Ferrari R, Tremoli E, Ameri P, Rizzo P. ErbB2-NOTCH1 axis controls autophagy in cardiac cells. Biofactors 2025; 51:e2091. [PMID: 38994725 DOI: 10.1002/biof.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.
Collapse
Affiliation(s)
| | | | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale Lugano, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Giorgio Aquila
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Edoardo Bertero
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Achille Wilfred Ouambo Talla
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessio Schirone
- Oncology and Hematology Department, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giampaolo Morciano
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Paolo Pinton
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Pietro Ameri
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
- Cardiac, Thoracic, and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Rizzo
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Costábile A, Paredes G, Aversa-Marnai M, Lorenzo C, Pérez Etcheverry D, Castellano M, Quartiani I, Conijeski D, Perretta A, Villarino A, Ferreira AM, Silva-Álvarez V. Understanding the spleen response of Russian sturgeon (Acipenser gueldenstaedtii) dealing with chronic heat stress and Aeromonas hydrophila challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101352. [PMID: 39549417 DOI: 10.1016/j.cbd.2024.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024]
Abstract
Sturgeon aquaculture has grown in recent years, driven by increasing global demand for its highly valued products. Russian sturgeon (Acipenser gueldenstaedtii), recognised as one of the most valuable species for caviar production, is farmed in several warm-temperate regions. However, the substantial temperature increase due to global warming represents a challenge for developing sturgeon aquaculture. Previously we demonstrated that Russian sturgeon under chronic heat stress (CHS) exhibited a liver metabolic reprogramming to meet energy demands, weakening their innate defences and leading to increased mortality and economic losses. Here, we used RNA-seq technology to analyse regulated genes in the spleen of Russian sturgeons exposed to CHS and challenged with Aeromonas hydrophila. The assembly gave 253,415 unigenes, with 13.7 % having at least one reliable functional annotation. We found that CHS caused mild splenitis and upregulated genes related to protein folding, heat shock response, apoptosis and autophagy while downregulated genes associated with the cell cycle. The cell cycle arrest was maintained upon A. hydrophila challenge in heat-stressed fish, potentially inducing cell senescence. Surprisingly, immunoglobulin heavy and light chains were upregulated in the spleen of stressed sturgeons but not in those maintained at tolerable temperatures; however, no changes in IgM serum levels were observed in any condition. Our findings indicate that long-term exposure to non-tolerable temperatures induced a heat shock response and activated apoptosis and autophagy processes in the spleen. These mechanisms may enable the control of tissue damage and facilitate the recycling of cell components in a condition where the nutrient supply by the liver might be insufficient. Stressed sturgeons challenged with A. hydrophila maintain these mechanisms, which could culminate in cellular senescence.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Gonzalo Paredes
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Carmen Lorenzo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, CP 91000, Canelones, Uruguay
| | - Diana Pérez Etcheverry
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, CP 91000, Canelones, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
11
|
Clark C, Barzegar Behrooz A, da Silva Rosa SC, Jacobs J, Weng X, Srivastava A, Vitorino R, Ande SR, Ravandi A, Dhingra S, Pecic S, Miller D, Shojaei S, Ghavami S. BCL2L13 Influences Autophagy and Ceramide Metabolism without Affecting Temozolomide Resistance in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609447. [PMID: 39253475 PMCID: PMC11383306 DOI: 10.1101/2024.08.23.609447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Temozolomide (TMZ) resistance in glioblastoma (GB) poses a significant therapeutic challenge. We developed a TMZ-resistant (TMZ-R) U251 GB model, revealing distinct differences in cell viability, apoptosis, autophagy, and lipid metabolism between TMZ-R and non-resistant (TMZ-NR) cells. TMZ-NR cells exhibited heightened sensitivity to TMZ-induced apoptosis, while TMZ-R cells-maintained viability. Autophagy flux was completely inhibited in TMZ-R cells, indicated by LC3βII and SQSTM1 accumulation. BCL2L13, which showed higher expression in TMZ-R cells, demonstrated increased interaction with Ceramide Synthase 6 (CerS6) and reduced interaction with Ceramide Synthase 2 (CerS2) in TMZ-NR cells. BCL2L13 knockdown (KD) disrupted autophagy flux, decreasing autophagosome accumulation in TMZ-R cells while increasing it in TMZ-NR cells. These changes contributed to altered ceramide profiles, where TMZ-R cells displayed elevated levels of Cer 16:0, 18:0, 20:0, 22:0, 24:0, and 24:1. Our findings highlight BCL2L13 and altered ceramide metabolism as potential therapeutic targets to overcome TMZ resistance in GB.
Collapse
|
12
|
Kang S, Park J, Cheng Z, Ye S, Jun SH, Kang NG. Novel Approach to Skin Anti-Aging: Boosting Pharmacological Effects of Exogenous Nicotinamide Adenine Dinucleotide (NAD +) by Synergistic Inhibition of CD38 Expression. Cells 2024; 13:1799. [PMID: 39513906 PMCID: PMC11544843 DOI: 10.3390/cells13211799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for the regulation of biological metabolism. Previous studies have revealed its role in aging and degenerative diseases, while crucially showing that supplementation with NAD+ or its precursors could ameliorate or reverse the progression of aging. Despite extensive evidence for the role and action of NAD+ in aging, its pharmacological activity on the skin, or even its mechanism, has not been elucidated. In this study, we established a novel approach to effectively utilize NAD+ for skin anti-aging by enhancing the pharmacological efficacy of exogenous NAD+ using a phytochemical complex consisting of quercetin, and enoxolone through inhibition of CD38. Through the comprehensive in vitro experiments based on human fibroblasts, we observed that exogenous NAD+ could exert protective effects against both extrinsic aging induced by ultraviolet light exposure and intrinsic aging. Additionally, we found that its effects were significantly boosted by quercetin and enoxolone. In this in-depth study, we demonstrated that these beneficial effects are mediated by improved sirtuin activation, autophagy, and mitochondrial functionality. Our approach is expected to verify the applicability of the topical application of NAD+ and offer more effective solutions for the unmet needs of patients and consumers who demand more effective anti-aging effects.
