1
|
Sun M, Lin F, Yue C, Wei Z, Liu C, Liu D, Chen X, Li Q, Liu Z, Han J, Cui Z, Mao Q, Li X, Zhang P, Zhang B, Fu X, Wang H, Mou Y, Wang S. Scaffold hopping-based structural modification of tranilast led to the identification of HNW005 as a promising NLRP3 inflammasome and URAT1 dual inhibitor for the treatment of gouty arthritis. Eur J Med Chem 2025; 292:117644. [PMID: 40286449 DOI: 10.1016/j.ejmech.2025.117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Hyperuricemia and monosodium urate induced nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation is the major pathogenesis for gouty arthritis, and urate transporter 1 (URAT1) is a proven target for hyperuricemia. In this study, scaffold hopping modification with tranilast led to the identification of HNW005, an NLRP3 inflammasome and URAT1 dual-target inhibitor, which exhibited notable inhibitory potency against NLRP3 inflammasome activation (KD = 204.6 nM, IC50 = 1.7 μM) and uric acid transmembrane transportation (IC50 = 6.4 μM). Importantly, HNW005 displayed significant in vivo efficacy with respect to anti-inflammatory, analgesic, and uric acid-lowering effects (decreasing rate = 64.8 % at 2 mg/kg). In addition, HNW005 also displayed an acceptable pharmacokinetic profile (F = 41.37 %, t1/2 = 3.07 h). Collectively, the results showed that developing dual-target inhibitors of NLRP3 inflammasomes and URAT1 is a feasible strategy for the treatment of gouty arthritis, and HNW005 is worthy of further investigation.
Collapse
Affiliation(s)
- Ming Sun
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Chenchen Yue
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zijie Wei
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Chang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Dan Liu
- Shenyang Hinewy Pharmaceutical Technology Co., Ltd., Shenyang, Liaoning, 110016, PR China
| | - Xing Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Qi Li
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Ziyuan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jihong Han
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zichen Cui
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xinyu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Han Wang
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Yanhua Mou
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
2
|
Shi Y, Hu Y, Gan Y, Mi Z, Luo S, Lei J, Fang Q, Li H. Tabersonine ameliorates depressive-like behavior by inhibiting NLRP3 inflammasome activation in a mouse model. Neuropharmacology 2025; 273:110432. [PMID: 40147640 DOI: 10.1016/j.neuropharm.2025.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Depression, a common mental disorder, is intimately linked to neuroinflammation. In the central nervous system, microglia, the principal cells involved in immunity, are crucial in neuroinflammation and closely associated with the pathogenesis of depression. Several studies have demonstrated that depressive-like behaviors could be ameliorated by improving brain inflammation. Notably, natural products occupy a critical position in the study of antidepressants. Herein, we explored the antidepressant effects of tabersonine (Tab), a natural inhibitor of NLRP3. Tab significantly improved depressive-like behaviors and anxiety in lipopolysaccharide (LPS)-treated mice. To further elucidate mechanisms underlying the antidepressant actions of Tab, BV2 microglial cells were exposed to LPS and ATP in vitro. Tab effectively inhibited NLRP3 inflammasome activation, subsequent Caspase-1 cleavage, and interleukin-1β secretion both in the hippocampi of mice in vivo and BV2 cells in vitro. Additionally, Tab strongly decreased the concentrations of the proinflammatory cytokines interleukin-1β, tumor necrosis factor, and interleukin-6 in BV2 cell culture supernatants and sera of mice. Further studies indicated that Tab improved LPS-induced neuronal loss, as indicated by a significant rise in the quantity of Nissl-positive cells within the hippocampal regions CA1, CA3, and dentate gyrus. Importantly, Tab counteracted the LPS-induced microglial activation in the hippocampus. Our results indicate that Tab significantly improves LPS-triggered depressive-like behaviors and reverses injuries to hippocampal microglia and neurons, implying its potential as a therapeutic agent for depression.
Collapse
Affiliation(s)
- Yan Shi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Yue Hu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Yaoxue Gan
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Zhaoyu Mi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Shuting Luo
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Jia Lei
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Qian Fang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Sun Z, Zang Q, Xu C, Zhang X, Kang Z, Yang Y, Li L, Chen J. Discovery of novel Bis-amide analogue ST12 for the treatment of inflammatory bowel diseases (IBD) by inhibiting NLRP3 inflammasome activation. Bioorg Chem 2025; 159:108402. [PMID: 40154236 DOI: 10.1016/j.bioorg.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Herein, we designed and synthesized a series of novel bis-amide small molecule anti-inflammatory agents, among them, compound ST12 showed most potent anti-inflammatory activity. ST12 effectively inhibited the production of nitric oxide (NO) (inhibition rate of 52.67 ± 0.03 % at 10 μM) and downregulated the mRNA levels of proinflammatory cytokines iNOS, IL-6, IL-1β and TNF-α in lipopolysaccharide (LPS) induced RAW264.7 cells. Furthermore, mechanism studies suggest that compound ST12 exerted anti-inflammatory effects by inhibiting the activation of the NLRP3 inflammasome. Importantly, ST12 effectively ameliorated DSS-induced colitis in vivo. Taken together, ST12 is worthy of further investigation as a small molecule anti-inflammatory agent for treatment of inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenghui Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Debnath M, Malhotra M, Kulkarni A. Protein corona formation on supramolecular polymer nanoparticles causes differential endosomal sorting resulting in an attenuated NLRP3 inflammasome activation. Biomater Sci 2025; 13:3030-3047. [PMID: 40244934 DOI: 10.1039/d5bm00244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Upon introduction into biological environments, nanoparticles undergo the spontaneous formation of a dynamic protein corona, which continually evolves and significantly modifies their physicochemical properties and interactions with biological systems. This evolving protein corona can critically impact the nanoparticles' endocytic pathways and targeting efficiency, potentially altering their functional characteristics and obscuring their intended therapeutic effects. Despite considerable focus on the characterization of corona proteins and their impact on nanoparticle uptake, the intracellular processes and their effects on immunogenicity are not yet thoroughly understood. Supramolecular polymer nanoparticles (SNPs) with a highly hydrophobic core are recognized for triggering NLRP3 inflammasome activation, a key component of the innate immune system. Here, it is reported that the protein corona formation on SNPs exerts an inhibitory effect on the activation pathway of NLRP3 inflammasome. The protein corona impairs the intrinsic capacity of SNPs to induce lysosomal membrane rupture, thereby diminishing the cellular stress signals necessary for the formation of the NLRP3 inflammasome complex. Furthermore, the cells transport SNPs with an attached protein corona to recycling endosomes, where they are sorted and prepared for exocytosis. Conversely, nascent SNPs are primarily confined to late endosomes and lysosomes, leading to lysosomal rupture and inflammasome activation. This differential routing reflects the significant impact of the protein corona on the cellular handling and subsequent biological activity of nanoparticles. In summary, this study elucidates the fundamental role of the protein corona in shaping the intracellular disposition of nanoparticles, with implications for modulating their interactions with the immune system.
Collapse
Affiliation(s)
- Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Arnesdotter E, Stoffels CBA, Alker W, Gutleb AC, Serchi T. Per- and polyfluoroalkyl substances (PFAS): immunotoxicity at the primary sites of exposure. Crit Rev Toxicol 2025:1-21. [PMID: 40400477 DOI: 10.1080/10408444.2025.2501420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals widely used in industrial and consumer products, leading to environmental contamination and human exposure. This review focuses on perfluoroalkyl acids, a subset of PFAS, which are primarily encountered through diet, including drinking water, and other pathways such as dust ingestion, and dermal contact. Impaired vaccine antibody response has been identified as the most critical effect for risk assessment by the European Food Safety Authority. Furthermore, human epidemiological studies have linked exposure to certain PFAS to various immune-related outcomes, such as asthma, allergies, and inflammatory bowel disease. This review examines potential immunomodulatory effects of perfluoroalkyl acids at the primary sites of exposure: lungs, intestines, and skin, using human epidemiological data as the basis for investigating these impacts. While animal studies are referenced for context, this paper highlights the need for further human-based research to address key questions about PFAS and their immunological impacts. The state of in vitro toxicity testing related to these effects is thoroughly reviewed and critical issues pertaining to this topic are discussed.
Collapse
Affiliation(s)
- Emma Arnesdotter
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Charlotte B A Stoffels
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Wiebke Alker
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Arno C Gutleb
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Tommaso Serchi
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
6
|
Bartra C, Vuraić K, Yuan Y, Codony S, Valdés-Quiroz H, Casal C, Slevin M, Máquez-Kisinousky L, Planas AM, Griñán-Ferré C, Pallàs M, Morisseau C, Hammock BD, Vázquez S, Suñol C, Sanfeliu C. Microglial pro-inflammatory mechanisms induced by monomeric C-reactive protein are counteracted by soluble epoxide hydrolase inhibitors. Int Immunopharmacol 2025; 155:114644. [PMID: 40215773 DOI: 10.1016/j.intimp.2025.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Monomeric C-reactive protein (mCRP) is a pro-inflammatory molecule generated by the dissociation of native CRP. Clinical and experimental studies suggest that mCRP deposition in the brain induces Alzheimer's disease (AD) pathology and cognitive loss. Pathological neuroinflammation is increasingly suggested as relevant in AD. Innovative therapies against neuroinflammation are desperately needed, and inhibitors of the enzyme soluble epoxide hydrolase (sEH) are a promising new generation of anti-inflammatory drugs. Mouse primary microglia and BV2 cell line cultures were exposed to mCRP to analyze its pro-inflammatory mechanisms. sEH inhibitors, both newly synthesized UB-SCG-55 and UB-SCG-65, and the reference agent TPPU, were tested for their anti-inflammatory action against mCRP. Phenotypic changes were analyzed through cell imaging techniques, as well as molecular analysis of inflammatory mediators and gene activation pathways. Results show that mCRP triggers a pro-inflammatory response through three main inflammatory pathways: iNOS, NLRP3, and COX-2, followed by increased cytokine generation. Polarization of microglia toward a M1-like phenotype was confirmed by morphological analysis. Also, mCRP can bind to and cross the cell membrane, providing further insight into its mechanisms of action. sEH inhibitors were effective against mCRP induction of a reactive microglial phenotype. The first-line compound UB-SCG-55 emerged as the most potent anti-inflammatory against mCRP injury. Therefore, the direct activation of microglia by mCRP provides evidence of its role in triggering and exacerbating neurodegenerative diseases with a neuroinflammatory component, such as AD. Furthermore, the protection given by inhibitors of sEH confirms its potential as innovative drugs against deleterious effects of neuroinflammation.
