1
|
Sujaya IN, Mariyatun M, Hasan PN, Manurung NEP, Pramesi PC, Juffrie M, Utami T, Cahyanto MN, Yamamoto S, Takahashi T, Asahara T, Akiyama T, Rahayu ES. Randomized study of Lacticaseibacillus fermented milk in Indonesian elderly houses: Impact on gut microbiota and gut environment. World J Gastroenterol 2025; 31:104081. [PMID: 40182598 PMCID: PMC11962840 DOI: 10.3748/wjg.v31.i12.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Health maintenance in elderly houses includes management of the gut microbiota and the environment. Lacticaseibacillus paracasei Shirota (LcS) is a probiotic strain that positively affects the human gut. However, the evidence of its effects on the Indonesian population remains limited. AIM To investigate the effect of LcS-fermented milk on the gut microbiota and environment of Indonesian elderly houses. METHODS This double-blind, randomized, placebo-controlled trial involved 112 participants from Indonesian elderly houses, spanning a 2-week baseline and 24-week treatment. Participants were randomly assigned to probiotic or placebo groups, consuming fermented milk with or without LcS (> 6.5 × 109 colony-forming units). Fecal samples were collected every three months. Gut microbiota analysis was performed using 16S rRNA gene sequencing and reverse transcription quantitative polymerase chain reaction, while gut environment was assessed by measuring fecal organic acids, amino acid metabolites, and stool frequency. RESULTS Analyses of 16S rRNA gene sequence data at the 3-month period revealed increased Bifidobacterium and Succinivibrio and decreased Rikenellaceae RC9 gut group in the probiotic group. These shifts were associated with significant differences in β-diversity metrics. The change in Bifidobacterium was confirmed by reverse transcription quantitative polymerase chain reaction, demonstrating higher abundance in the probiotic group than in the placebo group (8.5 ± 1.1 vs 8.0 ± 1.1, log10 bacterial cells/g; P = 0.044). At 6-month period, the differences in Succinivibrio and Rikenellaceae RC9 gut group persisted. The probiotic group showed higher butyrate levels than the placebo group at the 6-month period (5.04 ± 3.11 vs 3.95 ± 2.89, μmol/g; P = 0.048). The effect on amino acid metabolites and stool frequency was not significant. CONCLUSION Daily intake of LcS positively affects the gut microbiota and environment of people living in Indonesian elderly houses.
Collapse
Affiliation(s)
- I Nengah Sujaya
- School of Public Health, Faculty of Medicine, Udayana University, Denpasar 80230, Bali, Indonesia
| | - Mariyatun Mariyatun
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Pratama Nur Hasan
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Nancy Eka Putri Manurung
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Putrika Citta Pramesi
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Mohammad Juffrie
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Tyas Utami
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Muhammad Nur Cahyanto
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Shuta Yamamoto
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi 186-8650, Tōkyō, Japan
| | - Takuya Takahashi
- Yakult Honsha European Research Center for Microbiology VOF, Ghent 9052, East Flanders, Belgium
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi 186-8650, Tōkyō, Japan
| | - Takuya Akiyama
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi 186-8650, Tōkyō, Japan
| | - Endang Sutriswati Rahayu
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Center of Excellence for Research and Application on Integrated Probiotics Industry, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| |
Collapse
|
2
|
Kaneko K. Gut dysbiosis as a susceptibility factor in childhood idiopathic nephrotic syndrome. Pediatr Neonatol 2025; 66 Suppl 1:S2-S7. [PMID: 39521679 DOI: 10.1016/j.pedneo.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Idiopathic nephrotic syndrome (INS) is a relatively common renal disorder of childhood characterized by severe proteinuria and associated hypoproteinemia and edema. Although the pathogenesis of INS remains unknown, the prevailing theory of its pathogenesis is as follows. Antigenic stimulation, such as viral infections or vaccines, in children with susceptibility factors for INS triggers abnormal immune responses, resulting in production of pathogenic substances that injure podocytes (renal glomerular epithelial cells). The injured podocytes then change their function and morphology, resulting in increased permeability of plasma proteins. Consequently, plasma proteins, especially albumin, are leaked into urine and massive proteinuria ensues. Research on susceptibility factors for INS has focused on polymorphisms in several genes including human leukocyte antigen class II genes. However, we propose that dysbiosis of the intestinal microbiota could be a susceptibility factor for relapse. This proposal is based on our research group finding that children with INS and frequent relapses have gut dysbiosis characterized by a decreased proportion of beneficial bacteria such as short-chain fatty acid-producing bacteria. Dysbiosis from the neonatal period to infancy may result from environmental factors, such as cesarean section delivery and antibiotic administration, which prevent the establishment of a normal intestinal microbiota. Dysbiosis leads to aberrant gut immunity and is characterized by a decreased ratio of T helper 1 cells/T helper 2 cells and an increased ratio of T helper 17 cells/regulatory T-cells. Therefore, relapse occurs when immunologically pathogenic factors that injure podocytes are produced in response to trigger events in children with INS and gut dysbiosis. Our recent clinical trial suggested that long-term oral administration of butyric acid-producing bacterium as a probiotic is promising for suppressing relapse. Therefore, studying the causal relationship between dysbiosis and relapses in patients with INS in a larger number of patients is necessary.
Collapse
Affiliation(s)
- Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka, 573 1010, Japan.