Collapse
Affiliation(s)
- Seongsu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Jiwon Park
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Sanghyun Ye
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| |
Collapse
|
13
|
Tripathi D, Gupta T, Pandey P. Exploring Piperine: Unleashing the multifaceted potential of a phytochemical in cancer therapy. Mol Biol Rep 2024; 51:1050. [PMID: 39395120 DOI: 10.1007/s11033-024-09978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Radiotherapy is a cornerstone in the treatment of solid tumors, with extensive Phase III trials confirming its effectiveness. As advancements in treatment technologies and our understanding of tumor resistance mechanisms continue, the role of radiation oncology is set to become even more pivotal. Addressing the global challenge of lethal cancers demands innovative strategies, particularly in minimizing the side effects associated with traditional chemotherapy and ionizing radiation (IR). Recently, there has been growing interest in natural compounds for radioprotection, aiming to prevent tumor development and metastasis. Piperine, a compound found in black and long pepper, has emerged as a promising chemopreventive agent that works effectively without harming normal cells. Mechanistically, piperine modulates key signaling pathways, inhibits cancer cell migration and invasion, and enhances sensitivity to IR. Combining piperine with radiotherapy offers a compelling approach, boosting treatment efficacy while protecting healthy tissues from radiation damage. Piperine's versatile role goes beyond radiosensitization to include radioprotection by inhibiting NF-κB activation, reducing autophagy, and promoting apoptosis in cancer cells. This dual action makes it a promising candidate for personalized cancer care. As research advances, the therapeutic potential of piperine may drive new frontiers in cancer treatment strategies.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India.
| | - Tanya Gupta
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
14
|
Liu J, Yao B, Luo Y, Zhou Z, Ma X, Ding Y, Wang M. Effects of WuHuTang on the function and autophagy of dendritic cells treated with exosomes induced by RSV. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118397. [PMID: 38806137 DOI: 10.1016/j.jep.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE WuHuTang (WHT) is a traditional Chinese medicine compound for treating asthma, and the evidence supports that it has a good effect on acute asthma attacks in children and adults. Respiratory syncytial virus (RSV) is an important factor in the pathogenesis of acute asthma attacks, and the effect on dendritic cells is the key to its pathogenesis. Previous studies have confirmed that the pathogenesis of viruses is related to exosomes. However, there are few studies on the exosomes induced by RSV. Whether WHT can improve the changes caused by RSV-induced exosomes or not is worthy of further exploration. AIM OF THE STUDY We aim to study the effects of RSV-induced exosomes on the function and autophagy of dendritic cells, and to observe the intervention effect of WHT serum on the above effects. METHODS The co-culture model of exosomes derived from bone marrow mesenchymal stem cells induced by RSV (BMSCs-Exo-RSV) and dendritic cells was established, and then WHT serum was used to intervene. After 24 h of intervention, the CCK-8 method, flow cytometry, Elisa, RT-qCPR, and Western blot were used to detect the above-mentioned culture model. RESULTS RSV-induced exosomes had certain effects on viability, apoptosis, and costimulatory molecules generation of dendritic cells. At the same time, the levels of IL-6, IL-12, TNF-α, and autophagy increased, while the levels of IL-4, IL-10, and TGF-β decreased, and the AKT/TSC/mTOR pathway was inhibited. WHT serum could activate this pathway and reverse the above changes in dendritic cells. CONCLUSION This study reveals that the pathogenic effect of RSV is related to the exosomes induced by RSV. The exosomes induced by RSV affect the function of dendritic cells by inhibiting the AKT/TSC/mTOR pathway, which can be activated by WHT to reverse the effects caused by RSV-induced exosomes.
Collapse
Affiliation(s)
- Jinglei Liu
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China
| | - Bing Yao
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China
| | - Yinhe Luo
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China.
| | - Zhi Zhou
- Changsha Hospital for Maternal and Child Health, Hunan, Changsha, 410000, China
| | - Xiao Ma
- Hunan University of Chinese Medicine, Hunan, Changsha, 410208, China
| | - Yi Ding
- Changsha Social Work College, Hunan, Changsha, 410004, China
| | - Mengqing Wang
- The First Hospital of Hunan University of Chinese Medicine, Hunan, Changsha, 410007, China.
| |
Collapse
|
15
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
16
|
Dutta D, Al Hoque A, Paul B, Park JH, Chowdhury C, Quadir M, Banerjee S, Choudhury A, Laha S, Sepay N, Boro P, Kaipparettu BA, Mukherjee B. EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment. J Biomed Sci 2024; 31:81. [PMID: 39164686 PMCID: PMC11334571 DOI: 10.1186/s12929-024-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. METHODS After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. RESULTS We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. CONCLUSIONS Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | | | - Soumik Laha
- CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Priyanka Boro
- CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
17
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
19
|
Wahyudianingsih R, Sanjaya A, Jonathan T, Pranggono EH, Achmad D, Hernowo BS. Chemotherapy's effects on autophagy in the treatment of Hodgkin's lymphoma: a scoping review. Discov Oncol 2024; 15:269. [PMID: 38976168 PMCID: PMC11231119 DOI: 10.1007/s12672-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Classical Hodgkin Lymphomas (HL) are a unique malignant growth with an excellent initial prognosis. However, 10-30% of patients will still relapse after remission. One primary cellular function that has been the focus of tumor progression is autophagy. This process can preserve cellular homeostasis under stressful conditions. Several studies have shown that autophagy may play a role in developing HL. Therefore, this review aimed to explore chemotherapy's effect on autophagy in HL, and the effects of autophagy on HL. METHODS A scoping review in line with the published PRISMA extension for scoping reviews (PRISMA-ScR) was conducted. A literature search was conducted on the MEDLINE database and the Cochrane Central Register of Controlled Trials (CENTRAL). All results were retrieved and screened, and the resulting articles were synthesized narratively. RESULTS The results showed that some cancer chemotherapy also induces autophagic flux. Although the data on HL is limited, since the mechanisms of action of these drugs are similar, we can infer a similar relationship. However, this increased autophagy activity may reflect a mechanism for increasing tumor growth or a cellular compensation to inhibit its growth. Although evidence supports both views, we argued that autophagy allowed cancer cells to resist cell death, mainly due to DNA damage caused by cytotoxic drugs. CONCLUSION Autophagy reflects the cell's adaptation to survive and explains why chemotherapy generally induces autophagy functions. However, further research on autophagy inhibition is needed as it presents a viable treatment strategy, especially against drug-resistant populations that may arise from HL chemotherapy regimens.
Collapse
Affiliation(s)
- Roro Wahyudianingsih
- Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.
| | - Timothy Jonathan
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Emmy Hermiyanti Pranggono
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Oncological Surgery, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| |
Collapse
|
20
|
Esrefoglu M. Harnessing autophagy: A potential breakthrough in digestive disease treatment. World J Gastroenterol 2024; 30:3036-3043. [PMID: 38983959 PMCID: PMC11230060 DOI: 10.3748/wjg.v30.i24.3036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Autophagy, a conserved cellular degradation process, is crucial for various cellular processes such as immune responses, inflammation, metabolic and oxidative stress adaptation, cell proliferation, development, and tissue repair and remodeling. Dysregulation of autophagy is suspected in numerous diseases, including cancer, neurodegenerative diseases, digestive disorders, metabolic syndromes, and infectious and inflammatory diseases. If autophagy is disrupted, for example, this can have serious consequences and lead to chronic inflammation and tissue damage, as occurs in diseases such as Chron's disease and ulcerative colitis. On the other hand, the influence of autophagy on the development and progression of cancer is not clear. Autophagy can both suppress and promote the progression and metastasis of cancer at various stages. From inflammatory bowel diseases to gastrointestinal cancer, researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target. Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial. Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.