Collapse
Affiliation(s)
- Clara Bartra
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08034 Barcelona, Spain.
| | - Kristijan Vuraić
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Yi Yuan
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Haydeé Valdés-Quiroz
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Carme Casal
- Microscopy Service, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - Mark Slevin
- CCAMF, George Emil Palade Universitatea de Medicina, Farmacie, Stiinte se Technologie, "George Emil Palade" din Targu-Mures, 540142, Tirgu Mures, Romania
| | - Leonardo Máquez-Kisinousky
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Coral Sanfeliu
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain.
| |
Collapse
|
7
|
Yang X, Yang J, Wang A, Zheng Y, Lin J, Kong Z, Tian Y, Dong H, Zhang Z, Song R. Saikosaponin A ameliorates ulcerative colitis by targeting the CH25H/25-OHC axis to inhibit NLRP3 inflammasome in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156844. [PMID: 40414048 DOI: 10.1016/j.phymed.2025.156844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) has demonstrated an escalating global incidence and prevalence, thereby posing substantial challenges to public health. Despite recent advancements in therapeutic interventions, the clinical management of UC remains suboptimal, underscoring the urgent need for novel treatment strategies. Saikosaponin A (SSa), a bioactive compound derived from the traditional Chinese herb Radix Bupleuri (RB), exhibits potent anti-inflammatory and immunomodulatory effects. However, its effects on UC and the underlying molecular mechanisms remain to be thoroughly explored. PURPOSE This study aims to elucidate the underlying mechanisms of SSa in ameliorating UC and establish a pharmacological foundation for developing novel treatment modalities to address unmet clinical needs in UC treatment. METHODS The protective effects of SSa against DSS-induced acute colitis were evaluated in a 3 % DSS-treated mouse model. Histological (H&E staining) and molecular analyses (RT-qPCR, ELISA, Western blotting, and flow cytometry) were performed to assess colonic tissue damage and inflammatory responses. Macrophage depletion via tail vein injection of clodronate liposomes confirmed the pivotal role of macrophages in UC pathogenesis and SSa's anti-inflammatory effects. The inhibitory effects of SSa on NLRP3 inflammasome activation were analyzed in vivo and in LPS/ATP-stimulated bone marrow-derived macrophages (BMDMs) using RT-qPCR, ELISA, and Western blotting. Bioinformatics analysis, targeted LC-MS/MS, and molecular docking were employed to identify potential molecular targets and mechanisms of SSa. Drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and CH25H siRNA knockdown assays were used to validate CH25H as the direct target of SSa. RESULTS SSa effectively attenuated DSS-induced colitis in mice by alleviating colonic inflammation, preserving intestinal barrier integrity, reducing LPS translocation, and mitigating systemic organ injury in the liver and spleen. The inflammatory response of macrophages and the production of IL-1β were identified as key pathogenic components in colitis, and the clearance of macrophages significantly ameliorated colitis progression while SSa administration post-macrophage clearance did not further alter the disease phenotype. Mechanistically, SSa inhibited the NLRP3 inflammasome activation-mediated IL-1β secretion in macrophages. The sterol metabolism played a crucial role in the activation of the NLRP3 inflammasome. SSa also restored the disturbed sterol homeostasis in the colon under inflammatory conditions, especially promoted the synthesis of 25-hydroxycholesterol (25-OHC). Further investigation revealed that SSa primarily exerts its therapeutic effects by directly targeting cholesterol 25-hydroxylase (CH25H), which promotes the production of 25-OHC and inhibits macrophage NLRP3 inflammasome activation. CONCLUSION This pioneering study demonstrated the therapeutic effect of SSa on DSS-induced colitis by targeting CH25H to enhance 25-OHC biosynthesis, which subsequently inhibited NLRP3 inflammasome activation in IL-1β-producing macrophages. These findings reveal a novel mechanism of SSa in UC treatment through cholesterol metabolism-regulated cascade immune modulation, providing strong pharmacological support for its development as a potential UC therapy.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jinni Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Anhui Wang
- Institute of Materia Medica Chinese Academy of Medical Science, Beijing 100050, China
| | - Yuan Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jiachun Lin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ziwen Kong
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing, 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Swenson K. Beyond the hype: a comprehensive exploration of CBD's biological impacts and mechanisms of action. J Cannabis Res 2025; 7:24. [PMID: 40350443 PMCID: PMC12067965 DOI: 10.1186/s42238-025-00274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/16/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Cannabidiol (CBD) is the primary non-psychoactive component of cannabis. Consumption of CBD is increasing rapidly as it is federally legal and widely available in the United States, Europe, Mexico, Canada, and Asia. CBD is gaining traction in medical and biochemical research, though a comprehensive classification of CBD receptor interactions is yet to be elucidated. METHODS A comprehensive literature search across PubMed, Web of Science, and Google Scholar identified studies reporting cannabidiol (CBD) interactions with receptors, enzymes, and biological processes. Eligible articles included cell culture, animal model, biochemical, and clinical studies. Findings were thematically synthesized by body system, emphasizing mechanisms and implications for health and disease. RESULTS Herein, I compile the literature to date of known interactions between CBD and various receptors, enzymes, and processes. I discuss the impact of CBD exposure on multiple processes, including endocannabinoid receptors, ion channels, cytochrome 450 enzymes, inflammatory pathways, and sex hormone regulation. I explain the potential effects of CBD on psychiatric disorders, seizure activity, nausea and vomiting, pain sensation, thermal regulation, neuronal signaling, neurodegenerative diseases, reproductive aging, drug metabolism, inflammation, sex hormone regulation, and energy homeostasis. CONCLUSIONS Understanding how CBD functions and how it can interact with other recreational or pharmaceutical medications is necessary for proper clinical management of patients who consume CBD.
Collapse
Affiliation(s)
- Karli Swenson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13123 East 16 Ave B265, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Moustafa PE, Farouk H, Khattab MS, El-Marasy SA. Diacerein counteracts amiodarone‑induced hepatotoxicity in rats via targeting TLR4/NF-kB/NLRP3 pathways. Toxicol Mech Methods 2025:1-13. [PMID: 40331897 DOI: 10.1080/15376516.2025.2499024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
This study investigates the protective effects of diacerein (DCN) against amiodarone (AMIO)-induced hepatotoxicity in a rat model. AMIO administration resulted in significant elevations of liver enzymes, ALT and AST, indicating hepatocellular membrane disruption and oxidative stress, as demonstrated by elevated levels of malondialdehyde (MDA) and decreased glutathione (GSH). Additionally, pro-inflammatory cytokines including TNF-α and IL-1β were expressed more when AMIO triggered the Toll-like receptor 4/nuclear factor kappa B/inflammasome 3 (TLR4/NF-κB/NLRP3) inflammatory pathway, along with elevated caspase-1 (CASP1) levels, which promoted apoptosis. In contrast, oral administration of DCN for two weeks effectively mitigated these effects by reducing liver enzyme levels and improving histopathological alterations. DCN also demonstrated anti-oxidant properties by decreasing MDA levels and increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and GSH content. Furthermore, DCN downregulated the hepatic content of TLR4, NF-κB p65, NLRP3, CASP1, and pro-inflammatory cytokines, thereby inhibiting the activation of the inflammatory cascade. Moreover, DCN reduced protein expression of caspase 3. Those findings suggest that DCN exerts its hepatoprotective effects through its anti-oxidant activity, modulation of TLR4/NF-κB/NLRP3 inflammatory pathways, and reduction of apoptosis. These results provide new insights into potential therapeutic strategies for managing AMIO-induced hepatotoxicity, warranting further investigation into the underlying molecular mechanisms of DCN's protective effects.
Collapse
Affiliation(s)
- Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
10
|
Yu J, You Z, Wong VKW, Chen M, Liu W. Novel Cinnamic Acid Derivatives Containing Naproxen as NLRP3 Inhibitors: Synthesis and Evaluation of Their Biological Activity. Chem Biodivers 2025; 22:e202402700. [PMID: 39737737 DOI: 10.1002/cbdv.202402700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed and synthesized, and their anti-inflammatory activities and mechanisms were explored in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had a lower degree of cytotoxicity than that of naproxen. The present studies revealed that compound 23 (IC50 = 5.66 ± 1.66 µM) markedly inhibited the LPS-induced NO production and the over-expression of pro-inflammatory cytokines, including interleukin (IL)-1β, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Furthermore, it blocked the activation of NF-κB signaling pathway and pyrin domain-containing protein 3 (NLRP-3) inflammasome in a concentration-dependent manner. Additionally, docking studies confirmed that compound 23 exhibited a well-fitting into the NLRP3 active site. Considering these results, compound 23 might be a novel NLRP3 inhibitor to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jialin Yu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Zonglin You
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Wenfeng Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
11
|
Alenezi FO, Nader MA, El-Kashef DH, Abdelmageed ME. Dapansutrile mitigates concanavalin A- induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/ p38 MAPK pathways. Biomed Pharmacother 2025; 186:118026. [PMID: 40164046 DOI: 10.1016/j.biopha.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
AIM Dapansutrile (Dapan) is a newly developed anti-inflammatory molecule that supresses the production of NLRP3 inflammasome-dependent IL-1β. Its hepatoprotective effects against autoimmune hepatitis (AIH) have not yet been explored. Hence, this study was conducted to examine the possible protective effects of Dapan against concanavalin A (Con A)-induced hepatitis in mice. MAIN METHODS Mice were randomly divided into five groups (n = 6): control, Con A (15 mg/kg), Dapan (60 mg/kg), Dapan (6 mg/kg) + Con A, and Dapan (60 mg/kg) + Con A. Mice were euthanised at the end of the study, and blood and hepatic tissues were collected. KEY FINDINGS Hepatic function testing using lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels, in addition to hepatic tissue histological examination, revealed that intraperitoneal administration of Dapan noticeably ameliorated Con A-induced hepatic enzyme impairment and histopathological disruption. Moreover, Dapan-treated mice had significantly lower malondialdehyde hepatic content and elevated reduced glutathione, superoxide dismutase, and total antioxidant capacity levels than non-treated mice in a dose-dependent manner. The Dapan-treated groups showed significantly lower levels of the inflammatory mediators, NLRP3, TNF-α, IL-6, and IL-1β, in addition to the immunomodulators CD8, CD4, INF-γ, and NFκB and inhibition of JNK and p38 MAPK levels compared to the Con A-treated group. SIGNIFICANCE Our results showed that intraperitoneal administration of Dapan could be a therapeutic opportunity to inhibit the development of AIH via inhibition of inflammatory pathways.