| |
Collapse
|
3
|
Liu L, Li Y, Zheng X, Huang R, Huang X, Zhao Y, Liu W, Lei Y, Li Q, Zhong Z, Zhao Z. Natural polysaccharides regulate intestinal microbiota for inhibiting colorectal cancer. Heliyon 2024; 10:e31514. [PMID: 38818184 PMCID: PMC11137569 DOI: 10.1016/j.heliyon.2024.e31514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
The gastrointestinal tract is an important part of the human immune system. The gut microbiome, which constitutes a major component of the gastrointestinal tract, plays a crucial role in maintaining normal physiological functions and influences the development, diagnosis, and immunotherapy of colorectal cancer (CRC). Natural polysaccharides can be extracted from animals, plants, and traditional Chinese medicines. They serve as an essential energy source for the gut microbiome, promoting probiotic proliferation and regulating the intestinal microecological balance. Moreover, polysaccharides exhibit anti-tumor effects due to their immune regulatory functions and low toxicity. This review focuses on discussing these anti-tumor effects in CRC, along with improving gut microbiome dysbiosis and regulating the tumor immune microenvironment, providing evidence for effective therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Lili Liu
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| | - Yinan Li
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| | - Xiaoting Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Rong Huang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Xiaoli Huang
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Yonghui Zhao
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| | - Wenjing Liu
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Yanli Lei
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ziyun Zhao
- University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266000, China
| |
Collapse
|
4
|
Gafen HB, Liu CC, Ineck NE, Scully CM, Mironovich MA, Taylor CM, Luo M, Leis ML, Scott EM, Carter RT, Hernke DM, Paul NC, Lewin AC. Alterations to the bovine bacterial ocular surface microbiome in the context of infectious bovine keratoconjunctivitis. Anim Microbiome 2023; 5:60. [PMID: 37996960 PMCID: PMC10668498 DOI: 10.1186/s42523-023-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Infectious bovine keratoconjunctivitis (IBK) is a common cause of morbidity in cattle, resulting in significant economic losses. This study aimed to characterize the bovine bacterial ocular surface microbiome (OSM) through conjunctival swab samples from Normal eyes and eyes with naturally acquired, active IBK across populations of cattle using a three-part approach, including bacterial culture, relative abundance (RA, 16 S rRNA gene sequencing), and semi-quantitative random forest modeling (real-time polymerase chain reaction (RT-PCR)). RESULTS Conjunctival swab samples were obtained from eyes individually classified as Normal (n = 376) or IBK (n = 228) based on clinical signs. Cattle unaffected by IBK and the unaffected eye in cattle with contralateral IBK were used to obtain Normal eye samples. Moraxella bovis was cultured from similar proportions of IBK (7/228, 3.07%) and Normal eyes (1/159, 0.63%) (p = 0.1481). Moraxella bovoculi was cultured more frequently (p < 0.0001) in IBK (59/228, 25.88%) than Normal (7/159, 4.40%) eyes. RA (via 16 S rRNA gene sequencing) of Actinobacteriota was significantly higher in Normal eyes (p = 0.0045). Corynebacterium variabile and Corynebacterium stationis (Actinobacteriota) were detected at significantly higher RA (p = 0.0008, p = 0.0025 respectively) in Normal eyes. Rothia nasimurium (Actinobacteriota) was detected at significantly higher RA in IBK eyes (p < 0.0001). Alpha-diversity index was not significantly different between IBK and Normal eyes (p > 0.05). Alpha-diversity indices for geographic location (p < 0.001), age (p < 0.0001), sex (p < 0.05) and breed (p < 0.01) and beta-diversity indices for geographic location (p < 0.001), disease status (p < 0.01), age (p < 0.001), sex (p < 0.001) and breed (p < 0.001) were significantly different between groups. Modeling of RT-PCR values reliably categorized the microbiome of IBK and Normal eyes; primers for Moraxella bovoculi, Moraxella bovis, and Staphylococcus spp. were consistently the most significant canonical variables in these models. CONCLUSIONS The results provide further evidence that multiple elements of the bovine bacterial OSM are altered in the context of IBK, indicating the involvement of a variety of bacteria in addition to Moraxella bovis, including Moraxella bovoculi and R. nasimurium, among others. Actinobacteriota RA is altered in IBK, providing possible opportunities for novel therapeutic interventions. While RT-PCR modeling provided limited further support for the involvement of Moraxella bovis in IBK, this was not overtly reflected in culture or RA results. Results also highlight the influence of geographic location and breed type (dairy or beef) on the bovine bacterial OSM. RT-PCR modeling reliably categorized samples as IBK or Normal.
Collapse
Affiliation(s)
- Hannah B Gafen
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Nikole E Ineck
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Clare M Scully
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Melanie A Mironovich
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, 2020 Gravier St, New Orleans, LA, 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, 2020 Gravier St, New Orleans, LA, 70112, USA
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - Erin M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY, 14853, USA
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - David M Hernke
- Department of Ambulatory Medicine and Theriogenology, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA
| | - Narayan C Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, Texas A&M University, 483 Agronomy Rd, College Station, TX, 77843, USA
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
5
|
Yahagi K. Fucosylated human milk oligosaccharide-utilizing bifidobacteria regulate the gut organic acid profile of infants. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:92-99. [PMID: 38562549 PMCID: PMC10981941 DOI: 10.12938/bmfh.2023-069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024]
Abstract
Bifidobacteria are the predominant bacteria in the infant gut and have beneficial effects on host physiology. Infant cohort studies have demonstrated that a higher abundance of bifidobacteria in the gut is associated with a reduced risk of disease. Recently, bifidobacteria-derived metabolites, such as organic acid, have been suggested to play crucial roles in host physiology. This review focuses on an investigation of longitudinal changes in the gut microbiota and organic acid concentrations over 2 years of life in 12 Japanese infants and aims to identify bifidobacteria that contribute to the production of organic acid in healthy infants. Acetate, lactate, and formate, which are rarely observed in adults, are characteristically observed during breast-fed infancy. Bifidobacterium longum subspecies infantis and the symbiosis of Bifidobacterium bifidum and Bifidobacterium breve efficiently produce these organic acids through metabolization of human milk oligosaccharide (HMO) with different strategies. These findings confirmed that HMO-utilizing bifidobacteria play an important role in regulating the gut organic acid profiles of infants.
Collapse
Affiliation(s)
- Kana Yahagi
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
6
|
Sugimoto T, Atobe S, Kado Y, Takahashi A, Motoori M, Sugimura K, Miyata H, Yano M, Tanaka K, Doki Y, Shiraishi O, Yasuda T, Asahara T. Gut microbiota associated with the mitigation effect of synbiotics on adverse events of neoadjuvant chemotherapy in patients with esophageal cancer: A retrospective exploratory study. J Med Microbiol 2023; 72. [PMID: 37367942 DOI: 10.1099/jmm.0.001723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Introduction. Our synbiotics (Lacticaseibacillus paracasei strain Shirota, Bifidobacterium breve strain Yakult, and galacto-oligosaccharides: LBG) helps mitigate serious adverse events such as febrile neutropenia (FN) and diarrhoea in oesophageal cancer patients receiving neoadjuvant chemotherapy (NAC). Unfortunately, LBG therapy does not benefit all patients.Hypothesis/Gap Statement. Identification of the gut microbiota species involved in adverse events during chemotherapy could help predict the onset of adverse events. Identification of the gut microbiota that influence the efficacy of LBG could also help establish a diagnostic method to identify patients who will respond to LBG before the initiation of therapy.Aim. To identify the gut microbiota involved in adverse events during NAC and that affect the efficacy of LBG therapy.Methodology. This study was ancillary to a parent randomized controlled trial in which 81 oesophageal cancer patients were recruited and administered either prophylactic antibiotics or LBG combined with enteral nutrition (LBG+EN). The study included 73 of 81 patients from whom faecal samples were collected both before and after NAC. The gut microbiota was analysed using 16S rRNA gene amplicon sequencing and compared based on the degree of NAC-associated adverse events. Furthermore, the association between the counts of identified bacteria and adverse events and the mitigation effect of LBG+EN was also analysed.Results. The abundance of Anaerostipes hadrus and Bifidobacterium pseudocatenulatum in patients with no FN or only mild diarrhoea was significantly higher (P<0.05) compared to those with FN or severe diarrhoea. Moreover, subgroup analyses of patients receiving LBG+EN showed that the faecal A. hadrus count before NAC was significantly associated with a risk of developing FN (OR, 0.11; 95 % CI, 0.01-0.60, P=0.019). The faecal A. hadrus count after NAC was positively correlated with intestinal concentrations of acetic acid (P=0.0007) and butyric acid (P=0.00005).Conclusion. Anaerostipes hadrus and B. pseudocatenulatum may be involved in the ameliorating adverse events and can thus be used to identify beforehand patients that would benefit from LBG+EN during NAC. These results also suggest that LBG+EN would be useful in the development of measures to prevent adverse events during NAC.