Collapse
Affiliation(s)
- Mukaddes Esrefoglu
- Department of Histology and Embryology, Bezmialem Vakif University Medical Faculty, Istanbul 34093, Türkiye
| |
Collapse
|
21
|
Zhang T, Zhang J, Yang G, Hu J, Wang H, Jiang R, Yao G. Long non-coding RNA PWRN1 affects ovarian follicular development by regulating the function of granulosa cells. Reprod Biomed Online 2024; 48:103697. [PMID: 38430661 DOI: 10.1016/j.rbmo.2023.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 03/05/2024]
Abstract
RESEARCH QUESTION What is the role of Prader-Willi region non-protein coding RNA 1 (PWRN1) in ovarian follicular development and its molecular mechanism? DESIGN The expression and localization of PWRN1 were detected in granulosa cells from patients with different ovarian functions, and the effect of interfering with PWRN1 expression on cell function was detected by culturing granulosa cells in vitro. Furthermore, the effects of interfering with PWRN1 expression on ovarian function of female mice were explored through in-vitro and in-vivo experiments. RESULTS The expression of PWRN1 was significantly lower in granulosa cells derived from patients with diminished ovarian reserve (DOR) compared with patients with normal ovarian function. By in-vitro culturing of primary granulosa cells or the KGN cell line, the results showed that the downregulation of PWRN1 promoted granulosa cell apoptosis, caused cell cycle arrested in S-phase, generated high levels of autophagy and led to significant decrease in steroidogenic capacity, including inhibition of oestradiol and progesterone production. In addition, SIRT1 overexpression could partially reverse the inhibitory effect of PWRN1 downregulation on cell proliferation. The results of in-vitro culturing of newborn mouse ovary showed that the downregulation of PWRN1 could slow down the early follicular development. Further, by injecting AAV-sh-PWRN1 in mouse ovarian bursa, the oestrous cycle of mouse was affected, and the number of oocytes retrieved after ovulation induction and embryos implanted after mating was significantly reduced. CONCLUSION This study systematically elucidated the novel mechanism by which lncRNA PWRN1 participates in the regulation of granulosa cell function and follicular development.
Collapse
Affiliation(s)
- Tongwei Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
23
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
24
|
Gu J, Zhu Y, Lin H, Huang Y, Zhang Y, Xing Q, Kang B, Zhang Z, Wang M, Zhou T, Mai Y, Chen Q, Li F, Hu X, Wang S, Peng J, Guo X, Long B, Wang J, Gao M, Shan Y, Cui Y, Pan G. Autophagy is essential for human myelopoiesis. Stem Cell Reports 2024; 19:196-210. [PMID: 38215759 PMCID: PMC10874853 DOI: 10.1016/j.stemcr.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Emergency myelopoiesis (EM) is essential in immune defense against pathogens for rapid replenishing of mature myeloid cells. During the EM process, a rapid cell-cycle switch from the quiescent hematopoietic stem cells (HSCs) to highly proliferative myeloid progenitors (MPs) is critical. How the rapid proliferation of MPs during EM is regulated remains poorly understood. Here, we reveal that ATG7, a critical autophagy factor, is essential for the rapid proliferation of MPs during human myelopoiesis. Peripheral blood (PB)-mobilized hematopoietic stem/progenitor cells (HSPCs) with ATG7 knockdown or HSPCs derived from ATG7-/- human embryonic stem cells (hESCs) exhibit severe defect in proliferation during fate transition from HSPCs to MPs. Mechanistically, we show that ATG7 deficiency reduces p53 localization in lysosome for a potential autophagy-mediated degradation. Together, we reveal a previously unrecognized role of autophagy to regulate p53 for a rapid proliferation of MPs in human myelopoiesis.
Collapse
Affiliation(s)
- Jiaming Gu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuhua Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baoqiang Kang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhishuai Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingquan Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuchan Mai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fei Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xing Hu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuoting Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiaojiao Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinrui Guo
- Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yazhou Cui
- Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China.
| |
Collapse
|
25
|
Tyagi IS, Tsui HYC, Chen S, Li X, Mat WK, Khan MA, Choy LB, Chan KYA, Chan TMD, Ng CPS, Ng HK, Poon WS, Xue H. Non-mitotic proliferation of malignant cancer cells revealed through live-cell imaging of primary and cell-line cultures. Cell Div 2024; 19:3. [PMID: 38341593 DOI: 10.1186/s13008-024-00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Anti-mitosis has been a key strategy of anti-cancer therapies, targeting at a fundamental property of cancer cells, their non-controllable proliferation due to overactive mitotic divisions. For improved anti-cancer therapies, it is important to find out whether cancer cells can proliferate independent of mitosis and become resistant to anti-mitotic agents. RESULTS In this study, live-cell imaging was applied to both primary-cultures of tumor cells, and immortalized cancer cell lines, to detect aberrant proliferations. Cells isolated from various malignant tumors, such as Grade-III hemangiopericytoma, atypical meningioma, and metastatic brain tumor exhibit distinct cellular behaviors, including amoeboid sequestration, tailing, tunneling, nucleic DNA leakage, as well as prokaryote-like division such as binary fission and budding-shedding, which are collectively referred to and reported as 'non-mitotic proliferation' in this study. In contrast, benign tumors including Grade-I hemangiopericytoma and meningioma were not obvious in such behaviors. Moreover, when cultured in medium free of any anti-cancer drugs, cells from a recurrent Grade-III hemangiopericytoma that had been subjected to pre-operation adjuvant chemotherapy gradually shifted from non-mitotic proliferation to abnormal mitosis in the form of daughter number variation (DNV) and endomitosis, and eventually regular mitosis. Similarly, when treated with the anti-cancer drugs Epirubicin or Cisplatin, the cancer cell lines HeLa and A549 showed a shift from regular mitosis to abnormal mitosis, and further to non-mitosis as the dominant mode of proliferation with increasing drug concentrations. Upon removal of the drugs, the cells reversed back to regular mitosis with only minor occurrences of abnormal mitosis, accompanied by increased expression of the stem cell markers ALDH1, Sox, Oct4 and Nanog. CONCLUSIONS The present study revealed that various types of malignant, but not benign, cancer cells exhibited cellular behaviors indicative of non-mitotic proliferation such as binary fission, which was typical of prokaryotic cell division, suggesting cell level atavism. Moreover, reversible transitions through the three modes of proliferation, i.e., mitosis, abnormal mitosis and non-mitosis, were observed when anticancer drug concentrations were grossly increased inducing non-mitosis or decreased favoring mitosis. Potential clinical significance of non-mitotic proliferation in cancer drug resistance and recurrence, and its relationship with cancer stem cells are worthy of further studies.
Collapse
Affiliation(s)
- Iram Shazia Tyagi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ho Yin Calvin Tsui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Si Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Xinyi Li
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wai-Kin Mat
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Muhammad A Khan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Lucas Brendan Choy
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ka-Yin Aden Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tat-Ming Danny Chan
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Chi-Ping Stephanie Ng
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Sang Poon
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China.
