1
|
Rossi T, Valgiusti M, Puccetti M, Miserocchi G, Zanoni M, Angeli D, Arienti C, Pace I, Bassi C, Vannini I, Melloni M, Bandini E, Urbini M, Negrini M, Bonafè M, Ferracin M, Gallerani G. Gastroesophageal circulating tumor cell crosstalk with peripheral immune system guides CTC survival and proliferation. Cell Death Dis 2025; 16:223. [PMID: 40157906 PMCID: PMC11954855 DOI: 10.1038/s41419-025-07530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Tumor dissemination is a key event in tumor progression. During this event, a main role is played by circulating tumor cells (CTCs), immune cells, and their interaction. How the immune system supports the survival and proliferation of CTCs is not fully elucidated. In this study we established an in-vitro co-culture system consisting of immune cells and CTCs from the same patient, which increased the success rate in the establishment of CTC-derived long-term cell cultures. In this system, we characterized the immune cells of successful co-cultures and the signals they exchange with cancer cells, including cytokines and extracellular vesicle (EV) content. Using this protocol, we stabilized four CTC-derived cell lines from patients with metastatic gastroesophageal cancer, which were cultured for over a year and characterized from a genetic and molecular point of view. The four cell lines harbor shared chromosomal aberrations including the amplification at 8q24.21 containing MYC and deletion 9p21.3 containing CDKN2A/B and the IFN type I cluster. The transcriptomic profile of CTC cell lines is distinct from primary tumors, and we detected the activation of E2F, G2M and MYC pathways and the downregulation of interferon response pathway. Each cell line shows a degree of invasiveness in zebrafish in-vivo, and the most invasive ones share the same mutation in RAB14 gene. In addition, the four cell lines secrete cell-line specific EVs containing microRNAs that target YAP, BRG1-AKT1, TCF8-HDAC pathways. Overall, we highlight how the immune system plays a key role in the proliferation of CTCs through EV signaling, and how CTC cell line genomic and transcriptomic alterations make these cells less visible from the immune system and likely responsible for the survival advantage in sites distant from the microenvironment of origin.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "DinoAmadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Arienti
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ilaria Pace
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Translational Medicine, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Ivan Vannini
- Pathology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimo Negrini
- Department of Translational Medicine, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Wang K, Lin X, Lv X, Xie M, Wu J, Wu JJ, Luo Y. Nanozyme-based aptasensors for the detection of tumor biomarkers. J Biol Eng 2025; 19:13. [PMID: 39920818 PMCID: PMC11806818 DOI: 10.1186/s13036-025-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
A nanozyme-based aptasensor combines the unique properties of nanozymes with the specificity of aptamers for the detection of various biomolecules. Nanozymes are nanomaterials that possess enzyme-like properties, demonstrating substantial potential for enhancing the sensing capabilities of biosensors. In recent years, the incorporation of nanozymes into biosensors has opened new avenues for the detection of tumor biomarkers. The unique attributes of nanozymes and aptamers lead to biosensors characterized by high sensitivity, specificity, reproducibility and accuracy in analytical performance. This article reviews the research progress of nanozyme-based aptasensors in tumor biomarker detection over the past decade. We categorize these sensors based on their sensing modes and target types, and examine the properties and applications of the nanozymes employed in these devices, providing a thorough discussion of the strengths and weaknesses associated with each sensor type. Finally, the review highlights the strengths and challenges associated with nanozyme-based biosensors and envisions future developments and applications in this field. The objective is to provide insights for improving biosensor performance in tumor biomarker detection, thereby contributing to advancements in precision cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China.