Collapse
Affiliation(s)
- Fahad O Alenezi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Forensic Toxicology Services Center, Ministry of health, Qassim, Saudi Arabia
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
12
|
Naeem A, Waseem A, Khan MA, Robertson AA, Raza SS. Therapeutic Potential of MCC950 in Restoring Autophagy and Cognitive Function in STZ-Induced Rat Model of Alzheimer's Disease. Mol Neurobiol 2025; 62:6041-6058. [PMID: 39702834 DOI: 10.1007/s12035-024-04662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Alzheimer's disease (AD) is currently the seventh leading cause of death worldwide. In this study, we explored the critical role of autophagy in AD pathology using a streptozotocin (STZ)-induced AD model in Wistar rats. The experimental groups included sham, STZ-induced AD, and STZ + MCC950-treated animals. Our findings revealed that administering two doses of STZ (3 mg/kg) intracerebroventricular at the interval of 48 h (on days 0 and 2), triggered autophagy, as evidenced by elevated levels of autophagy markers such as LC3II, ULK1, Beclin1, Ambra1, Cathepsin B, and a reduction in p62 levels. Behavioral assessments, including the water maze and novel object recognition tests, confirmed cognitive deficits and memory impairment, while the open-field test indicated increased anxiety in STZ-induced AD rats. In particular, treating the STZ-induced AD group with MCC950 (50 mg/kg) decreased the overexpression of autophagy-related proteins, which was consistent with better behavioral outcomes and lower anxiety. Overall, this study highlights new insights into AD pathophysiology and suggests potential therapeutic avenues.
Collapse
Affiliation(s)
- Abdul Naeem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India.
| |
Collapse
|
13
|
Chenchula S, Ghanta MK, Alhammadi M, Mohammed A, Anitha K, Nuthalapati P, Raju GSR, Huh YS, Bhaskar L. Phytochemical compounds for treating hyperuricemia associated with gout: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4779-4801. [PMID: 39636406 DOI: 10.1007/s00210-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, 562114, Karnataka, India
| | - Munirah Alhammadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- College of Agriculture, KL University, Vaddeswaram Campus, Guntur, Andhra Pradesh, 522302, India
| | - Kuttiappan Anitha
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Poojith Nuthalapati
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
| |
Collapse
|
14
|
Baumer Y, Irei J, Boisvert WA. Cholesterol crystals in the pathogenesis of atherosclerosis. Nat Rev Cardiol 2025; 22:315-332. [PMID: 39558130 DOI: 10.1038/s41569-024-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of cholesterol crystals (CCs) in tissues was first described more than 100 years ago. CCs have a pathogenic role in various cardiovascular diseases, including myocardial infarction, aortic aneurysm and, most prominently, atherosclerosis. Although the underlying mechanisms and signalling pathways involved in CC formation are incompletely understood, numerous studies have highlighted the existence of CCs at various stages of atheroma progression. In this Review, we summarize the mechanisms underlying CC formation and the role of CCs in cardiovascular disease. In particular, we explore the established links between lipid metabolism across various cell types and the formation of CCs, with a focus on CC occurrence in the vasculature. We also discuss CC-induced inflammation as one of the pathogenic features of CCs in the atheroma. Finally, we summarize the therapeutic strategies aimed at reducing CC-mediated atherosclerotic burden, including approaches to inhibit CC formation in the vasculature or to mitigate the inflammatory response triggered by CCs. Addressing CC formation might emerge as a crucial component in our broader efforts to combat cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NIH, NHLBI, Bethesda, MD, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
15
|
Ashvin, Dhapola R, Kumari S, Sharma P, Vellingiri B, Medhi B, HariKrishnaReddy D. Unraveling the Immune Puzzle: Role of Immunomodulation in Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:47. [PMID: 40299221 DOI: 10.1007/s11481-025-10210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with growing evidence highlighting the dual role of immunomodulation in its pathogenesis and potential therapeutic strategies. Disturbance in the immune system increases the inflammatory cytokines that cause tau hyperphosphorylation and neuroinflammation. Also, immune checkpoint inhibition further increases the amyloid-beta deposition. Therefore, this review examines the intricate interplay between the immune system and AD, focusing on how immunomodulatory mechanisms influence key pathological hallmarks, including amyloid-beta aggregation, tau hyperphosphorylation, neuroinflammation, and cholinergic dysfunction. We analyse critical signaling pathways involved in immune regulation, such as Toll-like receptor (TLR), Janus kinase/signal transducer and activator of transcription (JAK/STAT), phosphoinositide 3-kinase/Akt (PI3K/Akt), Wnt/β-catenin, tumor necrosis factor (TNF), and triggering receptor expressed on myeloid cells (TREM), along with immune checkpoints like programmed cell death protein 1 (PD-1). Preclinical studies of immunomodulatory agents, including salidroside, festidinol, astragalin, sulforaphane, BM-MSC, simvastatin, Ab-T1, hTREM2, and XENP345, demonstrate promising effects. Additionally, clinical investigations of drugs such as simufilam, AL002, TB006, VGL101, DNL919, XPro1595, astragalus, and IBC-Ab002 underscore the therapeutic potential of targeting immune pathways in AD. This review emphasizes how neuroinflammation, microglial activation, and peripheral immune responses contribute to disease progression. By exploring immunomodulatory mechanisms, the article sheds light on potential therapeutic targets that could help mitigate AD pathology which may pave the way for novel interventions preventing neurodegeneration in AD.
Collapse
Affiliation(s)
- Ashvin
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
16
|
Mohammadi M, Rahimi K, Rezaie A, Tabandeh MR. The role of fecal microbiota transplantation on the NLRP3-Caspase 1 pathway and anxiety like behavioral in the ulcerative colitis model in rats. Sci Rep 2025; 15:14831. [PMID: 40295607 PMCID: PMC12037881 DOI: 10.1038/s41598-025-96948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The purpose of this study was to investigate the function of the NLRP3-Caspase 1 signaling pathway in the colon during fecal microbiota transplantation (FMT) in colitis induced by acetic acid. Additionally, the study aimed to determine the impact of FMT on anxiety behaviors by analyzing the function of the NLRP3-Caspase 1 signaling pathway in the hippocampus. A total of twenty-four rats were selected randomly for the study and divided into two groups, a control group, and an acid acetic-induced colitis group. The acid acetic-induced colitis group further consisted of three subgroups: untreated acid acetic-induced colitis group, mesalazine 0.3 gr/kg group, and FMT group. After 6 days, the colon was evaluated for macroscopic and microscopic damage, and the signaling pathway NLRP3-Caspase1-related genes in the colon and hippocampus were analyzed. Additionally, anxiety-related behaviors of the rats were observed. FMT decreased colonic mRNA expression levels of NLRP3, NF-кB, and Caspase1 and pro-inflammatory cytokines (IL-1β and IL-18). Also, FMT reduced the expression of NLRP3, NF-κB, and Caspase1 protein levels as well as pro-inflammatory cytokines IL-1β and IL-18 in the hippocampus, resulting in a reduction of anxiety behaviors in the open field and elevated plus maze tests in the colitis model. FMT may improve acetic acid-induced colitis by regulating the NLRP3-Caspase1 signaling pathway in the colon. It also reduced colitis-induced anxiety behavior by regulating the expression of proteins related to the NLRP3-Caspase 1 pathway in the hippocampus.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Anahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
17
|
Malekshahi M, Meskar Z, Manavi MA, Lesani A, Mohammad Jafari R, Ghasemi M, Dehpour AR. Anticonvulsant effects of noscapine against status epilepticus induced by lithium-pilocarpine in rats: involvement of Nrf2/HO-1 and NLRP3 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04096-w. [PMID: 40285834 DOI: 10.1007/s00210-025-04096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/23/2025] [Indexed: 04/29/2025]
Abstract
This study investigates the efficacy of noscapine in mitigating lithium-pilocarpine-induced Status epilepticus (SE) in rats and explores its impact on Nrf2/HO-1/NLRP3 signaling pathways, along with IL-1β and IL-18 modulation. SE was induced in male rats using lithium (127 mg/kg, intraperitoneal (i.p.)) and pilocarpine (60 mg/kg, i.p.). Noscapine (0.1, 1, 3, 10, 30, 100 mg/kg, i.p.) or its vehicle was administered 30 min before the SE induction. Seizure activity was monitored, and the effective dose of noscapine was identified. Western blotting was performed to analyze the expression levels of Nrf2, HO-1, and NLRP3, while ELISA was used to measure IL-1β and IL-18 levels, all in the hippocampus, which is critically involved in epilepsy pathophysiology. Noscapine at 30 mg/kg significantly (p < 0.01) reduced seizure severity and duration. Molecular analysis revealed that noscapine modulated the Nrf2/HO-1/NLRP3 pathway and reduced levels of pro-inflammatory cytokines IL-1β and IL-18 (p < 0.01). Noscapine exhibits potent anticonvulsive effects in a lithium-pilocarpine model of SE in rats, likely mediated through modulation of the Nrf2/HO-1 pathway and the NLRP3 inflammasome pathways. Further studies are warranted to explore its therapeutic potential in epilepsy.
Collapse
Affiliation(s)
- Mahda Malekshahi
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), P. O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, TUMS, Tehran, Iran
| | - Zohreh Meskar
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), P. O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, TUMS, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), P. O. Box 13145-784, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, TUMS, Tehran, Iran
| | - Ali Lesani
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), P. O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, TUMS, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), P. O. Box 13145-784, Tehran, Iran.
- Department of Pharmacology, School of Medicine, TUMS, Tehran, Iran.
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, 01803, MA, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), P. O. Box 13145-784, Tehran, Iran.
- Department of Pharmacology, School of Medicine, TUMS, Tehran, Iran.
| |
Collapse
|
18
|
Cai X, Bai Y, Liang C, Zhou J, Liu Y, Guo J, Jing Y, Fang Y, Hu X, Wu J, Hu D. Piperine as a promising therapeutic agent for silicosis: Targeting the JAK2-STAT3 signaling pathway and alleviating inflammation and fibrosis. Int Immunopharmacol 2025; 153:114458. [PMID: 40106900 DOI: 10.1016/j.intimp.2025.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/24/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Silicosis, a pervasive and life-threatening occupational respiratory disease, poses a substantial global health burden, particularly affecting those in impacted communities and their families. Characterized by irreversible pulmonary fibrosis, the disease's complex pathogenesis remains poorly elucidated, presenting significant challenges for therapeutic intervention. This study integrates bioinformatics, network pharmacology, and experimental validation to explore the potential mechanisms and therapeutic drugs for silicosis. Initially, differentially expressed genes (DEGs) in silicosis were subjected to GO and KEGG pathway enrichment analysis. Subsequently, the DEGs were imported into the cMap database for drug prediction, leading to the identification of piperine (PIP) as a candidate drug for the treatment of silicosis. Network pharmacology analysis then determined the pharmacological targets of PIP and demonstrated its ability to modulate the JAK2-STAT3 signaling pathway. Finally, we validated the therapeutic effects and mechanisms of PIP in silicosis. In vivo, PIP significantly ameliorated inflammation and fibrosis induced by crystalline silica (CS) in a murine model of silicosis, including inflammatory cell infiltration, formation of inflammasomes, deposition of collagen fibers and extracellular matrix, and expression of inflammatory and fibrotic factors. In vitro, PIP inhibited CS-induced cytokine expression, ROS generation, macrophage apoptosis, and activation of the JAK2-STAT3 signaling pathways. Collectively, our research identifies and validates PIP as a promising candidate for the improvement of silicosis.