- Department of Neurosurgery, Neuro-Medical Centre, University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China.
| | - Hong Xue
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, 511458, Guangzhou, China.
| |
Collapse
|
26
|
Lee S, Kim H, Kim BS, Chae S, Jung S, Lee JS, Yu J, Son K, Chung M, Kim JK, Hwang D, Baek SH, Jeon NL. Angiogenesis-on-a-chip coupled with single-cell RNA sequencing reveals spatially differential activations of autophagy along angiogenic sprouts. Nat Commun 2024; 15:230. [PMID: 38172108 PMCID: PMC10764361 DOI: 10.1038/s41467-023-44427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Several functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints. We perform single-cell RNA sequencing of sprouting endothelial cells from our chip to reveal high activation of autophagy in two endothelial cell populations- proliferating endothelial cells in sprout basements and stalk-like endothelial cells near sprout endpoints- and further the reciprocal expression pattern of autophagy-related genes between stalk- and tip-like endothelial cells near sprout endpoints, implying an association of autophagy with tip-stalk cell specification. Our results suggest a model describing spatially differential roles of autophagy: quality control of proliferating endothelial cells in sprout basements for sprout elongation and tip-stalk cell specification near sprout endpoints, which may change strategies for developing autophagy-based anti-angiogenic therapeutics.
Collapse
Affiliation(s)
- Somin Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, South Korea
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Bum Suk Kim
- Department of New Biology, DGIST, Daegu, South Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sangmin Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jung Seub Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Kyungmin Son
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Minhwan Chung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Noo Li Jeon
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul, South Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
- Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
27
|
Taha RI, Alghamdi MA, Alshehri Hanan Hassan, Al Qahtani EA, Al-Khater KM, Aldahhan RA, El Nashar EM. Streptozotocin- induced changes in aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands and the possible ameliorative effect of intermittent fasting on these changes. Tissue Cell 2023; 85:102242. [PMID: 39491403 DOI: 10.1016/j.tice.2023.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Salivary glands are highly responsible for maintaining oral tissue homeostasis by secreting saliva. This study was designed to investigate aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands of diabetic rats and the possible ameliorative effect of intermittent fasting on these changes. Fifty adult male rats were divided into control and experimental groups. Experimental diabetes was induced by a single intraperitoneal injection of streptozotocin. After induction of diabetics, the experimental group was divided into two groups (diabetic without intermittent fasting and diabetic with intermittent fasting). The animals were sacrificed two and four weeks after induction of diabetes. Intermittent fasting significantly decreased malondialdehyde and significantly elevated reduced glutathione (GSH) in the submandibular and parotid glands compared to those of diabetic rats. The salivary secretions were also significantly histologically spared in diabetics with intermittent fasting groups. Furthermore, intermittent fasting increased aquaporin 1 in both glands, while aquaporin 4 was only elevated in the submandibular gland. The immunolocalization and gene expression of Lc3-II was higher in the diabetic salivary glands than in the fasting glands. In conclusion, these findings highlight the pathological role of autophagy in diabetic submandibular and parotid glands and provide potential target for the therapeutic role of intermittent fasting to ameliorate the dysfunction of the submandibular and parotid glands in type I diabetes mellitus.
Collapse
Affiliation(s)
- Reham Ismail Taha
- Anatomy and embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalised Medicine Unit, college of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Alshehri Hanan Hassan
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Eman Ali Al Qahtani
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
28
|
Uzel G, Oylumlu E, Durmus L, Ciraci C. Duality of Valproic Acid Effects on Inflammation, Oxidative Stress and Autophagy in Human Eosinophilic Cells. Int J Mol Sci 2023; 24:13446. [PMID: 37686250 PMCID: PMC10487571 DOI: 10.3390/ijms241713446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Eosinophils function in rapid innate immune responses and allergic reactions. Recent research has raised the possibility that the histone deacetylase inhibitor valproic acid (VPA) may be a promising therapeutic agent for treatment of allergic responses and certain cancers. However, its effects on eosinophils remain unclear. Utilizing the EoL-1 human eosinophil cell line as a model, we investigated the effects of VPA on oxidative stress- and autophagy-mediated immune responses. We found that VPA induced reactive oxidative species (ROS) generation and eosinophil activation without affecting cell viability. Moreover, VPA treatment suppressed the negative regulator of antioxidant transcription factor Nrf2, which is known to activate antioxidant defense. Interestingly, VPA was able to increase autophagic markers, as well as NLRP3 and NLRC4 mRNA activation, in Eol-1 cells in a dose-dependent manner. Collectively, our results indicate that VPA could increase the severity of allergic responses, and if so, it clearly would not be a suitable drug for the treatment of allergic reactions. However, VPA does have the potential to induce autophagy and to regulate the inflammatory responses via inflammasome-driven caspase-1 deactivation in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey; (G.U.); (E.O.); (L.D.)
| |
Collapse
|
29
|
Abstract
Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Noor Gammoh
- MRC Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
30
|
Basnet S, Mohanty C, Bochkov YA, Brockman-Schneider RA, Kendziorski C, Gern JE. Rhinovirus C causes heterogeneous infection and gene expression in airway epithelial cell subsets. Mucosal Immunol 2023; 16:386-398. [PMID: 36796588 PMCID: PMC10629931 DOI: 10.1016/j.mucimm.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Rhinoviruses infect ciliated airway epithelial cells, and rhinoviruses' nonstructural proteins quickly inhibit and divert cellular processes for viral replication. However, the epithelium can mount a robust innate antiviral immune response. Therefore, we hypothesized that uninfected cells contribute significantly to the antiviral immune response in the airway epithelium. Using single-cell RNA sequencing, we demonstrate that both infected and uninfected cells upregulate antiviral genes (e.g. MX1, IFIT2, IFIH1, and OAS3) with nearly identical kinetics, whereas uninfected non-ciliated cells are the primary source of proinflammatory chemokines. Furthermore, we identified a subset of highly infectable ciliated epithelial cells with minimal interferon responses and determined that interferon responses originate from distinct subsets of ciliated cells with moderate viral replication. These findings suggest that the composition of ciliated airway epithelial cells and coordinated responses of infected and uninfected cells could determine the risk of more severe viral respiratory illnesses in children with asthma, chronic obstructive pulmonary disease, and genetically susceptible individuals.