Collapse
Affiliation(s)
- Takuya Sugimoto
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Satomi Atobe
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Yukiko Kado
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Akira Takahashi
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Masaaki Motoori
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - Keijiro Sugimura
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Yano
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Osamu Shiraishi
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| |
Collapse
|
7
|
Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, Mihai L, Ungureanu A, Kassim MAK, Andrusca A, Nicolae M, Cuzic V, Lupu VV, Cambrea SC. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023; 15:nu15112529. [PMID: 37299492 DOI: 10.3390/nu15112529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The intestinal microbiota is a diverse and complex microecosystem that lives and thrives within the human body. The microbiota stabilizes by the age of three. This microecosystem plays a crucial role in human health, particularly in the early years of life. Dysbiosis has been linked to the development of various allergic diseases with potential long-term implications. Next-generation sequencing methods have established that allergic diseases are associated with dysbiosis. These methods can help to improve the knowledge of the relationship between dysbiosis and allergic diseases. The aim of this review paper is to synthesize the current understanding on the development of the intestinal microbiota in children, the long-term impact on health, and the relationship between dysbiosis and allergic diseases. Furthermore, we examine the connection between the microbiome and specific allergies such as atopic dermatitis, asthma, and food allergies, and which mechanisms could determine the induction of these diseases. Furthermore, we will review how factors such as mode of delivery, antibiotic use, breastfeeding, and the environment influence the development of the intestinal flora, as well as review various interventions for the prevention and treatment of gut microbiota-related allergies.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Corina Elena Frecus
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adina Ungureanu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| | | | - Antonio Andrusca
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Maria Nicolae
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viviana Cuzic
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| |
Collapse
|
8
|
Cui Y, Wang H, Guo F, Cao X, Wang X, Zeng X, Cui G, Lin J, Xu F. Monoclonal antibody-based indirect competitive ELISA for quantitative detection of Enterobacteriaceae siderophore enterobactin. Food Chem 2022; 391:133241. [PMID: 35598389 DOI: 10.1016/j.foodchem.2022.133241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
Abstract
Enterobactin (Ent) is a promising indicator to monitor intestinal level of Enterobacteriaceae for assessment of gut inflammation. In this study, we developed a monoclonal antibody (mAb)-based ELISA for Ent quantification. We immunized mice with an Ent conjugate vaccine. An mAb named 2E4, with the highest anti-Ent antibody titer, was selected for developing indirect competitive ELISA (ic-ELISA). The purified mAb 2E4 showed high affinity (3.1 × 10-10 M) and specificity to Ent. The limit of detection of ic-ELISA was 0.39 μg/mL. The intra- and inter-assay recovery rates of standard curve were up to 94.6% with the coefficients of variation between 4.0% and 12.3%, indicating high accuracy, repeatability, and reproducibility of the ic-ELISA. In addition, the ic-ELISA was able to quantitatively detect Ent produced in different bacterial cultures. Collectively, this study developed an ic-ELISA with excellent performance in Ent quantification, laying a solid foundation for Ent-based diagnostics of gut health.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xue Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Guolin Cui
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
9
|
Evaluation of a Luminometric Cell Counting System in Context of Antimicrobial Photodynamic Inactivation. Microorganisms 2022; 10:microorganisms10050950. [PMID: 35630394 PMCID: PMC9147394 DOI: 10.3390/microorganisms10050950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance belongs to the most demanding medical challenges, and antimicrobial photodynamic inactivation (aPDI) is considered a promising alternative to classical antibiotics. However, the pharmacologic characterization of novel compounds suitable for aPDI is a tedious and time-consuming task that usually requires preparation of bacterial cultures and counting of bacterial colonies. In this study, we established and utilized a luminescence-based microbial cell viability assay to analyze the aPDI effects of two porphyrin-based photosensitizers (TMPyP and THPTS) on several bacterial strains with antimicrobial resistance. We demonstrate that after adaptation of the protocol and initial calibration to every specific bacterial strain and photosensitizer, the luminometric method can be used to reliably quantify aPDI effects in most of the analyzed bacterial strains. The interference of photosensitizers with the luminometric readout and the bioluminescence of some bacterial strains were identified as possible confounders. Using this method, we could confirm the susceptibility of several bacterial strains to photodynamic treatment, including extensively drug-resistant pathogens (XDR). In contrast to the conventional culture-based determination of bacterial density, the luminometric assay allowed for a much more time-effective analysis of various treatment conditions. We recommend this luminometric method for high-throughput tasks requiring measurements of bacterial viability in the context of photodynamic treatment approaches.
Collapse
|
10
|
Motoori M, Sugimura K, Tanaka K, Shiraishi O, Kimura Y, Miyata H, Yamasaki M, Makino T, Miyazaki Y, Iwama M, Yamashita K, Niikura M, Sugimoto T, Asahara T, Fujitani K, Yasuda T, Doki Y, Yano M. Comparison of Synbiotics Combined with Enteral Nutrition and Prophylactic Antibiotics as Supportive Care in Patients with Esophageal Cancer Undergoing Neoadjuvant Chemotherapy: A Multicenter Randomized Study. Clin Nutr 2022; 41:1112-1121. [DOI: 10.1016/j.clnu.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/27/2022]
|
11
|
Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Allergol Int 2022; 71:301-309. [PMID: 35314107 DOI: 10.1016/j.alit.2022.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota resides in the human gastrointestinal tract, where it plays an important role in maintaining host health. The human gut microbiota is established by the age of 3 years. Studies have revealed that an imbalance in the gut microbiota, termed dysbiosis, occurs due to factors such as cesarean delivery and antibiotic use before the age of 3 years and that dysbiosis is associated with a higher risk of future onset of allergic diseases. Recent advancements in next-generation sequencing methods have revealed the presence of dysbiosis in patients with allergic diseases, which increases attention on the relationship between dysbiosis and the development of allergic diseases. However, there is no unified perspective on the characteristics on dysbiosis or the mechanistic link between dysbiosis and the onset of allergic diseases. Here, we introduce the latest studies on the gut microbiota in children with allergic diseases and present the hypothesis that dysbiosis characterized by fewer butyric acid-producing bacteria leads to fewer regulatory T cells, resulting in allergic disease. Further studies on correcting dysbiosis for the prevention and treatment of allergic diseases are warranted.
Collapse
Affiliation(s)
- Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
12
|
Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, Ebrahimzadeh Leylabadlo H. Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit Rev Food Sci Nutr 2022; 63:7357-7377. [PMID: 35238258 DOI: 10.1080/10408398.2022.2045894] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Akkermansia muciniphila, a frequent colonizer in the gut mucous layer of individuals, has constantly been recognized as a promising candidate for the next generation of probiotics due to its biological advantages from in vitro and in vivo investigations. This manuscript comprehensively reviewed the features of A. muciniphila in terms of its function in host physiology and frequently utilized nutrition using the published peer-reviewed articles, which should present valuable and critical information to scientists, engineers, and even the general population. A. muciniphila is an important bacterium that shows host physiology. However, its physiological advantages in several clinical settings also have excellent potential to become a probiotic. Consequently, it can be stated that there is a coherent and direct relation between the biological activities of the gut microbiota, intestinal dysbiosis/eubiosis, and the population of A. muciniphila in the gut milieu, which is influenced by various genetical and nutritional factors. Current regulatory barriers, the need for large-scale clinical trials, and the feasibility of production must be removed before A muciniphila can be extensively used as a next-generation probiotic.