Collapse
Affiliation(s)
- Xiaolong Cai
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Huainan Xinhua Medical Group Xinhua Hospital, China.
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yifan Jing
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yujing Fang
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xiaofei Hu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan City, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, China.
| |
Collapse
|
19
|
Zhou M, Tao X, Lin K, Leng C, Yang Y, Gui Y, Sun Y, Zhou M, Sun B, Xia Y, Shu X, Liu W. Downregulation of the HCN1 Channel Alleviates Anxiety- and Depression-Like Behaviors in Mice With Cerebral Ischemia-Reperfusion Injury by Suppressing the NLRP3 Inflammasome. J Am Heart Assoc 2025; 14:e038263. [PMID: 40207529 DOI: 10.1161/jaha.124.038263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Post-stroke depression (PSD) is a prevalent neuropsychiatric complication of stroke. However, the mechanisms underlying PSD are still unclear. Here, we aimed to investigate the role of HCN1 (hyperpolarization-activated cyclic nucleotide-gated cation channel 1) in the pathogenesis of PSD and its underlying mechanisms. METHODS The PSD mice model was established by middle cerebral artery occlusion in vivo. Four weeks after middle cerebral artery occlusion, anxiety- and depression-like behaviors of mice were evaluated by various behavioral tests. HCN channels were downregulated by pharmacological inhibitor or neuron-specific adeno-associated virus. The oxygen-glucose deprivation/reoxygenation model in SY5Y cells was used to study the pathogenesis of PSD in vitro. RESULTS Mice exhibited anxiety- and depression-like behavior 4 weeks after middle cerebral artery occlusion, along with a significant increase in HCN1 protein expression in the ischemic hippocampus. Furthermore, the Ih current on neurons in the hippocampus was notably enhanced, whereas neuronal excitability was decreased in PSD mice. Treatment with HCN channel selective inhibitor ZD7288 protected SY5Y cells against oxygen-glucose deprivation/reoxygenation injury by suppressing K+ efflux. Additionally, we observed a significant increase in protein expressions of NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome pathway-related molecules in the ischemic hippocampus of PSD mice. Knockdown of HCN1 channels via virus injection into the hippocampus resulted in decreased protein expressions of NLRP3 inflammasome-related molecules and improvement in anxiety- and depression-like behaviors in PSD mice. CONCLUSIONS Downregulation of HCN1 channels has a beneficial effect on PSD by suppressing the NLRP3 inflammasome pathway, thus offering promise as a strategy for preventing and treating PSD.
Collapse
Affiliation(s)
- Mei Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
- Institute of Cerebrovascular Disease, School of Medicine, Jianghan University Wuhan China
| | - Xiaoqin Tao
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Kuan Lin
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
- Institute of Cerebrovascular Disease, School of Medicine, Jianghan University Wuhan China
| | - Youhua Yang
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Yaojian Sun
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Meiling Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder Jianghan University Wuhan China
- Institute of Biomedical Sciences, School of Medicine, Jianghan University Wuhan China
- Institute of Cerebrovascular Disease, School of Medicine, Jianghan University Wuhan China
| |
Collapse
|
20
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
21
|
Yen CH, Chang YW, Sun YL, Hung YY, Liao WC, Lu TH, Huang PC, Chang HH, Lin MY, Lin DPC. Oral Intake of Streptococcus thermophilus iHA318 Mitigates Dry Eye Symptoms in a Randomized Clinical Study. Biomedicines 2025; 13:931. [PMID: 40299529 PMCID: PMC12024989 DOI: 10.3390/biomedicines13040931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: A probiotic Streptococcus thermophilus (iHA318) has been demonstrated to alleviate dry eye symptoms in a mouse model. This study investigated its effects on dry eye mitigation in a clinical trial. Methods: A total of 68 volunteers were recruited in the double-blind clinical trial and randomly divided into a probiotic group and a placebo group. The probiotic group received iHA318 capsules daily for 35 days via oral intake, while the placebo group received microcrystalline cellulose capsules. Assessments before and after the intervention were performed for the tear volume (TV), tear break-up time (TBUT), tear osmolarity (Osmo), serum sialic acid (SA) concentrations, and the Ocular Surface Disease Index (OSDI), and an impression cytology analysis was conducted for immunofluorescence detection of NLRP3 expression. Results: The tear volume was significantly increased in the probiotic group, although a placebo effect was observed in the placebo group. The probiotic group showed a significant reduction in tear osmolarity, an extended TBUT, and an improved OSDI score. These parameters were also observed in the placebo group without statistical significance. In addition, the serum SA was significantly increased in the probiotic group in contrast to a slight non-significant increase in the placebo group. Reductions in NLRP3 inflammasome activation and OSDI were found only in the probiotic group. Conclusions: In conclusion, a significant improvement in major dry eye symptoms after iHA318 treatment was observed compared to the placebo group.
Collapse
Affiliation(s)
- Chieh-Hung Yen
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412224, Taiwan;
- Department of Ophthalmology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 333323, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yu-Wei Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-W.C.); (Y.-L.S.); (Y.-Y.H.); (W.-C.L.); (P.-C.H.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Yen-Ling Sun
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-W.C.); (Y.-L.S.); (Y.-Y.H.); (W.-C.L.); (P.-C.H.)
| | - Yi-Yun Hung
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-W.C.); (Y.-L.S.); (Y.-Y.H.); (W.-C.L.); (P.-C.H.)
| | - Wei-Chieh Liao
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-W.C.); (Y.-L.S.); (Y.-Y.H.); (W.-C.L.); (P.-C.H.)
| | - Tsung-Han Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Pin-Chao Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-W.C.); (Y.-L.S.); (Y.-Y.H.); (W.-C.L.); (P.-C.H.)
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan; (Y.-W.C.); (Y.-L.S.); (Y.-Y.H.); (W.-C.L.); (P.-C.H.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| |
Collapse
|
22
|
Issa F, Abdulla M, Retnowati FD, Al-Khawaga H, Alhiraky H, Al-Harbi KM, Al-Haidose A, Maayah ZH, Abdallah AM. Cardio-Rheumatic Diseases: Inflammasomes Behaving Badly. Int J Mol Sci 2025; 26:3520. [PMID: 40331999 PMCID: PMC12026794 DOI: 10.3390/ijms26083520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Cardio-rheumatology is an evolving and interdisciplinary field lying at the intersection of rheumatology and cardiovascular medicine that recognizes that individuals with autoimmune and inflammatory rheumatic complications have a much higher likelihood of developing cardiovascular diseases (CVDs). Inflammasomes are multiprotein complexes stimulated by the immune system after the detection of pathogens or cellular injury. Inflammasomes undergo a two-stage activation process initiated by nuclear factor (NF)-κB, subsequently playing a crucial role in innate immunity through activation of caspase 1 and the consequent release of proinflammatory cytokines such as IL-18 and IL-1β. However, a loss of control of inflammasome activation can cause inflammatory diseases in humans. Recent studies have focused on the role of inflammasomes in inflammatory cascades implicated in the pathogenesis of several diseases. Here, we review inflammasome activation, its mechanism of action, and its role in CVD. In particular, we describe the role of inflammasomes in rheumatic heart disease, Kawasaki disease, familial Mediterranean fever, ankylosing spondylitis, and rheumatoid arthritis as exemplars to illustrate pathobiological mechanisms and the potential for targeting inflammasomes for therapeutic benefit.
Collapse
Affiliation(s)
- Farah Issa
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Marah Abdulla
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Faizah D. Retnowati
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Huda Al-Khawaga
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Hanin Alhiraky
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Khalid M. Al-Harbi
- Department of Pediatric, College of Medicine, Taibah University, Madinah 41477, Saudi Arabia;
| | - Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Zaid H. Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| |
Collapse
|
23
|
Docherty J. Therapeutic potential of faecal microbiota transplantation for alcohol use disorder, a narrative synthesis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111354. [PMID: 40185194 DOI: 10.1016/j.pnpbp.2025.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/04/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Faecal microbiota transplantation is proposed as an alternative therapy to treat alcohol use disorder and has completed a Phase 1 clinical trial, with a Phase 2 clinical trial underway. Alcohol, a modifiable risk factor for noncommunicable diseases, resulted in approximately 3 million global deaths (5 %) in 2016 according to the World Health Organization. AIMS A narrative synthesis examines the effects of alcohol and faecal microbiota transplantation on gut microbiota and how gut microbiota impacts the gut-brain axis, leading to certain behavioural symptoms of alcohol use disorder. These behavioural symptoms are alcohol craving and relapse in humans; and preference for alcohol, anxiety and depression in rodents. SEARCH METHODS AND RESULTS Electronic databases PubMed, Embase, and Scopus were searched in January 2024 using the terms: faecal microbiota trans* AND alcohol AND microbio*. Ten studies out of 964 met the inclusion criteria of published primary studies with faecal microbiota transplantation as an intervention to study the gut-brain axis in alcohol use disorder. RESULTS The gut microbiota is altered in alcohol use disorder, which can be modified with faecal microbiota transplantation. Behavioural symptoms such as alcohol craving and relapse are associated with inflammation due to a loss of intestinal barrier function. Beneficial microbiota produce short-chain fatty acids that maintain intestinal barrier function and reduce inflammation. Studies also reported anxiety and depression-like behaviours, in addition to a preference for alcohol in alcohol-naïve rodents after faecal microbiota transplantation from patients with alcohol use disorder. CONCLUSIONS Faecal microbiota transplantation may moderate the behavioural symptoms of alcohol use disorder by altering gut microbiota, affecting intestinal permeability and inflammation, however, specific gut microbiota composition and long-term treatment outcomes require further clinical studies.