Collapse
Affiliation(s)
- Sarmila Basnet
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Yury A Bochkov
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
31
|
Gökerküçük EB, Cheron A, Tramier M, Bertolin G. The LC3B FRET biosensor monitors the modes of action of ATG4B during autophagy in living cells. Autophagy 2023; 19:2275-2295. [PMID: 36814061 PMCID: PMC10351462 DOI: 10.1080/15548627.2023.2179845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Although several mechanisms of macroautophagy/autophagy have been dissected in the last decade, following this pathway in real time remains challenging. Among the early events leading to its activation, the ATG4B protease primes the key autophagy player MAP1LC3B/LC3B. Given the lack of reporters to follow this event in living cells, we developed a Förster's resonance energy transfer (FRET) biosensor responding to the priming of LC3B by ATG4B. The biosensor was generated by flanking LC3B within a pH-resistant donor-acceptor FRET pair, Aquamarine-tdLanYFP. We here showed that the biosensor has a dual readout. First, FRET indicates the priming of LC3B by ATG4B and the resolution of the FRET image makes it possible to characterize the spatial heterogeneity of the priming activity. Second, quantifying the number of Aquamarine-LC3B puncta determines the degree of autophagy activation. We then showed that there are pools of unprimed LC3B upon ATG4B downregulation, and the priming of the biosensor is abolished in ATG4B knockout cells. The lack of priming can be rescued with the wild-type ATG4B or with the partially active W142A mutant, but not with the catalytically dead C74S mutant. Moreover, we screened for commercially-available ATG4B inhibitors, and illustrated their differential mode of action by implementing a spatially-resolved, broad-to-sensitive analysis pipeline combining FRET and the quantification of autophagic puncta. Finally, we uncovered the CDK1-dependent regulation of the ATG4B-LC3B axis at mitosis. Therefore, the LC3B FRET biosensor paves the way for a highly-quantitative monitoring of the ATG4B activity in living cells and in real time, with unprecedented spatiotemporal resolution.Abbreviations: Aqua: aquamarine; ATG: autophagy related; AURKA: aurora kinase A; BafA1: bafilomycin A1; CDK1: cyclin dependent kinase 1; DKO: double knockout; FLIM: fluorescence lifetime imaging microscopy; FP: fluorescence protein; FRET: Förster's resonance energy transfer; GABARAP: GABA type A receptor-associated protein; HBSS: Hanks' balanced salt solution; KO: knockout; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSC: NSC 185058; PE: phosphatidylethanolamine; SKO: single knockout; TKO: triple knockout; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type; ZPCK: Z-L-phe chloromethyl ketone.
Collapse
Affiliation(s)
- Elif Begüm Gökerküçük
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Angélique Cheron
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
- Lead Contact
| |
Collapse
|
32
|
Johnson MS, Cook JG. Cell cycle exits and U-turns: Quiescence as multiple reversible forms of arrest. Fac Rev 2023; 12:5. [PMID: 36923701 PMCID: PMC10009890 DOI: 10.12703/r/12-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Cell proliferation control is essential during development and for maintaining adult tissues. Loss of that control promotes not only oncogenesis when cells proliferate inappropriately but also developmental abnormalities or degeneration when cells fail to proliferate when and where needed. To ensure that cells are produced at the right place and time, an intricate balance of pro-proliferative and anti-proliferative signals impacts the probability that cells undergo cell cycle exit to quiescence, or G0 phase. This brief review describes recent advances in our understanding of how and when quiescence is initiated and maintained in mammalian cells. We highlight the growing appreciation for quiescence as a collection of context-dependent distinct states.
Collapse
Affiliation(s)
- Martha Sharisha Johnson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
33
|
Al-Awsi GRL, Alsaikhan F, Margiana R, Ahmad I, Patra I, Najm MAA, Yasin G, Rasulova I, Hammid AT, Kzar HH, Al-Gazally ME, Siahmansouri H. Shining the light on mesenchymal stem cell-derived exosomes in breast cancer. Stem Cell Res Ther 2023; 14:21. [PMID: 36750912 PMCID: PMC9906907 DOI: 10.1186/s13287-023-03245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
In women, breast cancer (BC) is the second most frequently diagnosed cancer and the leading cause of cancer death. Mesenchymal stem cells (MSCs) are a subgroup of heterogeneous non-hematopoietic fibroblast-like cells that have the ability to differentiate into multiple cell types. Recent studies stated that MSCs can migrate into the tumor sites and exert various effect on tumor growth and development. Multiple researches have demonstrated that MSCs can favor tumor growth, while other groups have indicated that MSCs inhibit tumor development. Emerging evidences showed exosomes (Exo) as a new mechanism of cell communication which are essential for the crosstalk between MSCs and BC cells. MSC-derived Exo (MSCs-Exo) could mimic the numerous effects on the proliferation, metastasis, and drug response through carrying a wide scale of molecules, such as proteins, lipids, messenger RNAs, and microRNAs to BC cells. Consequently, in the present literature, we summarized the biogenesis and cargo of Exo and reviewed the role of MSCs-Exo in development of BC.
Collapse
Affiliation(s)
- Ghaidaa Raheem Lateef Al-Awsi
- grid.517728.e0000 0004 9360 4144Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- grid.449553.a0000 0004 0441 5588College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Irfan Ahmad
- grid.412144.60000 0004 1790 7100Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mazin A. A. Najm
- grid.513203.6Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ghulam Yasin
- grid.411501.00000 0001 0228 333XDepartment of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Iroda Rasulova
- Independent Researcher, “Kasmed” Private Medical Centre, Tashkent, Uzbekistan
| | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Hamzah H. Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Lu JT, Xiao MK, Feng YY, Wang XY, Qiu LL, Chai YR, Wang TY, Jia YL. Apilimod enhances specific productivity in recombinant CHO cells through cell cycle arrest and mediation of autophagy. Biotechnol J 2023; 18:e2200147. [PMID: 36478399 DOI: 10.1002/biot.202200147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are expected to acquire the ability to produce higher recombinant therapeutic protein levels using various strategies. Genetic engineering targeting the cell cycle and autophagy pathways in the regulation of cell death in CHO cell cultures has received attention for enhancing the production of therapeutic proteins. In this study, we examined the small-molecule compound apilimod, which was found to have a positive influence on recombinant protein expression in CHO cells. This was confirmed by selective blocking of the cell cycle at the G0/G1 phase. Apilimod treatment resulted in decreased expression of cyclin-dependent kinase 3 (CDK3) and Cyclin C and increased expression of cyclin-dependent kinase suppressor p27Kip1, which are critical regulators of G1 cell cycle progression and important targets controlling cell proliferation. Furthermore, total transcription factor EB (TFEB) was lower in apilimod-treated CHO cells than in control cells, resulting in decreased lysosome biogenesis and autophagy with apilimod treatment. These multiple effects demonstrate the potential of apilimod for development as a novel enhancer for the production of recombinant proteins in CHO cell engineering.