Collapse
Affiliation(s)
- Sima Ghaffari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Nikniaz
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
13
|
Craciun CI, Neag MA, Catinean A, Mitre AO, Rusu A, Bala C, Roman G, Buzoianu AD, Muntean DM, Craciun AE. The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020308. [PMID: 35203519 PMCID: PMC8869176 DOI: 10.3390/biomedicines10020308] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is considered to be a global epidemic. The combination of genetic susceptibility and an unhealthy lifestyle is considered to be the main trigger of this metabolic disorder. Recently, there has been increased interest in the roles of gut microbiota as a new potential contributor to this epidemic. Research, in recent years, has contributed to an in-depth characterization of the human microbiome and its associations with various diseases, including metabolic diseases and diabetes mellitus. It is known that diet can change the composition of gut microbiota, but it is unclear how this, in turn, may influence metabolism. The main objective of this review is to evaluate the pathogenetic association between microbiota and diabetes and to explore any new therapeutic agents, including nutraceuticals that may modulate the microbiota. We also look at several mechanisms involved in this process. There is a clear, bidirectional relationship between microbiota and diabetes. Current treatments for diabetes influence microbiota in various ways, some beneficial, but others with still unclear effects. Microbiota-aimed treatments have seen no real-world significant effects on the progression of diabetes and its complications, with more studies needed in order to find a really beneficial agent.
Collapse
Affiliation(s)
- Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
- Correspondence:
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Rusu
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Cornelia Bala
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Gabriela Roman
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Anca-Elena Craciun
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| |
Collapse
|
14
|
Akagawa S, Akagawa Y, Yamanouchi S, Teramoto Y, Yasuda M, Fujishiro S, Kino J, Hirabayashi M, Mine K, Kimata T, Hashiyada M, Akane A, Tsuji S, Kaneko K. Association of Neonatal Jaundice with Gut Dysbiosis Characterized by Decreased Bifidobacteriales. Metabolites 2021; 11:metabo11120887. [PMID: 34940645 PMCID: PMC8705620 DOI: 10.3390/metabo11120887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Neonatal jaundice, caused by excess serum bilirubin levels, is a common condition in neonates. Imbalance in the gut microbiota is believed to play a role in the development of neonatal jaundice. Thus, we aimed to reveal the gut microbiota characteristics in neonates with jaundice. 16S rRNA gene sequencing was performed on stool samples collected on day 4 from 26 neonates with jaundice (serum total bilirubin > 15.0 mg/dL) and 17 neonates without jaundice (total serum bilirubin < 10.0 mg/dL). All neonates were born full term, with normal weight, by vaginal delivery, and were breastfed. Neonates who were administered antibiotics, had serum direct bilirubin levels above 1 mg/dL, or had conditions possibly leading to hemolytic anemia were excluded. The median serum bilirubin was 16.0 mg/dL (interquartile range: 15.5-16.8) and 7.4 mg/dL (interquartile range: 6.8-8.3) for the jaundice and non-jaundice groups, respectively. There was no difference in the alpha diversity indices. Meanwhile, in the jaundice group, linear discriminant analysis effect size revealed that Bifidobacteriales were decreased at the order level, while Enterococcaceae were increased and Bifidobacteriaceae were decreased at the family level. Bifidobacteriaceae may act preventatively because of their suppressive effect on beta-glucuronidase, leading to accelerated deconjugation of conjugated bilirubin in the intestine. In summary, neonates with jaundice had dysbiosis characterized by a decreased abundance of Bifidobacteriales.
Collapse
Affiliation(s)
- Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Yuko Akagawa
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Yoshiki Teramoto
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Masahiro Yasuda
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Sadayuki Fujishiro
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Jiro Kino
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Masato Hirabayashi
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Kenji Mine
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Takahisa Kimata
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (M.H.); (A.A.)
| | - Atsushi Akane
- Department of Legal Medicine, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (M.H.); (A.A.)
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Hirakata-shi, Osaka 573-1010, Japan; (S.A.); (Y.A.); (S.Y.); (Y.T.); (M.Y.); (S.F.); (J.K.); (M.H.); (K.M.); (T.K.); (S.T.)
- Correspondence: ; Tel.: +81-72-804-0101
| |
Collapse
|
15
|
Yaseen A, Mahafzah A, Dababseh D, Taim D, Hamdan AA, Al-Fraihat E, Hassona Y, Şahin GÖ, Santi-Rocca J, Sallam M. Oral Colonization by Entamoeba gingivalis and Trichomonas tenax: A PCR-Based Study in Health, Gingivitis, and Periodontitis. Front Cell Infect Microbiol 2021; 11:782805. [PMID: 34950608 PMCID: PMC8688919 DOI: 10.3389/fcimb.2021.782805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The etiology of periodontitis remains unclear, as is the place of gingivitis in its pathophysiology. A few studies linked the colonization by oral parasites (Entamoeba gingivalis and Trichomonas tenax) to periodontal disease and its severity. The aim of the current study was to estimate the prevalence of these oral parasites among healthy individuals, and in patients with gingivitis and periodontitis in Jordan. Methods The study was conducted during July 2019–December 2019. Samples were composed of saliva and periodontal material including dental plaque sampled with probes. The detection of oral parasites was done using conventional polymerase chain reaction (PCR). Results The total number of study participants was 237: healthy (n=94), gingivitis (n=53) and periodontitis (n=90). The prevalence of E. gingivalis was 88.9% among the periodontitis patients, 84.9% among the gingivitis patients and 47.9% in the healthy group. For T. tenax, the prevalence was 25.6% among the periodontitis patients, 5.7% among the gingivitis patients and 3.2% in the heathy group. Positivity for E. gingivalis was significantly correlated with the presence of periodontal disease compared to the healthy group with odds ratio (OR) of 6.6. Periodontal disease was also correlated with lower monthly income (OR=8.2), lack of dental care (OR=4.8), and history of diabetes mellitus (OR=4.5). Colonization by E. gingivalis was correlated with gingivitis (OR=6.1) compared to the healthy group. Colonization by E. gingivalis and T. tenax were significantly correlated with periodontitis (OR=6.4 for E. gingivalis, and OR=4.7, for T. tenax) compared to the healthy group. T. tenax was only detected among individuals with generalized periodontal disease compared to its total absence among those with localized disease (19.6% vs. 0.0%; p=0.039). The co-infection rate by the two oral parasites was 11.0%. Conclusions The higher prevalence of human oral parasites in periodontal disease compared to healthy individuals appears to be more than a mere marker for the disease and might also be associated with disease severity and potential for progression. Thus, the dogmatic view of E. gingivalis and T. tenax as commensals needs to be re-evaluated and their contribution to pathophysiology of periodontal diseases cannot be neglected.