| | - Xiao Lv
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jinyu Wu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Yang Luo
- Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
3
|
Huaman J, Ogunwobi OO. Circulating Tumor Cell Migration Requires Fibronectin Acting through Integrin B1 or SLUG. Cells 2020; 9:cells9071594. [PMID: 32630254 PMCID: PMC7408126 DOI: 10.3390/cells9071594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Fibronectin (FN1) is an extracellular matrix protein gaining increasing attention for its multifaceted roles in cancer progression. Using our recently established circulating tumor cell (CTC) lines, we had demonstrated increased FN1 expression and enhanced migration in CTC lines, in comparison to primary tumor cell lines. Whether increased FN1 expression is directly required for CTC migration, and the specific role of FN1’s regulation of integrin B1 (ITGB1) and SLUG (SNAI2) in CTC migration remains unclear. Here, for the first time, we report that the knockdown of FN1, ITGB1, or SLUG expression in CTCs leads to a significant decrease in CTC migration. Knocking down two or all three of these proteins simultaneously did not further inhibit migration. We observed a corresponding increase in CTC migration when recombinant FN1 was added to CTCs. This effect was significantly impeded by prior knockdown of ITGB1 or SLUG. Using knock down experiments and western blotting analysis, we confirmed FN1’s regulation of ITGB1 and SLUG to occur via two separate, independent pathways. Consequently, we can conclude that FN1-dependent enhanced migration of CTCs requires downstream signaling through either ITGB1 or SLUG and that FN1 regulation of ITGB1 and SLUG may have important implications for cancer progression and metastasis.
Collapse
Affiliation(s)
- Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
4
|
Huaman J, Naidoo M, Zang X, Ogunwobi OO. Fibronectin Regulation of Integrin B1 and SLUG in Circulating Tumor Cells. Cells 2019; 8:cells8060618. [PMID: 31226820 PMCID: PMC6627780 DOI: 10.3390/cells8060618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the leading cause of cancer death worldwide. Circulating tumor cells (CTCs) are a critical step in the metastatic cascade and a good tool to study this process. We isolated CTCs from a syngeneic mouse model of hepatocellular carcinoma (HCC) and a human xenograft mouse model of castration-resistant prostate cancer (CRPC). From these models, novel primary tumor and CTC cell lines were established. CTCs exhibited greater migration than primary tumor-derived cells, as well as epithelial-to-mesenchymal transition (EMT), as observed from decreased E-cadherin and increased SLUG and fibronectin expression. Additionally, when fibronectin was knocked down in CTCs, integrin B1 and SLUG were decreased, indicating regulation of these molecules by fibronectin. Investigation of cell surface molecules and secreted cytokines conferring immunomodulatory advantage to CTCs revealed decreased major histocompatibility complex class I (MHCI) expression and decreased endostatin, C-X-C motif chemokine 5 (CXCL5), and proliferin secretion by CTCs. Taken together, these findings indicate that CTCs exhibit distinct characteristics from primary tumor-derived cells. Furthermore, CTCs demonstrate enhanced migration in part through fibronectin regulation of integrin B1 and SLUG. Further study of CTC biology will likely uncover additional important mechanisms of cancer metastasis.
Collapse
Affiliation(s)
- Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA.
| | - Michelle Naidoo
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA.
| | - Xingxing Zang
- Departments of Microbiology and Immunology, and Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA.
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, Ma GX, Nguyen MT. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol 2019; 25:2279-2293. [PMID: 31148900 PMCID: PMC6529884 DOI: 10.3748/wjg.v25.i19.2279] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been only minimal improvement in the prognosis for HCC patients over the past 15 years. Details of the molecular mechanisms and other mechanisms of HCC progression remain unclear. Consequently, there is an urgent need for better understanding of these mechanisms. HCC is often diagnosed at advanced stages, and most patients will therefore need systemic therapy, with sorafenib being the most common at the present time. However, sorafenib therapy only minimally enhances patient survival. This review provides a summary of some of the known mechanisms that either cause HCC or contribute to its progression. Included in this review are the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic predisposition and congenital abnormalities, toxic exposures, and autoimmune diseases of the liver. Well-established molecular mechanisms of HCC progression such as epithelial-mesenchymal transition, tumor-stromal interactions and the tumor microenvironment, cancer stem cells, and senescence bypass are also discussed. Additionally, we discuss the roles of circulating tumor cells, immunomodulation, and neural regulation as potential new mechanisms of HCC progression. A better understanding of these mechanisms could have implications for the development of novel and more effective therapeutic and prognostic strategies, which are critically needed.
Collapse
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Trisheena Harricharran
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Anna Galuza
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Oluwatoyin Odumuwagun
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Yin Tan
- Center for Asian Health, School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Grace X Ma
- Center for Asian Health, School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Minhhuyen T Nguyen
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| |
Collapse
|