Collapse
Affiliation(s)
- Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China
| | - Meng-Ke Xiao
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ying-Ying Feng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
35
|
Kamisah Y, Che Hassan HH. Therapeutic Use and Molecular Aspects of Ivabradine in Cardiac Remodeling: A Review. Int J Mol Sci 2023; 24:ijms24032801. [PMID: 36769115 PMCID: PMC9917668 DOI: 10.3390/ijms24032801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cardiac remodeling can cause ventricular dysfunction and progress to heart failure, a cardiovascular disease that claims many lives globally. Ivabradine, a funny channel (If) inhibitor, is used in patients with chronic heart failure as an adjunct to other heart failure medications. This review aims to gather updated information regarding the therapeutic use and mechanism of action of ivabradine in heart failure. The drug reduces elevated resting heart rate, which is linked to increased morbidity and mortality in patients with heart failure. Its use is associated with improved cardiac function, structure, and quality of life in the patients. Ivabradine exerts several pleiotropic effects, including an antiremodeling property, which are independent of its principal heart-rate-reducing effects. Its suppressive effects on cardiac remodeling have been demonstrated in animal models of cardiac remodeling and heart failure. It reduces myocardial fibrosis, apoptosis, inflammation, and oxidative stress as well as increases autophagy in the animals. It also modulates myocardial calcium homeostasis, neurohumoral systems, and energy metabolism. However, its role in improving heart failure remains unclear. Therefore, elucidating its molecular mechanisms is imperative and would aid in the design of future studies.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
36
|
Morsczeck C, Reck A, Reichert TE. Changes in AMPK activity induces cellular senescence in human dental follicle cells. Exp Gerontol 2023; 172:112071. [PMID: 36563529 DOI: 10.1016/j.exger.2022.112071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dental Follicle Cells (DFCs) are somatic stem cells with a limited lifespan, but little is known about a possible mechanism of cellular senescence. Previous studies have shown that cellular senescence is associated with increased demand of glycolsis or the "glycolytic metabotype", which can be induced by activation of 5' adenosine monophosphate-activated protein kinase (AMPK), and decreased autophagy. This study examined the role of AMPK in inducing senescence in DFCs. During the induction of cellular senescence, AMPK activity was impaired, suggesting a negative impact on senescence induction. In line with this assumption, cellular senescence was induced upon inhibition of AMPK with a specific siRNA. In addition, after this inhibition, autophagy was also inhibited. Moreover, specific inhibition of autophagy promoted cellular senescence. However, inducers of AMPK such as metformin or AICAR surprisingly increased senescence in DFCs. Interestingly, autophagy was impaired after long-term induction of AMPK with AICAR and metformin. Moreover, activation of AMPK induces the consumption of glucose but decreases NAD/NADH ratio in DFCs that suggest not only "glycolytic metabotype" of DFCs but also Mitochondrial Dysfunction Associated Senescence (MiDAS). Both changes are highly associated with the induction of cellular senescence. Hence, both AMPK activation and inhibition promote the induction of cellular senecence of DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
37
|
Kim JS, Chapman WC, Lin Y. Mitochondrial Autophagy in Ischemic Aged Livers. Cells 2022; 11:cells11244083. [PMID: 36552847 PMCID: PMC9816943 DOI: 10.3390/cells11244083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial autophagy (mitophagy) is a central catabolic event for mitochondrial quality control. Defective or insufficient mitophagy, thus, can result in mitochondrial dysfunction, and ultimately cell death. There is a strong causal relationship between ischemia/reperfusion (I/R) injury and mitochondrial dysfunction following liver resection and transplantation. Compared to young patients, elderly patients poorly tolerate I/R injury. Accumulation of abnormal mitochondria after I/R is more prominent in aged livers than in young counterparts. This review highlights how altered autophagy is mechanistically involved in age-dependent hypersensitivity to reperfusion injury.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Correspondence:
| | - William C. Chapman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
| | - Yiing Lin
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (W.C.C.); (Y.L.)
| |
Collapse
|
38
|
Sung K, Kurowski A, Lansiquot C, Wan KK, Patnaik S, Walsh MJ, Lazarus MB. Selective Inhibitors of Autophagy Reveal New Link between the Cell Cycle and Autophagy and Lead to Discovery of Novel Synergistic Drug Combinations. ACS Chem Biol 2022; 17:3290-3297. [PMID: 36469692 PMCID: PMC9879295 DOI: 10.1021/acschembio.2c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved metabolic pathway that is central to many diseases. Recently, there has been a lot of interest in targeting autophagy with small molecule inhibitors as a possible therapeutic strategy. However, many of the compounds used for autophagy are nonselective. Here, we explored the inhibition of autophagy in pancreatic cancer cells using established selective small molecule inhibitors and discovered an unexpected link between the autophagy pathway and progression through the cell cycle. Our findings revealed that treatments with inhibitors that have different autophagy pathway targets block cell replication and activate other metabolic pathways to compensate for the blockade in autophagy. An unbiased screen looking for known drugs that might synergize with autophagy inhibition revealed new combination treatments that might provide a blueprint for therapeutic approaches to pancreatic cancer. The drugs quizartinib and THZ1 showed a strong synergistic effect in pancreatic cells with autophagy inhibition.
Collapse
Affiliation(s)
- Kisa Sung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Agata Kurowski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Carisse Lansiquot
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kanny K. Wan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Correspondence to:
| |
Collapse
|
39
|
Autophagy-Related ncRNAs in Pancreatic Cancer. Pharmaceuticals (Basel) 2022; 15:ph15121547. [PMID: 36558998 PMCID: PMC9785627 DOI: 10.3390/ph15121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a malignancy accounting for only 3% of total cancers, but with a low 5-year relative survival rate. Approximately 80% of PC patients are diagnosed at a late stage when the disease has already spread from the primary site. Despite advances in PC treatment, there is an urgently needed for the identification of novel therapeutic strategies for PC, particularly for patients who cannot undergo classical surgery. Autophagy is an evolutionarily conserved process used by cells to adapt to metabolic stress via the degrading or recycling of damaged or unnecessary organelles and cellular components. This process is elevated in PC and, thus, it contributes to the onset, progression, and cancer cell resistance to chemotherapy in pancreatic tumors. Autophagy inhibition has been shown to lead to cancer regression and to increase the sensitivity of pancreatic cells to radiation and chemotherapy. Emerging studies have focused on the roles of non-coding RNAs (ncRNAs), such as miRNAs, long non-coding RNAs, and circular RNAs, in PC development and progression. Furthermore, ncRNAs have been reported as crucial regulators of many biological processes, including autophagy, suggesting that ncRNA-based autophagy targeting methods could be promising novel molecular approaches for specifically reducing autophagic flux, thus improving the management of PC patients. In this review, we briefly summarize the existing studies regarding the role and the regulatory mechanisms of autophagy-related ncRNAs in the context of this cancer.