Collapse
Affiliation(s)
- Jennifer Docherty
- Formerly, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom..
| |
Collapse
|
24
|
Alonaizan R, K Alotaibi W, Alsulami A, M Alkhulaifi F, Alomar S. Sex-Differences Influence Depressive-Like Behaviour via Alterations in Microglial Expression of GIF-1, TREM2, and IL-1β in an Acute Lipopolysaccharide-Induced Murine Neuroinflammation Model. Immunol Invest 2025; 54:317-333. [PMID: 39701694 DOI: 10.1080/08820139.2024.2440006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have caused serious health issues worldwide. A growing body of evidence suggests a correlation between neuroinflammation and abnormal microglial activity with ND symptoms. Microglia survey play crucial roles in CNS during health and the injury. It is proposed that sex affects microglial roles during inflammation, resulting in mouse behavioural changes and expression alterations in key markers related to microglia functions. METHODS Male and female C57BL/6 mice were injected with a single dose of LPS (5 mg/kg, i.p.) or saline. After 48 h, an open field test was conducted, followed by brain tissues collection for measuring the expression of IGF-1, IL-1β and TREM2 and Immunohistochemistry (IHC) analysis for NLRP3 level. RESULTS Males displayed greater depressive-like behaviour in the OFT, with lower levels of IGF-1, IL-1β, and NLRP3 and high TREM2 expression. Female mice did not exhibit this behaviour, in contrast to male mice, they exhibited increased IL-1β and NLRP3 expression. DISCUSSION This study revealed that LPS-induced sex-specific changes in genes involved in neuronal cell survival caused behavioural alterations in male mice. Moreover, females had observed inflammatory responses that had no impact on behavioural alterations. Overall, both sexes exhibited sex-specific microglial activation states.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa K Alotaibi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asma Alsulami
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fadwa M Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Moss CG, Dilworth MR, Harris LK, Freeman S, Heazell AEP. Understanding a Potential Role for the NLRP3 Inflammasome in Placenta-Mediated Pregnancy Complications. Am J Reprod Immunol 2025; 93:e70077. [PMID: 40260875 PMCID: PMC12013246 DOI: 10.1111/aji.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Stillbirth affects approximately 2 million pregnancies annually and is closely linked to placental dysfunction, which may also present clinically as foetal growth restriction (FGR) or pre-eclampsia (PE). Placental dysfunction can arise from a range of insults, including the inflammatory conditions villitis of unknown aetiology (VUE) and chronic histiocytic intervillositis (CHI). Despite ample research regarding the pathophysiology of placental dysfunction, the literature surrounding placental inflammation is more limited, with no currently established treatments. In the absence of infection, placental inflammation is hypothesised to be stimulated by damage-associated molecular patterns (DAMPs), known as sterile inflammation. The NLRP3 inflammasome, a protein scaffold that unites within the cytosol of cells, is a proposed contributor. The NLRP3 inflammasome is dysregulated in numerous diseases and has shown evidence of activation through the sterile inflammatory pathway via DAMPs. Studies have demonstrated the upregulation of the NLRP3 inflammasome and its components in placentally-mediated pregnancy pathologies. However, the link between placental dysfunction seen in these disorders and the NLRP3 inflammasome is not yet firmly established. This manuscript aims to review the evidence regarding placental inflammation seen with placental dysfunction, discuss its association with the NLRP3 inflammasome, and identify potential therapeutic interventions for this pathological inflammatory response.
Collapse
Affiliation(s)
- Chloe G. Moss
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| | - Mark R. Dilworth
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| | - Lynda K. Harris
- Department of Obstetrics and GynaecologyOlson Center for Women's HealthUniversity of Nebraska Medical CentreOmahaUSA
| | - Sally Freeman
- Division of Pharmacy and OptometryUniversity of ManchesterManchesterUK
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and MedicineUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchester University NHS Foundation TrustManchesterUK
| |
Collapse
|
26
|
Hosseini Y, Niknejad A, Sabbagh Kashani A, Gholami M, Roustaie M, Mohammadi M, Momtaz S, Atkin SL, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. NLRP3 inflammasomes pathway: a key target for Metformin. Inflammopharmacology 2025; 33:1729-1760. [PMID: 40042723 DOI: 10.1007/s10787-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 (NLRP3) is a signaling pathway that is involved in inflammatory cascades, cell survival and the immune response. NLRP3 is activated by cellular damage, oxidative stress, and other factors that stimulate the immune system. Stimulation of NLRP3 induces inflammatory reactions and the production of inflammatory cytokines. These inflammatory mediators are implicated in several diseases. Metformin (MET) is an anti-hyperglycemia agent that is extensively used in clinical practice worldwide due to its high efficiency, safety profile, and affordable price. MET is the only member of biguanide class that is used in clinical practice and a potent AMP-activated protein kinase (AMPK) agonist with proven anti-inflammatory characteristics. Due to its anti-inflammatory properties, MET is considered to be effective against diseases that have an inflammatory background, and the NLRP3 pathway is involved in the pathophysiology of these disorders. In this review, we have evaluated the evidence if MET can affect this pathway and its utility for future therapeutic approaches.
Collapse
Affiliation(s)
- Yasamin Hosseini
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Gholami
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaie
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Jones LP, Martin DE, Murray J, Sancilio F, Tripp RA. Probenecid Inhibits NLRP3 Inflammasome Activity and Mitogen-Activated Protein Kinases (MAPKs). Biomolecules 2025; 15:511. [PMID: 40305196 PMCID: PMC12024562 DOI: 10.3390/biom15040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Probenecid has long been a versatile drug in pharmacological therapies, primarily known for blocking active tubular secretion in the kidney, affecting both endogenous substances like uric acid and exogenous ones like penicillin. Beyond its renal applications, probenecid has shown capabilities in crossing the blood-brain barrier and modulating the activity of various membrane channels and transporters. This compound has emerged as a potent antiviral agent, demonstrating efficacy against multiple viruses, including influenza, COVID-19, and RSV. Clinical trials with COVID-19 patients have confirmed its antiviral potential, sparking further investigation into its mechanisms of action. This study explores probenecid's significant anti-inflammatory properties, focusing on its ability to inhibit inflammasome activation. Our study aims to unravel the anti-inflammatory effects of probenecid on the NLRP3 inflammasome and MAPK signaling pathways using murine macrophages as a relevant inflammation model. We reveal that probenecid treatment blocks JNK and ERK signaling without affecting p38 MAPK, suppressing NLRP3 inflammasome activation. Additionally, probenecid does not affect NFκB-directed protein expression, although it efficiently inhibits NLRP3 inflammasome outputs, e.g., IL-1β and pyroptosis. These results indicate probenecid's potential therapeutic applications.
Collapse
Affiliation(s)
- Les P. Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (J.M.)
| | | | - Jackelyn Murray
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (J.M.)
| | - Fred Sancilio
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33431, USA;
| | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (J.M.)
| |
Collapse
|
28
|
Anderson A, Waithe OY, Seplovich G, Olagunju O, Greene C, Singh A, Muthusamy S, Tharakan B. Regulation of BzATP-Induced Blood-Brain Barrier Endothelial Cell Hyperpermeability by NLRP3 Inflammasome Inhibition. Microcirculation 2025; 32:e70006. [PMID: 40052959 PMCID: PMC11905927 DOI: 10.1111/micc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE The blood-brain barrier (BBB) is a semi-permeable microvascular barrier, composed of endothelial cells conjoined by tight junction proteins. Following pathological conditions, i.e., traumatic brain injury (TBI), BBB dysfunction occurs, leading to microvascular hyperpermeability, resulting in cerebral edema formation and elevated intracranial pressure. Recent evidence suggests that the activation of pro-inflammatory signaling pathways is critical to BBB dysfunction. The NLRP3 inflammasome has been implicated as a key component of pro-inflammatory signaling. The aim of this study was to determine the upstream regulators of NLRP3 inflammasome activation that cause subsequent BBB aberration and microvascular hyperpermeability. METHODS Brain microvascular endothelial cells were exposed to benzoyl ATP (BzATP) with or without MCC950. We employed immunocytochemical localization of tight junction proteins, fluorometric enzymatic assays, total gene expression analyses of ZO-1, and monolayer permeability studies to assess the effect of BzATP-induced injury on NLRP3 inflammasome activation/inhibition. RESULTS BzATP treatment induced monolayer hyperpermeability and increased caspase-1 and MMP-9 activities. NLRP3 inhibition decreased caspase-1 and MMP-9 activities and rescued BzATP-induced monolayer permeability significantly. CONCLUSIONS NLRP3 inflammasome signaling is critical to BBB endothelial cell dysfunction. Extracellular ATP is an upstream promoter of BBB hyperpermeability. NLRP3 inflammasome activation leads to subsequent caspase-1 and MMP-9-mediated tight junction protein disarray.
Collapse
Affiliation(s)
- Aliyah Anderson
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Gabriela Seplovich
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | - Christlyn Greene
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Amrendra Singh
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Bender MJ, Lucas CL. Decoding Immunobiology Through Genetic Errors of Immunity. Annu Rev Immunol 2025; 43:285-311. [PMID: 39952637 DOI: 10.1146/annurev-immunol-082323-124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Throughout biology, the pursuit of genotype-phenotype relationships has provided foundational knowledge upon which new concepts and hypotheses are built. Genetic perturbation, whether occurring naturally or in experimental settings, is the mainstay of mechanistic dissection in biological systems. The unbiased discovery of causal genetic lesions via forward genetics in patients who have a rare disease elucidates a particularly impactful set of genotype-phenotype relationships. Here, we review the field of genetic errors of immunity, often termed inborn errors of immunity (IEIs), in a framework aimed at highlighting the powerful real-world immunology insights provided collectively and individually by these (approximately) 500 disorders. By conceptualizing essential immune functions in a model of the adaptive arsenal of rapid defenses, we organize IEIs based on immune circuits in which sensors, relays, and executioners cooperate to carry out pathogen clearance functions in an effective yet regulated manner. We review and discuss findings from IEIs that not only reinforce known immunology concepts but also offer surprising phenotypes, prompting an opportunity to refine our understanding of immune system function.