Collapse
Affiliation(s)
- Alaa Yaseen
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Azmi Mahafzah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
| | - Deema Dababseh
- School of Dentistry, The University of Jordan, Amman, Jordan
| | - Duaa Taim
- School of Dentistry, The University of Jordan, Amman, Jordan
| | - Ahmad A. Hamdan
- School of Dentistry, The University of Jordan, Amman, Jordan
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology, Jordan University Hospital, Amman, Jordan
| | - Esraa Al-Fraihat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
| | - Yazan Hassona
- School of Dentistry, The University of Jordan, Amman, Jordan
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology, Jordan University Hospital, Amman, Jordan
| | - Gülşen Özkaya Şahin
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Clinical Microbiology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | | | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- *Correspondence: Malik Sallam,
| |
Collapse
|
16
|
Fukaya M, Yokoyama Y, Usui H, Fujieda H, Sakatoku Y, Takahashi T, Miyata K, Niikura M, Sugimoto T, Asahara T, Nagino M, Ebata T. Impact of synbiotics treatment on bacteremia induced during neoadjuvant chemotherapy for esophageal cancer: A randomised controlled trial. Clin Nutr 2021; 40:5781-5791. [PMID: 34775221 DOI: 10.1016/j.clnu.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND & AIMS To elucidate the impact of synbiotics on bacterial translocation and subsequent bacteremia during neoadjuvant chemotherapy for esophageal cancer. METHODS Patients requiring neoadjuvant chemotherapy for esophageal cancer were randomized to receive synbiotics (synbiotics group) or no synbiotics (control group) during chemotherapy. Blood and fecal samples were taken before and after every chemotherapy cycle, and 1 day before surgery. Mesenteric lymph nodes (MLNs) were harvested at laparotomy (MLN-1) and after resection of the tumor (MLN-2). Bacteria in each sample were detected. Fecal microbiota and organic acid concentrations were also determined. The primary endpoint was the detection of bacteria in the blood samples, as well as the incidence of side effects during chemotherapy. The secondary endpoint was the detection rate of bacteria in the MLN samples collected during surgery. RESULTS The study recruited a total of 42 patients (22 in the control group, 20 in the synbiotics group). Bacteria were detected in 16 of 101 blood samples in the control group, whereas those were detected only 2 of 100 blood samples in the synbiotics group (p < 0.001) during neoadjuvant chemotherapy. Additionally, bacteria were detected in 12 of 34 MLN samples in the control group, whereas no bacteria were detected in 38 MLN samples in the synbiotics group (p < 0.001). Suppression of bacterial translocation was at least partly associated with an increased fecal acetic acid concentration as well as a lowered fecal pH by synbiotics. The incidence rate of grade 3 gastrointestinal toxicity during chemotherapy was lower in the synbiotics group compared to the control group (8/22 vs. 1/20, p = 0.022). CONCLUSIONS Neoadjuvant chemotherapy for esophageal cancer may induce bacterial translocation and subsequent bacteremia, which can be prevented by synbiotics administration. TRIAL REGISTRATION The University Hospital Medical Information Network (http://www.umin.ac.jp; registration number ID 000007651).
Collapse
Affiliation(s)
- Masahide Fukaya
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Perioperative Medicine, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroaki Usui
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hironori Fujieda
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yayoi Sakatoku
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Takahashi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Miyata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | - Masato Nagino
- Aichi Cancer Center, Department of Gastrointestinal Surgery, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Braun P, Nguyen MDT, Walter MC, Grass G. Ultrasensitive Detection of Bacillus anthracis by Real-Time PCR Targeting a Polymorphism in Multi-Copy 16S rRNA Genes and Their Transcripts. Int J Mol Sci 2021; 22:12224. [PMID: 34830105 PMCID: PMC8618755 DOI: 10.3390/ijms222212224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023] Open
Abstract
The anthrax pathogen Bacillus anthracis poses a significant threat to human health. Identification of B. anthracis is challenging because of the bacterium's close genetic relationship to other Bacillus cereus group species. Thus, molecular detection is founded on species-specific PCR targeting single-copy genes. Here, we validated a previously recognized multi-copy target, a species-specific single nucleotide polymorphism (SNP) present in 2-5 copies in every B. anthracis genome analyzed. For this, a hydrolysis probe-based real-time PCR assay was developed and rigorously tested. The assay was specific as only B. anthracis DNA yielded positive results, was linear over 9 log10 units, and was sensitive with a limit of detection (LoD) of 2.9 copies/reaction. Though not exhibiting a lower LoD than established single-copy PCR targets (dhp61 or PL3), the higher copy number of the B. anthracis-specific 16S rRNA gene alleles afforded ≤2 unit lower threshold (Ct) values. To push the detection limit even further, the assay was adapted for reverse transcription PCR on 16S rRNA transcripts. This RT-PCR assay was also linear over 9 log10 units and was sensitive with an LoD of 6.3 copies/reaction. In a dilution series of experiments, the 16S RT-PCR assay achieved a thousand-fold higher sensitivity than the DNA-targeting assays. For molecular diagnostics, we recommend a real-time RT-PCR assay variant in which both DNA and RNA serve as templates (thus, no requirement for DNase treatment). This can at least provide results equaling the DNA-based implementation if no RNA is present but is superior even at the lowest residual rRNA concentrations.
Collapse
Affiliation(s)
| | | | | | - Gregor Grass
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (P.B.); (M.D.-T.N.); (M.C.W.)
| |
Collapse
|
18
|
Godínez-Méndez LA, Gurrola-Díaz CM, Zepeda-Nuño JS, Vega-Magaña N, Lopez-Roa RI, Íñiguez-Gutiérrez L, García-López PM, Fafutis-Morris M, Delgado-Rizo V. In Vivo Healthy Benefits of Galacto-Oligosaccharides from Lupinus albus (LA-GOS) in Butyrate Production through Intestinal Microbiota. Biomolecules 2021; 11:1658. [PMID: 34827656 PMCID: PMC8615603 DOI: 10.3390/biom11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal digestive systems host microorganism ecosystems, including integrated bacteria, viruses, fungi, and others, that produce a variety of compounds from different substrates with healthy properties. Among these substrates, α-galacto-oligosaccharides (GOS) are considered prebiotics that promote the grow of gut microbiota with a metabolic output of Short Chain Fatty Acids (SCFAs). In this regard, we evaluated Lupinus albus GOS (LA-GOS) as a natural prebiotic using different animal models. Therefore, the aim of this work was to evaluate the effect of LA-GOS on the gut microbiota, SCFA production, and intestinal health in healthy and induced dysbiosis conditions (an ulcerative colitis (UC) model). Twenty C57BL/6 mice were randomly allocated in four groups (n = 5/group): untreated and treated non-induced animals, and two groups induced with 2% dextran sulfate sodium to UC with and without LA-GOS administration (2.5 g/kg bw). We found that the UC treated group showed a higher goblet cell number, lower disease activity index, and reduced histopathological damage in comparison to the UC untreated group. In addition, the abundance of positive bacteria to butyryl-CoA transferase in gut microbiota was significantly increased by LA-GOS treatment, in healthy conditions. We measured the SCFA production with significant differences in the butyrate concentration between treated and untreated healthy groups. Finally, the pH level in cecum feces was reduced after LA-GOS treatment. Overall, we point out the in vivo health benefits of LA-GOS administration on the preservation of the intestinal ecosystem and the promotion of SCFA production.
Collapse
Affiliation(s)
- Lucila A. Godínez-Méndez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - José Sergio Zepeda-Nuño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Natali Vega-Magaña
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Rocio Ivette Lopez-Roa
- Departamento de Farmacobiología, Centro Universitaro de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Pedro M. García-López
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biologíco y Agropecuarias, Universidad de Guadalajara, Guadalajara 45200, Jalisco, Mexico;
| | - Mary Fafutis-Morris
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Vidal Delgado-Rizo
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| |
Collapse
|
19
|
Nguyen QT, Ishizaki A, Bi X, Matsuda K, Nguyen LV, Pham HV, Phan CTT, Phung TTB, Ngo TTT, Nguyen AV, Khu DTK, Ichimura H. Alterations in children's sub-dominant gut microbiota by HIV infection and anti-retroviral therapy. PLoS One 2021; 16:e0258226. [PMID: 34634074 PMCID: PMC8504761 DOI: 10.1371/journal.pone.0258226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Objective We investigated the impact of human immunodeficiency virus (HIV) infection and anti-retroviral therapy (ART) on the gut microbiota of children. Design This cross-sectional study investigated the gut microbiota of children with and without HIV. Methods We collected fecal samples from 59 children with HIV (29 treated with ART [ART(+)] and 30 without ART [HIV(+)]) and 20 children without HIV [HIV(–)] in Vietnam. We performed quantitative RT-PCR to detect 14 representative intestinal bacteria targeting 16S/23S rRNA molecules. We also collected the blood samples for immunological analyses. Results In spearman’s correlation analyses, no significant correlation between the number of dominant bacteria and age was found among children in the HIV(−) group. However, the number of sub-dominant bacteria, including Streptococcus, Enterococcus, and Enterobacteriaceae, positively correlated with age in the HIV(−) group, but not in the HIV(+) group. In the HIV(+) group, Clostridium coccoides group positively associated with the CD4+ cell count and its subsets. In the ART(+) group, Staphylococcus and C. perfringens positively correlated with CD4+ cells and their subsets and negatively with activated CD8+ cells. C. coccoides group and Bacteroides fragilis group were associated with regulatory T-cell counts. In multiple linear regression analyses, ART duration was independently associated with the number of C. perfringens, and Th17 cell count with the number of Staphylococcus in the ART(+) group. Conclusions HIV infection and ART may influence sub-dominant gut bacteria, directly or indirectly, in association with immune status in children with HIV.