Collapse
|
40
|
Carozza G, Tisi A, Capozzo A, Cinque B, Giovannelli A, Feligioni M, Flati V, Maccarone R. New Insights into Dose-Dependent Effects of Curcumin on ARPE-19 Cells. Int J Mol Sci 2022; 23:ijms232314771. [PMID: 36499098 PMCID: PMC9738655 DOI: 10.3390/ijms232314771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Opposing dose-dependent effects of curcumin (Cur) have been documented in Retinal Pigment Epithelium (RPE); therefore, to shed the light on the mechanisms of action is crucial for ophthalmic applications. On this basis we explored new insights about the dose-dependent mechanisms triggered by Cur in human retinal pigment epithelial cells (ARPE-19). Three concentrations (0.01 mM; 0.05 mM; 0.1 mM) of Cur were tested, followed by morphological, molecular, and functional analysis of the cells. Cur 0.01 mM promotes a significant increase in cell proliferation, not affecting cell cycle progression and apoptosis; by contrast, Cur 0.05 mM and 0.1 mM block cellular proliferation and trigger S-phase cell cycle arrest without inducing apoptosis. The observation of neuronal-like morphological changes in Cur 0.05 mM and 0.1 mM were not associated with neuronal differentiation, as observed by the quantification of Neurofilament-200 and by the analysis of voltage-dependent currents by patch clamp. Evaluation of autophagic markers LC3BII and p62 revealed significant modulations, suggesting an important activation of autophagy in ARPE-19 cells treated with Cur 0.05 mM and Cur 0.1 mM; conversely, Cur 0.01 mM did not affect autophagy. Altogether, our findings show new dose-dependent mechanisms of action of Cur that suggest a wide therapeutic application in ocular diseases with different pathogenesis (i.e., proliferative vitreoretinopathy or Age-Related Macular Degeneration).
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Aldo Giovannelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Feligioni
- European Brain Research Institute, 00161 Rome, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, 20144 Milano, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
41
|
Li Z, Hadlich F, Wimmers K, Murani E. Glucocorticoid receptor hypersensitivity enhances inflammatory signaling and inhibits cell cycle progression in porcine PBMCs. Front Immunol 2022; 13:976454. [PMID: 36505401 PMCID: PMC9730246 DOI: 10.3389/fimmu.2022.976454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The consequences of glucocorticoid receptor (GR) hypersensitivity during infection have so far received little attention. We previously discovered that a natural gain-of-function Ala610Val substitution in the porcine GR aggravates response of pigs to lipopolysaccharide (LPS)-induced endotoxemia, which can be alleviated by dexamethasone (DEX) pretreatment. In this work, we investigated the relevant molecular basis of these phenotypes by transcriptomic profiling of porcine peripheral blood mononuclear cells (PBMCs) carrying different GR genotypes, in unstimulated conditions or in response to DEX and/or LPS in vitro. The Val allele differentially regulated abunda+nt genes in an additive-genetic manner. A subset of more than 200 genes was consistently affected by the substitution across treatments. This was associated with upregulation of genes related i.a. to endo-lysosomal system, lipid and protein catabolism, and immune terms including platelet activation, and antigen presentation, while downregulated genes were mainly involved in cell cycle regulation. Most importantly, the set of genes constitutively upregulated by Val includes members of the TLR4/LPS signaling pathway, such as LY96. Consequently, when exposing PBMCs to LPS treatment, the Val variant upregulated a panel of additional genes related to TLR4 and several other pattern recognition receptors, as well as cell death and lymphocyte signaling, ultimately amplifying the inflammatory responses. In contrast, when stimulated by DEX treatment, the Val allele orchestrated several genes involved in anti-inflammatory responses during infection. This study provides novel insights into the impact of GR hypersensitivity on the fate and function of immune cells, which may be useful for endotoxemia therapy.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Eduard Murani,
| |
Collapse
|
42
|
Watson J, Ferguson HR, Brady RM, Ferguson J, Fullwood P, Mo H, Bexley KH, Knight D, Howell G, Schwartz JM, Smith MP, Francavilla C. Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival. Nat Commun 2022; 13:6589. [PMID: 36329028 DOI: 10.1101/2021.01.17.427038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/19/2022] [Indexed: 05/26/2023] Open
Abstract
Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Harriet R Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, M20 4GJ, UK
| | - Jennifer Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Hanyi Mo
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Katherine H Bexley
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - David Knight
- Bio-MS Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Gareth Howell
- Flow Cytometry Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Michael P Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, M139PT, Manchester, UK.
| |
Collapse
|
43
|
Watson J, Ferguson HR, Brady RM, Ferguson J, Fullwood P, Mo H, Bexley KH, Knight D, Howell G, Schwartz JM, Smith MP, Francavilla C. Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival. Nat Commun 2022; 13:6589. [PMID: 36329028 PMCID: PMC9633600 DOI: 10.1038/s41467-022-34298-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Harriet R Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, M20 4GJ, UK
| | - Jennifer Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Hanyi Mo
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Katherine H Bexley
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - David Knight
- Bio-MS Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Gareth Howell
- Flow Cytometry Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Michael P Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, M139PT, Manchester, UK.
| |
Collapse
|
44
|
Zhang Y, Zeuthen C, Zhu C, Wu F, Mezzell AT, Whitlow TJ, Choo HJ, Vest KE. Pharyngeal pathology in a mouse model of oculopharyngeal muscular dystrophy is associated with impaired basal autophagy in myoblasts. Front Cell Dev Biol 2022; 10:986930. [PMID: 36313551 PMCID: PMC9614327 DOI: 10.3389/fcell.2022.986930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset dominant disease that primarily affects craniofacial muscles. Despite the fact that the genetic cause of OPMD is known to be expansion mutations in the gene encoding the nuclear polyadenosine RNA binding protein PABPN1, the molecular mechanisms of pathology are unknown and no pharmacologic treatments are available. Due to the limited availability of patient tissues, several animal models have been employed to study the pathology of OPMD. However, none of these models have demonstrated functional deficits in the muscles of the pharynx, which are predominantly affected by OPMD. Here, we used a knock-in mouse model of OPMD, Pabpn1 +/A17 , that closely genocopies patients. In Pabpn1 +/A17 mice, we detected impaired pharyngeal muscle function, and impaired pharyngeal satellite cell proliferation and fusion. Molecular studies revealed that basal autophagy, which is required for normal satellite cell function, is higher in pharynx-derived myoblasts than in myoblasts derived from limb muscles. Interestingly, basal autophagy is impaired in cells derived from Pabpn1 +/A17 mice. Pabpn1 knockdown in pharyngeal myoblasts failed to recapitulate the autophagy defect detected in Pabpn1 +/A17 myoblasts suggesting that loss of PABPN1 function does not contribute to the basal autophagy defect. Taken together, these studies provide the first evidence for pharyngeal muscle and satellite cell pathology in a mouse model of OPMD and suggest that aberrant gain of PABPN1 function contributes to the craniofacial pathology in OPMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christopher Zeuthen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Carol Zhu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fang Wu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas J. Whitlow
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
45
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 389] [Impact Index Per Article: 129.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology.
Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
46
|
Kim KH, Hong GL, Kim YJ, Lee HJ, Jung JY. Silencing of LLGL2 Suppresses the Estradiol-Induced BPH-1 Cell Proliferation through the Regulation of Autophagy. Biomedicines 2022; 10:biomedicines10081981. [PMID: 36009528 PMCID: PMC9406103 DOI: 10.3390/biomedicines10081981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila. LLGL2 is one of the mammalian homologs of Lgl. However, little is known about its function in the prostate. In this study, to explore the new role of LLGL2 in the prostate, we examined the proliferative activity of a BPH-1 cell line, a well-established model for the human prostate biology of benign prostatic hyperplasia (BPH). The expression of LLGL2 was dose-dependently increased in BPH-1 cells after treatment with 17β-estradiol (E2). Additionally, E2 treatment increased the proliferation of the BPH-1 cells. However, the knockdown of LLGL2 with siRNA significantly suppressed the proliferation of the E2-treated BPH-1 cells. Moreover, si-llgl2 treatment up-regulated the expression of LC-3B, ATG7, and p-beclin, which are known to play a pivotal role in autophagosome formation in E2-treated BPH-1 cells. Overexpression of LLGL2 was able to further prove these findings by showing the opposite results from the knockdown of LLGL2 in E2-treated BPH-1 cells. Collectively, our results suggest that LLGL2 is closely involved in the proliferation of prostate cells by regulating autophagosome formation. These results provide a better understanding of the mechanism involved in the effect of LLGL2 on prostate cell proliferation. LLGL2 might serve as a potential target in the diagnosis and/or treatment of human BPH.
Collapse
Affiliation(s)
| | | | | | | | - Ju-Young Jung
- Correspondence: ; Tel.: +82-42-821-8899; Fax: +82-42-821-7926
| |
Collapse
|
47
|
Kuo TJ, Jean YH, Shih PC, Cheng SY, Kuo HM, Lee YT, Lai YC, Tseng CC, Chen WF, Wen ZH. Stellettin B-Induced Oral Cancer Cell Death via Endoplasmic Reticulum Stress-Mitochondrial Apoptotic and Autophagic Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158813. [PMID: 35955957 PMCID: PMC9368952 DOI: 10.3390/ijms23158813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) affects tens of thousands of people worldwide. Despite advances in cancer treatment, the 5-year survival rate of patients with late-stage OSCC is low at 50–60%. Therefore, the development of anti-OSCC therapy is necessary. We evaluated the effects of marine-derived triterpene stellettin B in human OC2 and SCC4 cells. Stellettin B dose-dependently decreased the viability of both cell lines, with a significant reduction in OC2 cells at ≥0.1 µM at 24 and 48 h, and in SCC4 cells at ≥1 µM at 24 and 48 h. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells were significantly observed at 20 µM of stellettin B at 48 h, with the overexpression of cleaved caspase3 and cleaved poly(ADP-ribose) polymerase (PARP). Moreover, mitochondrial respiratory functions were ablated by stellettin B. Autophagy-related LC3-II/LC3-I ratio and Beclin-1 proteins were increased, whereas p62 was decreased. At 20 µM at 48 h, the expression levels of the endoplasmic reticulum (ER) stress biomarkers calnexin and BiP/GRP78 were significantly increased and mitogen-activated protein kinase (MAPK) signaling pathways were activated. Further investigation using the autophagy inhibitor 3-methyladenine (3-MA) demonstrated that it alleviated stellettin B-induced cell death and autophagy. Overall, our findings show that stellettin B induces the ER stress, mitochondrial stress, apoptosis, and autophagy, causing cell death of OSCC cells.
Collapse
Affiliation(s)
- Tsu-Jen Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yen-Hsuan Jean
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Po-Chang Shih
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shu-Yu Cheng
- Department of Environmental Protection, Green Technology Research Institute, CPC Corporation, No. 2, Zuonan Rd., Nan-Tzu District, Kaohsiung 81126, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Ting Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan
| | - Chung-Chih Tseng
- Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| |
Collapse
|
48
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
49
|
Delgado M, Rainwater RR, Heflin B, Urbaniak A, Butler K, Davidson M, Protacio RM, Baldini G, Edwards A, Reed MR, Raney KD, Chambers TC. Primary acute lymphoblastic leukemia cells are susceptible to microtubule depolymerization in G1 and M phases through distinct cell death pathways. J Biol Chem 2022; 298:101939. [PMID: 35436470 PMCID: PMC9123221 DOI: 10.1016/j.jbc.2022.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
Microtubule targeting agents (MTAs) are widely used cancer chemotherapeutics which conventionally exert their effects during mitosis, leading to mitotic or postmitotic death. However, accumulating evidence suggests that MTAs can also generate death signals during interphase, which may represent a key mechanism in the clinical setting. We reported previously that vincristine and other microtubule destabilizers induce death not only in M phase but also in G1 phase in primary acute lymphoblastic leukemia cells. Here, we sought to investigate and compare the pathways responsible for phase-specific cell death. Primary acute lymphoblastic leukemia cells were subjected to centrifugal elutriation, and cell populations enriched in G1 phase (97%) or G2/M phases (80%) were obtained and treated with vincristine. We found death of M phase cells was associated with established features of mitochondrial-mediated apoptosis, including Bax activation, loss of mitochondrial transmembrane potential, caspase-3 activation, and nucleosomal DNA fragmentation. In contrast, death of G1 phase cells was not associated with pronounced Bax or caspase-3 activation but was associated with loss of mitochondrial transmembrane potential, parylation, nuclear translocation of apoptosis-inducing factor and endonuclease G, and supra-nucleosomal DNA fragmentation, which was enhanced by inhibition of autophagy. The results indicate that microtubule depolymerization induces distinct cell death pathways depending on during which phase of the cell cycle microtubule perturbation occurs. The observation that a specific type of drug can enter a single cell type and induce two different modes of death is novel and intriguing. These findings provide a basis for advancing knowledge of clinical mechanisms of MTAs.
Collapse
Affiliation(s)
- Magdalena Delgado
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Randall R Rainwater
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Billie Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaitlynn Butler
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mari Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Reine M Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Andrea Edwards
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
50
|
Abstract
Lysosomes exert pleiotropic functions to maintain cellular homeostasis and degrade autophagy cargo. Despite the great advances that have boosted our understanding of autophagy and lysosomes in both physiology and pathology, their function in mitosis is still controversial. During mitosis, most organelles are reshaped or repurposed to allow the correct distribution of chromosomes. Mitotic entry is accompanied by a reduction in sites of autophagy initiation, supporting the idea of an inhibition of autophagy to protect the genetic material against harmful degradation. However, there is accumulating evidence revealing the requirement of selective autophagy and functional lysosomes for a faithful chromosome segregation. Degradation is the most-studied lysosomal activity, but recently described alternative functions that operate in mitosis highlight the lysosomes as guardians of mitotic progression. Because the involvement of autophagy in mitosis remains controversial, it is important to consider the specific contribution of signalling cascades, the functions of autophagic proteins and the multiple roles of lysosomes, as three entangled, but independent, factors controlling genomic stability. In this Review, we discuss the latest advances in this area and highlight the therapeutic potential of targeting autophagy for drug development.
Collapse
Affiliation(s)
- Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Mauvezin
- Department of Biomedicine, Faculty of Medicine, University of Barcelona c/ Casanova, 143 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), c/ Rosselló, 149-153 08036 Barcelona, Spain
| |
Collapse
|