Collapse
Affiliation(s)
- Mackenzie J Bender
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| | - Carrie L Lucas
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
30
|
Shao N, Ding Z, Liu F, Zhang X, Wang X, Hu S, Ye S, Wang T, Si W, Cai B. Huang-Pu-Tong-Qiao Formula Alleviates Hippocampal Neuron Damage by Inhibiting NLRP3 Inflammasome-mediated Pyroptosis in Alzheimer's Disease. Mol Neurobiol 2025; 62:4545-4561. [PMID: 39466576 DOI: 10.1007/s12035-024-04547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Huang-Pu-Tong-Qiao (HPTQ), a Traditional Chinese Medicine formula, has achieved remarkable efficacy in clinically treating Alzheimer's disease (AD). Pyroptosis refers to the inflammatory necrosis of cells, which contributes to AD pathological progression. However, it is unclear whether the therapeutic effect of HPTQ on AD is related to reducing pyroptosis. In this study, the network pharmacology analysis was used to predict the molecular mechanism of HPTQ in treating AD and validated our hypothesis through mice and cell experiments. APP/PS1 transgenic mice and Aβ25-35-injured HT22 cells were used as AD models in vivo and in vitro. The pharmacological effects and mechanisms of HPTQ on AD were evaluated by Morris water maze, Y-maze, transmission electron microscope, immunofluorescence, Hoechst/PI staining, western blot, and ELISA. Network pharmacology reveals the correlation between the therapeutic effect of HPTQ on AD and the NOD-like receptor signaling pathway. In APP/PS1 mice, HPTQ reduced the escape latency and maintained cell membrane integrity. In HT22 cells, 15% HPTQ-medicated serum and 10 µM MCC950 increased cell viability and decreased PI positive rate compared with the Model group. In addition, HPTQ treatment in AD animal and cell models reduced the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, GSDMD-N, IL-1β, and IL-18. The experimental results of MCC950 specifically inhibiting the NLRP3 expression suggested that HPTQ might reduce neuronal pyroptosis by reducing NLRP3 inflammasome. Network pharmacology and experimental validation suggested that HPTQ alleviated NLRP3 inflammasome-mediated neuronal pyroptosis in AD, which could provide valuable candidate drugs for AD clinical treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhixian Ding
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaojuan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shenglin Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Shu Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Tingting Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
31
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
32
|
Umsumarng S, Semmarath W, Arjsri P, Srisawad K, Intanil I, Jamjod S, Prom-u-thai C, Dejkriengkraikul P. Anthocyanin-Rich Fraction from Kum Akha Black Rice Attenuates NLRP3 Inflammasome-Driven Lung Inflammation In Vitro and In Vivo. Nutrients 2025; 17:1186. [PMID: 40218944 PMCID: PMC11990836 DOI: 10.3390/nu17071186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chronic lower respiratory tract inflammation can result from exposure to bacterial particles, leading to the activation of the NLRP3 inflammasome pathway. These effects may cause irreversible respiratory damage, contributing to persistent lung injury and chronic obstructive pulmonary disease (COPD), as observed in long COVID or bacterial pneumonia in older adults' patients. Given its profound impact, the NLRP3 inflammasome has emerged as a key therapeutic target for mitigating aberrant inflammatory responses. METHODS In this study, we investigated the anti-inflammatory effects of Kum Akha black rice, a functional food, on the attenuation of NLRP3 inflammasome pathway using lipopolysaccharide-induced A549 lung epithelial cells and a C57BL/6NJcl mouse model. The anthocyanin-rich fraction from Kum Akha black rice germ and bran extract (KA1-P1) was obtained using a solvent-partitioned extraction technique. RESULTS KA1-P1 exhibited a high anthocyanin content (74.63 ± 1.66 mg/g extract) as determined by the pH differential method. The HPLC analysis revealed cyanidin-3-O-glucoside (C3G: 45.58 ± 0.48 mg/g extract) and peonidin-3-O-glucoside (P3G: 6.92 ± 0.29 mg/g extract) as its anthocyanin's active compounds. Additionally, KA1-P1 demonstrated strong antioxidant activity, as assessed by DPPH and ABTS assays. KA1-P1 (12.5-100 μg/mL) possessed inhibitory effects on LPS + ATP-induced A549 lung cells inflammation through the significant suppressions of NLRP3, IL-6, IL-1β, and IL-18 mRNA levels and the inhibition of cytokine secretions in a dose-dependent manner (p < 0.05). Mechanistic analysis revealed that KA1-P1 downregulated key proteins in the NLRP3 inflammasome pathway (NLRP3, ASC, pro-caspase-1, and cleaved-caspase-1). Furthermore, in vivo studies demonstrated that KA1-P1 significantly diminished LPS-induced lower respiratory inflammation in C57BL/6NJcl mice, as evidenced by the reduced bronchoalveolar lavage fluid and blood levels of inflammatory cytokines (IL-6, IL-1β, and IL-18) and diminished histopathological inflammatory lung lesions. CONCLUSIONS Overall, our findings suggest that the anti-inflammatory properties of KA1-P1 may support its application as a functional supplement or promote the consumption of pigmented rice among the elderly to mitigate chronic lower respiratory tract inflammation mediated by the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Sonthaya Umsumarng
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-t.)
| | - Warathit Semmarath
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (I.I.)
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (I.I.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Intranee Intanil
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (I.I.)
| | - Sansanee Jamjod
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-t.)
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanakan Prom-u-thai
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-t.)
| | - Pornngarm Dejkriengkraikul
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-t.)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (I.I.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
33
|
Kumar A, Rahul, Kanika, Kumar J, Mahajan S, Ali A, Ali N, Bishnoi M, Son YO, Khan R. Multifunctional chrysin-loaded gallic acid-glycerol monostearate conjugate-based injectable hydrogel for targeted inhibition of hypoxia-induced NLRP3 inflammasome in ulcerative colitis. Biomater Sci 2025; 13:1801-1817. [PMID: 39998176 DOI: 10.1039/d4bm01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition affecting the colon part of the large intestine. Since there is no cure for this disease, conventional therapies only provide symptomatic relief. Recently, phytomolecules have shown promising treatment results in various diseases. However, short half-life, hydrophobicity, and poor bioavailability limit their therapeutic potential. To overcome all these challenges, we have earlier conjugated a phytomolecule (gallic acid) (GA) with the FDA-approved generally recognized as safe (GRAS) material that is glycerol monostearate (GMS). This GA-GMS conjugate self-assembles as a hydrogel via the heating-cooling method and acts as a pro-drug of GA. The in vivo imaging results suggest that the GA-GMS hydrogel more efficiently adheres to the inflamed colon than a therapeutic enema. Additionally, it is known that the gut microbiota exaggerates UC by creating a hypoxic environment in the colon. This hypoxia is linked with NLRP3 inflammasome activation that triggers the release of IL-1β and IL-18 that downregulates MUC2 protein expression in the colon, responsible for mucin secretion in the colon. Therefore, chrysin (CR) (HIF-1α inhibitor) is encapsulated into the GA-GMS hydrogel to target hypoxia. The CR@GA-GMS hydrogel follows the enzyme-responsive release of the CR and restores DSS-induced damage to colonic tissue. Furthermore, the CR@GA-GMS hydrogel downregulates HIF-1α mediated NLRP3 inflammasome signalling while upregulating MUC2 production.
Collapse
Affiliation(s)
- Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Rahul
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Jattin Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Shubham Mahajan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| |
Collapse
|
34
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Tan X, Yan C, Zou G, Jing R. Neurogenic differentiation 2 promotes inflammatory activation of macrophages in doxorubicin-induced myocarditis via regulating protein kinase D. BMC Cardiovasc Disord 2025; 25:195. [PMID: 40102732 PMCID: PMC11916933 DOI: 10.1186/s12872-025-04626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Although it has been established that protein kinase D (PKD) plays a crucial role in various diseases, its precise role in myocarditis remains elusive. METHODS To investigate PKD's involvement in myocarditis, we established a mouse model of myocarditis using doxorubicin (DOX) to assess cardiac function, observe pathological changes, and quantify inflammatory cytokine levels in heart tissues. Additionally, macrophages were isolated from heart tissues of both control and DOX-treated groups to assess PKD expression and inflammatory cytokines in these macrophages. We explored the molecular mechanism of Neurogenic Differentiation 2 (NeuroD2) in myocarditis by utilizing NeuroD2 overexpression plasmids and NeuroD2 small interfering RNA (siRNA). Furthermore, we conducted dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays to investigate the interaction between NeuroD2 and PKD. RESULTS We observed significant upregulation of PKD in macrophages and heart tissues induced by DOX. The administration of a PKD inhibitor reduced inflammatory cytokine levels, improved cardiac function, and mitigated pathological changes in myocarditis-afflicted mice. Mechanistically, we found upregulated expression of NeuroD2 in both macrophages and heart tissues exposed to DOX. NeuroD2 could directly target PKD, enhancing the NLRP3/NF-κB signaling pathway and exacerbating macrophage inflammation. CONCLUSIONS Our study demonstrates that NeuroD2 can directly bind to the PKD promoter, potentially promoting inflammatory activation of macrophages in DOX-induced myocarditis via the NLRP3/NF-κB pathway. This suggests that the NeuroD2/PKD axis may hold promise as a potential therapeutic approach for treating DOX-induced myocarditis.
Collapse
Affiliation(s)
- Xinyu Tan
- Xiangya hospital of central south university, No. 87, Xiangya road, Changsha, China
| | - Changyu Yan
- Xiangya hospital of central south university, No. 87, Xiangya road, Changsha, China
| | - Gang Zou
- Zhong Ke Zhu Ying Intelligence Technology Academy, No. 96, Tongzipo road, Changsha, China
| | - Ran Jing
- Xiangya hospital of central south university, No. 87, Xiangya road, Changsha, China.