Collapse
Affiliation(s)
- Quynh Thi Nguyen
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Azumi Ishizaki
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Xiuqiong Bi
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | - An Van Nguyen
- Vietnam National Children’s Hospital, Hanoi, Viet Nam
| | | | - Hiroshi Ichimura
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
20
|
Shimizu H, Arai K, Asahara T, Takahashi T, Tsuji H, Matsumoto S, Takeuchi I, Kyodo R, Yamashiro Y. Stool preparation under anaerobic conditions contributes to retention of obligate anaerobes: potential improvement for fecal microbiota transplantation. BMC Microbiol 2021; 21:275. [PMID: 34627158 PMCID: PMC8501685 DOI: 10.1186/s12866-021-02325-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) in patients with ulcerative colitis has shown variable efficacy depending on the protocol used. A previous randomized controlled trial reported that anaerobic preparation of donor stool contributes to improved efficacy. Despite the suggestion that viable obligate anaerobes would be decreased through aerobic handling, there have been only a limited number of reports on how these aerobic or anaerobic procedures affect the composition of viable microbiota in the fecal slurries used for FMT. METHODS We adopted 16S and 23S rRNA-targeted reverse transcription-quantitative polymerase chain reaction to quantify viable bacteria in fecal slurries. This study utilized specific primers designed to detect obligate anaerobes (including Clostridium coccoides group, C. leptum subgroup, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, and Prevotella) and facultative anaerobes (including total lactobacilli, Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus). We then calculated the ratio change (RC) between before and after mixing, and compared the resulting values between anaerobic-prep and aerobic-prep in samples fixed immediately after blending (RCAn0 vs. RCAe0) and in samples maintained (under anaerobic or aerobic conditions) for 1 h after blending (RCAn1 vs. RCAe1). RESULTS For most obligate anaerobes, the median RC tended to be less than 1, indicating that the number of obligate anaerobes was decreased by the blending procedure. However, in samples maintained for 1 h after blending, anaerobic-prep counteracted the decrease otherwise seen for the C. coccoides group and B. fragilis groups (P < 0.01 for both). The C. leptum subgroup also tended to show higher RC by anaerobic-prep than by aerobic-prep, although this effect was not statistically significant. Among facultative anaerobes, Enterobacteriaceae, Enterococcus, and Staphylococcus showed median RC values of more than 1, indicating that these organisms survived and even grew after mixing. Moreover, oxygen exposure had no significant influence on the survival of the facultative anaerobes. CONCLUSIONS The conditions under which the blending procedure was performed affected the proportion of live anaerobes in fecal slurries. The obligate anaerobes tended to be decreased by blending processes, but anaerobic-prep significantly mitigated this effect. Anaerobic-prep may improve the efficacy of FMT by permitting the efficient transfer of obligate anaerobes to patients with ulcerative colitis.
Collapse
Affiliation(s)
- Hirotaka Shimizu
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan. .,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Katsuhiro Arai
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Takahashi
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Matsumoto
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Reiko Kyodo
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Li C, Av-Shalom TV, Tan JWG, Kwah JS, Chng KR, Nagarajan N. BEEM-Static: Accurate inference of ecological interactions from cross-sectional microbiome data. PLoS Comput Biol 2021; 17:e1009343. [PMID: 34495960 PMCID: PMC8452072 DOI: 10.1371/journal.pcbi.1009343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/20/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The structure and function of diverse microbial communities is underpinned by ecological interactions that remain uncharacterized. With rapid adoption of next-generation sequencing for studying microbiomes, data-driven inference of microbial interactions based on abundance correlations is widely used, but with the drawback that ecological interpretations may not be possible. Leveraging cross-sectional microbiome datasets for unravelling ecological structure in a scalable manner thus remains an open problem. We present an expectation-maximization algorithm (BEEM-Static) that can be applied to cross-sectional datasets to infer interaction networks based on an ecological model (generalized Lotka-Volterra). The method exhibits robustness to violations in model assumptions by using statistical filters to identify and remove corresponding samples. Benchmarking against 10 state-of-the-art correlation based methods showed that BEEM-Static can infer presence and directionality of ecological interactions even with relative abundance data (AUC-ROC>0.85), a task that other methods struggle with (AUC-ROC<0.63). In addition, BEEM-Static can tolerate a high fraction of samples (up to 40%) being not at steady state or coming from an alternate model. Applying BEEM-Static to a large public dataset of human gut microbiomes (n = 4,617) identified multiple stable equilibria that better reflect ecological enterotypes with distinct carrying capacities and interactions for key species. Characterizing the ecological interactions among microbial members is an important step towards understanding the structure and function of diverse microbial communities. Widely used correlation based approaches for inferring interactions from cross-sectional microbiome sequencing data are not able to predict the directionality of interactions, and their results may not be interpretable. We developed an expectation-maximization algorithm (BEEM-Static) that can infer directed interaction networks from cross-sectional data based on an ecological model. Our benchmarking results showed that BEEM-Static inferred presence and directionality of interactions accurately, while correlation based methods had performance slightly better than random guesses. In addition, BEEM-Static was robust to various types of noises using statistical filters to identify and remove data points violating its assumptions. Applying BEEM-Static to a large public dataset of human gut microbiomes, we were able to identify multiple stable equilibria with distinct ecological properties.
Collapse
Affiliation(s)
- Chenhao Li
- Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore, Singapore
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (CL); (NN)
| | - Tamar V. Av-Shalom
- Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore, Singapore
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jun Wei Gerald Tan
- Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore, Singapore
| | - Junmei Samantha Kwah
- Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore, Singapore
| | - Kern Rei Chng
- Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (CL); (NN)
| |
Collapse
|
22
|
Laursen MF. Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. ANNALS OF NUTRITION & METABOLISM 2021; 77:1-14. [PMID: 34461613 DOI: 10.1159/000517912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Early life is a critical period as our gut microbiota establishes here and may impact both current and future health. Thus, it is of importance to understand how different factors govern the complex microbial colonization patterns in this period. The gut microbiota changes substantially during infancy and toddlerhood in terms of both taxonomic composition and diversity. This developmental trajectory differs by a variety of factors, including term of birth, mode of birth, intake of antibiotics, presence of furred pets, siblings and family members, host genetics, local environment, geographical location, and maternal and infant/toddler diet. The type of milk feeding and complementary feeding is particularly important in early and late infancy/toddlerhood, respectively. Breastfeeding, due to the supply of human milk oligosaccharide into the gut, promotes the growth of specific human milk oligosaccharide (HMO)-utilizing Bifidobacterium species that dominate the ecosystem as long as the infant is primarily breastfed. These species perform saccharolytic fermentation in the gut and produce metabolites with physiological effects that may contribute to protection against infectious and immune-related diseases. Formula feeding, due to its lack of HMOs and higher protein content, give rise to a more diverse gut microbiota that contains more opportunistic pathogens and results in a more proteolytic metabolism in the gut. Complementary feeding, due to the introduction of dietary fibers and new protein sources, induces a shift in the gut microbiota and metabolism away from the milk-adapted and toward a more mature and diverse adult-like community with increased abundances of short chain fatty acid-producing bacterial taxa. While the physiological implication of these complementary diet-induced changes remains to be established, a few recent studies indicate that an inadequately matured gut microbiota may be causally related to poor growth and development. Further studies are required to expand our knowledge on interactions between diet, gut microbiota, and health in the early life setting.