| |
Collapse
|
37
|
Shackebaei D, Yari K, Rahimi N, Gorgani S, Yarmohammadi F. Targeting the NLRP3 by Natural Compounds: Therapeutic Strategies to Mitigate Doxorubicin-Induced Cardiotoxicity. Cell Biochem Biophys 2025:10.1007/s12013-025-01723-4. [PMID: 40100343 DOI: 10.1007/s12013-025-01723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Doxorubicin (DOX), a widely utilized anthracycline chemotherapy agent, is known for its potent anticancer efficacy across various malignancies. However, its clinical use is considerably restricted due to the risk of dose-dependent cardiotoxicity, which can lead to long-term heart dysfunction. The underlying mechanism of DOX-induced cardiotoxicity has been associated with the formation of reactive oxygen species (ROS) and disrupting cellular signaling pathways. This is particularly relevant to the activation of the NLRP3 inflammasome, which triggers inflammation and pyroptosis in cardiac cells. In recent years, there has been growing interest in natural compounds that exhibit potential cardioprotective effects against the adverse cardiac effects of DOX. The present study showed that specific natural compounds, such as honokiol, resveratrol, cynaroside, and curcumin, can confer significant protection against DOX-induced cardiotoxicity through the modulation of NLRP3 inflammasome signaling pathways. In summary, incorporating natural compounds into treatment plans could be a practical approach to improve the safety profile of DOX, thereby protecting cardiac health through the regulation of the NLRP3 pathway.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Rahimi
- Department of Occupational Health and Safety Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Sara Gorgani
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Khalil B, Sharif-Askari NS, Selvakumar B, Mdkhana B, Hachim I, Zakri A, Hundt J, Hamid Q, Halwani R. Vitamin D3 suppresses NLRP3 inflammasome pathway and enhances steroid sensitivity in a neutrophilic steroid hyporesponsive asthma mouse model. Inflamm Res 2025; 74:51. [PMID: 40082319 DOI: 10.1007/s00011-025-02009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE Severe steroid hyporesponsive asthma is a heterogeneous group of chronic inflammatory diseases characterized by irreversible airflow limitation, hyperresponsiveness, inflammation, and remodelling of the airways. Severe asthmatics account for more than 60% of asthma-related healthcare cost worldwide given they are hyporesponsive to corticosteroids and due to the absence of targeted treatment specifically for the T helper-17 (Th-17) high endotype. Hence, there is a clear unmet need to investigate other treatment options to control patients' symptoms. The role of the NLRP3 inflammasome pathway has been highlighted in the literature to contribute to disease pathogenesis and severity. Interestingly, vitamin D3 is an important regulator of the NLRP3 inflammasome pathway. METHODS Using house dust mite (HDM) and lipopolysaccharide (LPS), we induced a neutrophilic steroid hyporesponsive asthma mouse model to investigate the effect of vitamin D3 on downregulating the NLRP3 inflammasome pathway and enhancing steroid sensitivity. RESULTS We showed that calcitriol, the active form of vitamin D3, could downregulate the NLRP3 inflammasome pathway. This was associated with a significant reduction in airway hyperresponsiveness, IL-17 release, neutrophil infiltration, and mucus secretion. Further, calcitriol enhanced steroid sensitivity by inhibiting the expression of GR-β. Mechanistically, calcitriol targeted the NLRP3 inflammasome to ubiquitination. CONCLUSIONS Our research highlights the potential use of calcitriol as a low cost and accessible supplement to ameliorate airway inflammation during severe steroid hyporesponsive asthma.
Collapse
Affiliation(s)
- Bariaa Khalil
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bushra Mdkhana
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Hachim
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel Zakri
- Department of Plant Production, Faculty of Agriculture and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jennifer Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
39
|
Wally ME, Aly MH. Gastroprotective Effect of Linagliptin on Indomethacin-Induced Gastric Ulceration in Mice: Crosstalk Between Oxidative Stress and Inflammasome Pathways. ACS Pharmacol Transl Sci 2025; 8:808-818. [PMID: 40109745 PMCID: PMC11915470 DOI: 10.1021/acsptsci.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
The clinical efficacy of indomethacin, a nonsteroidal anti-inflammatory drug, is hindered by its high ulcerogenic potential. Linagliptin, a dipeptidyl peptidase-4 inhibitor, has demonstrated anti-inflammatory properties through NLRP3 inflammasome modulation; however, its possible antiulcerogenic effect remains unclear. This study aimed to examine the potential prophylactic effect of linagliptin against indomethacin-induced gastric ulcers with a focus on NLRP3 inflammasome signaling. Gastric ulcers were induced using indomethacin and compared to pretreatment with linagliptin or the standard prophylactic omeprazole. Gastric injury was confirmed by gross morphology, ulcer scoring, and histopathological assessments. Additionally, redox status markers glutathione reductase (GSH), malondialdehyde (MDA), and Nrf2/Keap-1/HO-1 were evaluated in the gastric tissue. Immunohistochemical analysis of pNF-κB, NLRP3, and Caspase-1 inflammasome parameters was also conducted. Finally, measurement of gastric levels of Gasdermin-D was performed, as well as immunohistochemical and gene expression of IL-1β. Pretreatment with linagliptin suppressed all features of mucosal damage as well as inflammatory cell infiltration. The antioxidant effect of linagliptin was evident in low MDA, high GSH gastric levels, and high immunohistochemical reactivity of gastric tissues against Nrf2 and HO-1 antibodies, as well as low gastric levels of keap1. The overly active inflammasome pathway observed in indomethacin-induced ulcerated samples was reinstated by linagliptin, as seen in the suppression of pNF-κB, NLRP3, Caspase-1, and IL-1β immunohistochemical reactivity as well as Gasdermin-D levels. Our study showed that NLRP3 inflammasome contributes to the pathogenesis of indomethacin-mediated gastric injury and that linagliptin exhibits a protective effect against indomethacin-induced gastric ulcers, possibly through activation of the Nrf2/HO-1 antioxidant pathway and inhibition of the NLRP3 inflammasome axis.
Collapse
Affiliation(s)
- Maha E Wally
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Mohamed H Aly
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
40
|
Li H, Wang X, Luo X, Shi H, Li J. cGAS/STING/NLRP3 Signaling Pathway-Mediated Pyroptosis in Hypertrophic Cardiomyopathy Radiotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26084. [PMID: 40152382 DOI: 10.31083/fbl26084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Radiotherapy is a commonly employed treatment modality for cancer; however, its radiobiological effects in hypertrophic cardiomyopathy (HCM) remain unclear. Radiation exposure activates the cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, which is functionally associated with the activation of NOD-like Receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasomes, known mediators of pyroptotic cell death. Nonetheless, the underlying mechanism requires further investigation. Therefore, the objective of this study is to elucidate the role of the cGAS/STING/NLRP3 pathway in the process of cardiomyocyte pyroptosis during radiotherapy for HCM. METHODS Transverse aortic constriction surgery was conducted to establish a mouse model of pressure overload-induced HCM, followed by the administration of 30 Gray (Gy) radiation one-week post-surgery. Cardiac morphology and function were evaluated through echocardiographic techniques. Hematoxylin & Eosin staining, along with Wheat Germ Agglutinin (WGA) staining, were utilized to quantify the cross-sectional area of cardiomyocytes and the degree of left ventricular hypertrophy. The HL-1 mouse cardiac muscle cell line was subjected to 40 Gy of radiation using an X-ray irradiator to establish an in vitro model of HCM, with or without the application of the NLRP3 inhibitor MCC950 and cGAS overexpression. Various assays, including the Cell Counting Kit-8 (CCK8), enzyme-linked immunosorbent assay (ELISA), and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi- dazolylcarbocyanine iodide (JC-1) probe assays, were performed to assess cell viability, the concentrations of Interleukin (IL)-1β, IL-18, and cGAMP, as well as mitochondrial membrane potential. The morphology of cell membranes and mitochondria was analyzed using scanning electron microscopy (SEM) and fluorescence in situ hybridization (FISH) dual labelling techniques. The expression levels of cGAS, STING, and NLRP3 were evaluated through by western blot analysis. RESULTS Radiotherapy reduced cardiac hypertrophy, improved cardiac function, and decreased fibrotic changes in HCM mice when compared to control groups. The application of radiation resulted in pyroptosis in HL-1 cells and a reduction in cell viability; this effect that was alleviated by the inhibition of NLRP3, while overexpression of cGAS exacerbated the situation. Furthermore, radiation led to a decline in mitochondrial membrane potential and the leakage of mitochondrial DNA into the cytoplasm, which activated the cGAS-STING signaling pathway, thereby initiating pyroptosis. This activation was corroborated by elevated levels of pyroptosis-associated proteins, including cGAS, STING, NLRP3, caspase-1, Gasdermin D (GSDMD), cGAMP, IL-18, and IL-1β. Notably, the inhibition of NLRP3 effectively abolished the upregulation of IL-18, and IL-1β levels. CONCLUSION Radiation can improve cardiac function, decrease hypertrophy of myocardial cells, and induce oxidative stress. This oxidative stress results in the leakage of mitochondrial DNA (mtDNA), which subsequently activates the cGAS/STING/NLRP3 signalling pathway, culminating in pyroptosis.
Collapse
Affiliation(s)
- Huiyang Li
- Department of Cardiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Xin Wang
- CyberKnife Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| |
Collapse
|
41
|
Hussain N, Khan MM, Sharma A, Singh RK, Khan RH. Beyond plaques and tangles: The role of immune cell dysfunction in Alzheimer's disease. Neurochem Int 2025; 184:105947. [PMID: 39956324 DOI: 10.1016/j.neuint.2025.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The interplay between immune cell dysfunction and associated neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease. Neuroinflammation, orchestrated by microglia and peripheral immune cells, exacerbates synaptic dysfunction and neurodegeneration in AD. Emerging evidence suggests a systemic immune response in AD, challenging traditional views of neurocentric pathology. Therapeutic strategies targeting neuroinflammation hold promise, yet translating preclinical findings into clinical success remains elusive. This article presents recent advances in AD scientific studies, highlighting the pivotal role of immune cell dysfunction and signaling pathways in disease progression. We also discussed therapeutic studies targeting immune cell dysregulation, as treatment methods. This advocates for a paradigm shift towards holistic approaches that integrate peripheral and central immune responses, fostering a comprehensive understanding of AD pathophysiology and paving the way for transformative interventions.
Collapse
Affiliation(s)
- Nasif Hussain
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Moin Khan
- Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ayushi Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
42
|
Al-Jawadri AMH, Karami Z, Haririan I, Akrami M, Gholami M. Development of a bio-inspired phagocytic stable nanoghost with anti-inflammatory properties for management of inflammation in ulcerative colitis. J Drug Target 2025:1-15. [PMID: 40022643 DOI: 10.1080/1061186x.2025.2474644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND New bio-mimetic approaches are needed to develop effective delivery systems for inflammation regulation in chronic diseases like ulcerative colitis, avoiding fast clearance by immune system. The cell membrane-coated nanoparticle with a therapeutic payload has been considered as a promising delivery system to address the requirement. METHODS Here, Glibenclamide (GLY)-loaded PLGA nanoparticles (NPs) were constructed by a single emulsion procedure and camouflaged by a layer of monocyte membrane using the extrusion technique to fabricate bio-mimetic nanoghosts (NGs), followed by physiochemical and biological characterizations. RESULTS Upon coating the NPs by the membrane, the hydrodynamic size and zeta potential of NGs was changed. The formation of the shell compartment with diameter of about 15.5nm around NP core was confirmed by TEM. The expression levels of NLRP3, IL-1β, IL-18, caspase-1, TNF-α and IL-6 were decreased upon the NGs treatment. The lower cellular internalization of the NGs exhibited potential for improved circulation stability against macrophage phagocytosis. Treatment of acetic acid-induced UC with NGs exhibited healing of the mucosal lining in the colon tissue. CONCLUSION The monocyte membrane-coated NPs with a sulfonylurea derivatives payload can be considered as an excellent biologically inspired candidate for management of inflammatory diseases like UC via inflammation regulation.