Collapse
|
23
|
Otaka M, Kikuchi-Hayakawa H, Ogura J, Ishikawa H, Yomogida Y, Ota M, Hidese S, Ishida I, Aida M, Matsuda K, Kawai M, Yoshida S, Kunugi H. Effect of Lacticaseibacillus paracasei Strain Shirota on Improvement in Depressive Symptoms, and Its Association with Abundance of Actinobacteria in Gut Microbiota. Microorganisms 2021; 9:microorganisms9051026. [PMID: 34068832 PMCID: PMC8150707 DOI: 10.3390/microorganisms9051026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported lower counts of lactobacilli and Bifidobacterium in the gut microbiota of patients with major depressive disorder (MDD), compared with healthy controls. This prompted us to investigate the possible efficacy of a probiotic strain, Lacticaseibacillus paracasei strain Shirota (LcS; basonym, Lactobacillus casei strain Shirota; daily intake of 8.0 × 1010 colony-forming units), in alleviating depressive symptoms. A single-arm trial was conducted on 18 eligible patients with MDD or bipolar disorder (BD) (14 females and 4 males; 15 MDD and 3 BD), assessing changes in psychiatric symptoms, the gut microbiota, and biological markers for intestinal permeability and inflammation, over a 12-week intervention period. Depression severity, evaluated by the Hamilton Depression Rating Scale, was significantly alleviated after LcS treatment. The intervention-associated reduction of depressive symptoms was associated with the gut microbiota, and more pronounced when Bifidobacterium and the Atopobium clusters of the Actinobacteria phylum were maintained at higher counts. No significant changes were observed in the intestinal permeability or inflammation markers. Although it was difficult to estimate the extent of the effect of LcS treatment alone, the results indicated that it was beneficial to alleviate depressive symptoms, partly through its association with abundance of Actinobacteria in the gut microbiota.
Collapse
Affiliation(s)
- Machiko Otaka
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroko Kikuchi-Hayakawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Jun Ogura
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroshi Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Yukihito Yomogida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Miho Ota
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Shinsuke Hidese
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Ikki Ishida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Masanori Aida
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Kazunori Matsuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Mitsuhisa Kawai
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Sumiko Yoshida
- National Centre of Neurology and Psychiatry, Department of Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan;
| | - Hiroshi Kunugi
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
- Department of Psychiatry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Correspondence:
| |
Collapse
|
24
|
Hammerling MJ, Yoesep DJ, Jewett MC. Single enzyme RT-PCR of full-length ribosomal RNA. Synth Biol (Oxf) 2020; 5:ysaa028. [PMID: 33409375 PMCID: PMC7772474 DOI: 10.1093/synbio/ysaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete Escherichia coli 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
25
|
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188490. [PMID: 33321173 DOI: 10.1016/j.bbcan.2020.188490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a leading cause of cancer-related deaths worldwide. The stepwise accumulation of epigenetic alterations in the normal colorectal epithelium has been reported to act as a driving force for the initiation and promotion of tumorigenesis in CRC. From a mechanistic standpoint, emerging evidence indicates that within the colorectal epithelium, the diverse gut microbiota can interact with host cells to regulate multiple physiological processes. In fact, recent studies have found that the gut microbiota represents a potential cause of carcinogenesis, invasion, and metastasis via DNA methylation, histone modifications, and non-coding RNAs - providing an epigenetic perspective for the connection between the gut microbiota and CRC. Herein, we comprehensively review the recent research that provides a comprehensive yet succinct evidence connecting the gut microbiota to CRC at an epigenetic level, including carcinogenic mechanisms of cancer-related microbiota, and the potential for utilizing the gut microbiota as CRC biomarkers. These scientific findings highlight a promising future for manipulating the gut microbiota to improve clinical outcomes in patients suffering from CRC.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
26
|
Maekawa M, Yoshitani K, Yahagi M, Asahara T, Shishido Y, Fukushima S, Tadokoro N, Fujita T, Ohnishi Y. Association between postoperative changes in the gut microbiota and pseudopsia after cardiac surgery: prospective observational study. BMC Surg 2020; 20:247. [PMID: 33081782 PMCID: PMC7576870 DOI: 10.1186/s12893-020-00907-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background Delirium after cardiac surgery affects mortality, but the mechanism remains unclear. Previous studies have reported gut microbiota are associated with brain activity. Systemic inflammation and antibiotics can damage the gut microbiota after cardiac surgery. We aimed to investigate changes in the gut microbiota and the association between the gut microbiota and delirium after cardiac surgery. Methods Twenty-one patients who underwent cardiac surgery were enrolled. Microbiota counts and fecal organic acid concentrations were measured in fecal samples harvested before surgery, just after surgery, and before discharge. To quantify the microbiota, we extracted total RNA fractions and examined gut microbiota composition using 16S and 23S rRNA-targeted quantitative-reverse Transcription-PCR. Postoperative delirium, insomnia, and pseudopsia were assessed for 1 week. Postoperative total bacterial counts changed significantly from 10.2 ± 0.2 log10 cells/g of feces to 9.8 ± 0.5 in the first postoperative samples (p = 0.003) and 10.0 ± 0.4 in the samples before discharge (p = 0.039). Fecal pH was 6.9 ± 0.6 before surgery and 7.4 ± 0.7 in the first postoperative samples (p = 0.001). Postoperative Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia than in patients without pseudopsia (3.2 ± 1.3 vs. 5.4 ± 0.9; p = 0.012 and 1.7 ± 0.8 vs. 4.6 ± 2.7; p = 0.001). Conclusions Total bacterial counts were significantly lower after surgery and until discharge. Fecal pH was significantly higher than preoperative levels. Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia.