Collapse
Affiliation(s)
| | - Zahra Karami
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research, Tehran, Iran
| |
Collapse
|
43
|
Chaubey S, Singh L. Deciphering the mechanisms underlying the neuroprotective potential of kaempferol: a comprehensive investigation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2275-2292. [PMID: 39414700 DOI: 10.1007/s00210-024-03515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Neurodegenerative disorders are characterized by neuronal degradation, dysfunction, or death within the CNS. Oxidative and inflammatory stress play crucial roles in the pathogenesis of various neurodegenerative diseases. The interplay between these stressors and dysregulated cellular signaling pathways contributes to neurodegeneration. Downregulation of NRF-2 compromises antioxidant defense, exacerbating neuronal damage, while increased TLR-4/MAPK and TLR-4/NF-κB signaling promotes neuroinflammation. Excessive ROS production by NADPH oxidase leads to oxidative damage and neuronal apoptosis. The strategies targeting NRF-2, TLR-4-mediated inflammatory stress, and NADPH oxidase activity promise to mitigate neuronal damage and halt the progression of the disease. Kaempferol is a flavonoid polyphenol antioxidant found abundantly in various fruits and vegetables, including apples, grapes, tomatoes, and broccoli. It is widely found in medicinal plants including Equisetum spp., Sophora japonica, Ginkgo biloba, and Euphorbia pekinensis (Rupr.). A substantial body of in vitro and in vivo evidences have demonstrated the neuroprotective potential of kaempferol against neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Kaempferol demonstrates multifaceted potential in mitigating neuroinflammation, apoptosis, and oxidative stress in different neurodegenerative diseases through the modulation of various pathways including NRF-2, NADPH oxidase, TLR-4/MAPK, and TLR-4/NF-κB. This review article was developed through a comprehensive analysis and interpretation of research published between 2009 and 2024, sourced from multiple scientific databases, including PubMed, Scopus, ScienceDirect, and Web of Science. This review aims to provide an in-depth overview of the neuroprotective effects of kaempferol, focusing on its underlying molecular mechanisms. A total of 24 research evidence were included to elucidate the molecular pathways by which kaempferol exerts its protective effects against neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyam Chaubey
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
44
|
Feng S, Wierzbowski MC, Hrovat-Schaale K, Dumortier A, Zhang Y, Zyulina M, Baker PJ, Reygaerts T, Steiner A, De Nardo D, Narayanan DL, Milhavet F, Pinzon-Charry A, Arostegui JI, Khubchandani RP, Geyer M, Boursier G, Masters SL. Mechanisms of NLRP3 activation and inhibition elucidated by functional analysis of disease-associated variants. Nat Immunol 2025; 26:511-523. [PMID: 39930093 PMCID: PMC11876074 DOI: 10.1038/s41590-025-02088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
The NLRP3 inflammasome is a multiprotein complex that mediates caspase-1 activation and the release of proinflammatory cytokines, including interleukin (IL)-1β and IL-18. Gain-of-function variants in the gene encoding NLRP3 (also called cryopyrin) lead to constitutive inflammasome activation and excessive IL-1β production in cryopyrin-associated periodic syndromes (CAPS). Here we present functional screening and automated analysis of 534 NLRP3 variants from the international INFEVERS registry and the ClinVar database. This resource captures the effect of NLRP3 variants on ASC speck formation spontaneously, at low temperature, after inflammasome stimulation and with the specific NLRP3 inhibitor MCC950. Most notably, our analysis facilitated the updated classification of NLRP3 variants in INFEVERS. Structural analysis suggested multiple mechanisms by which CAPS variants activate NLRP3, including enhanced ATP binding, stabilizing the active NLRP3 conformation, destabilizing the inactive NLRP3 complex and promoting oligomerization of the pyrin domain. Furthermore, we identified pathogenic variants that can hypersensitize the activation of NLRP3 in response to nigericin and cold temperature exposure. We also found that most CAPS-related NLRP3 variants can be inhibited by MCC950; however, NLRP3 variants with changes to proline affecting helices near the inhibitor binding site are resistant to MCC950, as are variants in the pyrin domain, which likely trigger activation directly with the pyrin domain of ASC. Our findings could help stratify the CAPS population for NLRP3 inhibitor clinical trials and our automated methodologies can be implemented for molecules with a different mechanism of activation and in laboratories worldwide that are interested in adding new functionally validated NLRP3 variants to the resource. Overall, our study provides improved diagnosis for patients with CAPS, mechanistic insight into the activation of NLRP3 and stratification of patients for the future application of targeted therapeutics.
Collapse
Affiliation(s)
- Shouya Feng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew C Wierzbowski
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Dumortier
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yaoyuan Zhang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Maria Zyulina
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paul J Baker
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Dhanya Lakshmi Narayanan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Florian Milhavet
- Department of Molecular genetics and Cytogenomics, CHU Montpellier, Rare and Autoinflammatory Diseases Unit, University of Montpellier, CEREMAIA, Institute for Regenerative Medicine and Biotherapy, INSERMU1183, Montpellier, France
| | - Alberto Pinzon-Charry
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Juan Ignacio Arostegui
- Department of Immunology, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Raju P Khubchandani
- Sectional Head Pediatric Rheumatology, SRCC Children's Hospital, Mumbai, India
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Guilaine Boursier
- Department of Molecular genetics and Cytogenomics, CHU Montpellier, Rare and Autoinflammatory Diseases Unit, University of Montpellier, CEREMAIA, Institute for Regenerative Medicine and Biotherapy, INSERMU1183, Montpellier, France
| | - Seth L Masters
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
45
|
Halimi H, Ahmadi B, Asri N, Rostami-Nejad M, Houri H. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration. Microb Pathog 2025; 200:107363. [PMID: 39909290 DOI: 10.1016/j.micpath.2025.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Bacterial biofilms, which are complex communities of microorganisms encapsulated in a self-produced extracellular matrix, play critical roles in various diseases. Recent research has underscored the dualistic nature of amyloids, structural proteins within these biofilms, in human health, particularly highlighting the significant role in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's disease (PD). These amyloids modulate the immune response by inducing the production of interleukin-10 (IL-10), which plays a role in anti-inflammatory processes. Additionally, they inhibit the aggregation of human amyloids and enhance the integrity of the intestinal barrier. Detrimentally, they exacerbate neuroinflammation by elevating inflammatory cytokines and promoting the aggregation of human amyloid proteins-amyloid-β (Aβ) in AD and α-synuclein (αS) in PD-through a process known as cross-seeding. Moreover, bacterial amyloids have also been shown to stimulate the production of anti-curli/DNA antibodies, which are implicated in the pathogenesis of autoimmune diseases. Given their dualistic nature, bacterial amyloids may, under specific conditions, function as beneficial proteins for human health. This understanding holds promise for the development of targeted therapeutic strategies aimed at modulating bacterial amyloids in the context of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Hossein Halimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ahmadi
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Whitehead DM, Fischer C, Briard E, Farady CJ, Graveleau N, Karrer J, Kaupmann K, Lapointe G, Mackay A, Reichert L, Wright M, Mu L, Auberson YP. [ 18F]NP3-627, a Candidate PET Imaging Agent Targeting the NLRP3 Inflammasome in the Central Nervous System. ChemMedChem 2025; 20:e202400816. [PMID: 39540320 DOI: 10.1002/cmdc.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
We describe the identification of a candidate positron emission tomography (PET) imaging agent for the NLRP3 protein. NLRP3 plays a critical role in the immune system and has proven a difficult target for the development of imaging agents due to its low and cell-specific expression profile. A recently described series of pyridazine-based inhibitors, with improved permeability and brain-penetration properties, was used as a starting point for the development of a suitable PET imaging agent. Optimization of affinity, non-specific binding and pharmacokinetic properties led to the identification of aminopyridazine (R)-2-(6-((1-cyclopropylpiperidin-3-yl)amino)pyridazin-3-yl)-5-fluoro-3-methylphenol (17 b), which meets the preclinical profile of a successful imaging agent, and whose tritiated version demonstrated excellent specificity in a radioligand saturation binding assay, confirming its imaging potential.18F labeling led to [18F]NP3-627, the proposed PET imaging agent.
Collapse
Affiliation(s)
- David M Whitehead
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Christian Fischer
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Emmanuelle Briard
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Christopher J Farady
- Novartis Biomedical Research, Immunology Research, Novartis Campus, WSJ-386, 4056, Basel, Switzerland
| | - Nadège Graveleau
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Joel Karrer
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Klemens Kaupmann
- Novartis Biomedical Research, Immunology Research, Novartis Campus, WSJ-386, 4056, Basel, Switzerland
| | - Guillaume Lapointe
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Angela Mackay
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Lisa Reichert
- ETH Zurich, Institute of Pharmaceutical Sciences, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland
| | - Michael Wright
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| | - Linjing Mu
- ETH Zurich, Institute of Pharmaceutical Sciences, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis Campus, WSJ-88.10.110, 4056, Basel, Switzerland
| |
Collapse
|
47
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
48
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
49
|
Yu F, Zhu C, Wu W. Senile Osteoarthritis Regulated by the Gut Microbiota: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:1505. [PMID: 40003971 PMCID: PMC11855920 DOI: 10.3390/ijms26041505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive degenerative joint disease that affects the entire synovial joint, leading to the progressive degeneration of articular cartilage. It seriously affects the quality of life and global disability of patients. OA is affected by a variety of factors; the most significant risk factor for OA is age. As individuals age, the risk and severity of OA increase due to the exacerbation of cartilage degeneration and wear and tear. In recent years, research has indicated that the gut microbiota may play a significant role in the aging and OA processes. It is anticipated that regulating the gut microbiota may offer novel approaches to the treatment of OA. The objective of this paper is to examine the relationship between the gut microbiota and senile OA, to investigate the potential mechanisms involved. This review also summarizes the therapeutic strategies related to gut flora in OA management, such as prebiotics and probiotics, diet, exercise, traditional Chinese medicine (TCM) modification, and fecal microbiota transplantation (FMT), highlighting the potential clinical value of gut flora and elucidating the current challenges. The foundation for future research directions is established through the summarization of current research progress.
Collapse
Affiliation(s)
- Fan Yu
- School of Exercise and Health, Shanghai University of Sports, Shanghai 200438, China; (F.Y.); (C.Z.)
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sports, Shanghai 200438, China; (F.Y.); (C.Z.)
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sports, Shanghai 200438, China
| |
Collapse
|
50
|
Soe YM, Sim SL, Kumari S. Innate Immune Sensors and Cell Death-Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin. Viruses 2025; 17:241. [PMID: 40006996 PMCID: PMC11861910 DOI: 10.3390/v17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans.
Collapse
Affiliation(s)
| | | | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Woolloongabba, Brisbane, QLD 4102, Australia; (Y.M.S.); (S.L.S.)
| |
Collapse
|