Collapse
Affiliation(s)
- Masaki Maekawa
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenji Yoshitani
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Musashi Yahagi
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | | | - Satsuki Fukushima
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naoki Tadokoro
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tomoyuki Fujita
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiko Ohnishi
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
27
|
Yokoyama Y, Fukaya M, Mizuno T, Ebata T, Asahara T, Nagino M. Clinical importance of "occult-bacterial translocation" in patients undergoing highly invasive gastrointestinal surgery: A review. Surg Today 2020; 51:485-492. [PMID: 32857253 DOI: 10.1007/s00595-020-02126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
In the clinical setting, mild bacteremia cannot be detected by conventional culture methods, only by a highly sensitive bacterial detection system. One of the major causes of mild bacteremia is bacterial translocation (BT) induced by a dysregulated intestinal microenvironment and increased intestinal epithelial permeability. This condition is called "occult-bacterial translocation (O-BT)"; however, the concept of O-BT is not yet fully recognized. In our previous studies, done using a highly sensitive bacterial detection system such as bacterium-specific ribosomal RNA-targeted reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), O-BT was commonly observed in patients who underwent highly invasive surgery. We collected blood and mesenteric lymph node (MLN) samples from patients undergoing esophagectomy for esophageal cancer, before and after they were subjected to surgical stress. The detection rate of bacteria in these samples increased from approximately 20% before surgical stress to more than 50% after surgical stress. Moreover, positivity for bacteria in the blood or MLN samples was associated with the incidence of postoperative infectious complications (POICs). Using the RT-qPCR system, it is possible to detect the specific bacteria that cause O-BT immediately after surgery. This may allow us to select the exact antibiotic that targets possible pathogenic bacteria of POICs.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masahide Fukaya
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | - Masato Nagino
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
28
|
Lockyer S, Aguirre M, Durrant L, Pot B, Suzuki K. The role of probiotics on the roadmap to a healthy microbiota: a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2020; 1:e2. [PMID: 39296722 PMCID: PMC11406418 DOI: 10.1017/gmb.2020.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 09/21/2024]
Abstract
The ninth International Yakult Symposium was held in Ghent, Belgium in April 2018. Keynote lectures were from Professor Wijmenga on using biobanks to understand the relationship between the gut microbiota and health; and Professor Hill on phage-probiotic interactions. Session one included talks from Professor Plӧsch on epigenetic programming by nutritional and environmental factors; Professor Wilmes on the use of "omics" methodologies in microbiome research and Professor Rescigno on the gut vascular barrier. Session two explored the evidence behind Lactobacillus casei Shirota with Dr Nanno explaining the plasticity in immunomodulation that enables the strain to balance immune functions; Dr Macnaughtan outlining its potential therapeutic use in cirrhosis and Professor Nishida detailing effects in subjects under stress. The third session saw Professor Marchesi describing that both the host genes and the gut microbiota can play a role in cancer; Professor Bergheim highlighting crosstalk between the gut and the liver and Professor Cani describing the relationship between the gut microbiota and the endocrine system. The final session explored probiotic mechanisms, with Professor Lebeer dissecting the challenges in conducting mechanistic studies; Professor Wehkamp describing the mucosal defence system and Professor Van de Wiele detailing methods for modelling the gut microbiota in vitro.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe B.V., Almere, The Netherlands
| | | |
Collapse
|
29
|
Gruber DR, Kalin J. Socializing the Gut in Probiotics Experimentation: Calibrating Microbiota and Science Policy. WORLD MEDICAL & HEALTH POLICY 2019. [DOI: 10.1002/wmh3.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019; 10:S404-S421. [PMID: 31728499 PMCID: PMC6855972 DOI: 10.1093/advances/nmz042] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Although a high intake of plant foods such as fruits, vegetables, whole grains, nuts, and legumes has been recommended for chronic disease prevention, it has been unclear what is the optimal amount of intake of these foods and whether specific subtypes are particularly beneficial. The evidence from several recently published meta-analyses on plant foods and antioxidants and various health outcomes is reviewed as well as more recently published studies. In meta-analyses of prospective studies, inverse associations were observed between intake of fruits, vegetables, whole grains, and nuts and the risk of coronary artery disease, stroke, cardiovascular disease overall, total cancer, and all-cause mortality. The strongest reductions in risk were observed at an intake of 800 g/d for fruits and vegetables, 225 g/d for whole grains, and 15-20 g/d for nuts, respectively. Whole-grain and nut consumption was also inversely associated with mortality from respiratory disease, infections, and diabetes. Stronger and more linear inverse associations were observed between blood concentrations of antioxidants (vitamin C, carotenoids, vitamin E) and cardiovascular disease, cancer, and all-cause mortality than for dietary intake. Most studies that have since been published have been consistent with these results; however, further studies are needed on subtypes of plant foods and less common causes of death. These results strongly support dietary recommendations to increase intake of plant foods, and suggest optimal intakes for chronic disease prevention may be ∼800 g/d for intakes of fruits and vegetables, 225 g/d for whole grains, and 15-20 g/d for nuts. Diets high in plant foods could potentially prevent several million premature deaths each year if adopted globally.
Collapse
Affiliation(s)
- Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Aoyagi Y, Amamoto R, Park S, Honda Y, Shimamoto K, Kushiro A, Tsuji H, Matsumoto H, Shimizu K, Miyazaki K, Matsubara S, Shephard RJ. Independent and Interactive Effects of Habitually Ingesting Fermented Milk Products Containing Lactobacillus casei Strain Shirota and of Engaging in Moderate Habitual Daily Physical Activity on the Intestinal Health of Older People. Front Microbiol 2019; 10:1477. [PMID: 31417501 PMCID: PMC6684969 DOI: 10.3389/fmicb.2019.01477] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Infrequent bowel movements decrease the number of beneficial bacteria in the human intestines, thereby potentially increasing the individual's risk of colorectal cancer. The correction of such bowel problems could therefore make an important contribution to improving population health and quality-adjusted lifespan. We examined independent and interactive effects upon the fecal microbiota of two potentially favorable determinants of intestinal motility: the intake frequency of a fermented milk product containing Lactobacillus casei strain Shirota (LcS) and the quantity/quality of habitual physical activity in 338 community-living Japanese aged 65-92 years. Subjects were arbitrarily grouped on the basis of questionnaire estimates of LcS intake (0-2, 3-5, and 6-7 days/week) and pedometer/accelerometer-determined patterns of physical activity [<7000 and ≥7000 steps/day, or <15 and ≥15 min/day of activity at an intensity >3 metabolic equivalents (METs)]. After adjustment for potential confounders, the respective numbers of various beneficial fecal bacteria tended to be larger in more frequent consumers of LcS-containing products, this trend being statistically significant (mostly P < 0.001) for total Lactobacillus, the Lactobacillus casei subgroup, and the Atopobium cluster; in contrast, there were no statistically significant differences in fecal bacterial counts between the physical activity groups. A multivariate-adjusted logistic regression analysis estimated that the risk of infrequent bowel movements (arbitrarily defined as defecating ≤3 days/week) was significantly lower (P < 0.05) in subjects who ingested LcS-containing products 6-7 rather than 0-2 days/week [odds ratio (95% confidence interval) 0.382 (0.149-0.974)] and was also lower in those who took ≥7000 rather than <7000 steps/day [0.441 (0.201-0.971)] or spent ≥15 rather than <15 min/day of physical activity at an intensity >3 METs [0.412 (0.183-0.929)]. The risk of infrequent bowel movements in subjects who combined 6-7 days/week of LcS with ≥7000 steps/day or ≥15 min/day of activity at >3 METs was only a tenth of that for individuals who combined 0-2 days/week of LcS with <7000 steps/day or <15 min/day at >3 METs. These results suggest that elderly individuals can usefully ingest LcS-containing supplements regularly (≥6 days/week) and also engage in moderate habitual physical activity (≥7000 steps/day and/or ≥15 min/day at >3 METs) in order to enhance their gastrointestinal health.
Collapse
Affiliation(s)
- Yukitoshi Aoyagi
- Exercise Sciences Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ryuta Amamoto
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Sungjin Park
- Exercise Sciences Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yusuke Honda
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | | | - Akira Kushiro
- Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Hirokazu Tsuji
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | | | - Kensuke Shimizu
- Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kouji Miyazaki
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | | | - Roy J Shephard
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|