1
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Youssef H, Azmy AF, Eid HM, Sayed OM, Eldomany EB, Farghali AA, Molham F. The Enterococcus secretome inhibits the growth of vancomycin-resistant Enterococcus faecalis V853 with their antiproliferative properties and nanoencapsulation effects. Int Microbiol 2025; 28:227-239. [PMID: 38775969 DOI: 10.1007/s10123-024-00534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 02/14/2025]
Abstract
In our study, the secretome of the clinical isolate Enterococcus faecalis HY7 displayed antibacterial activity against the vancomycin-resistant Enterococcus faecalis V853. These bacteriocin-like substances showed thermal stability at a wide range of temperatures up to 121 °C, while proteinase K treatment resulted in a total loss of their activity. PCR-based screening for bacteriocin biosynthetic genes revealed that Enterococcus faecalis HY7 harbored multiple enterocin-producing genes, including ent A, avc A, and as-48. The production kinetics demonstrated the highest levels of bacteriocins production at 16 h, whereas the activity was diminished after 32 h of microbial growth. Notably, the partially purified bacteriocins exhibited anti-proliferative activity on the colon cancer cells, Caco2, with an IC50 value of 172.8 μg/mL. Remarkably, the nanoencapsulation of our bacteriocins in liposome showed a fourfold increase in its anti-vancomycin-resistant Enterococcus activity, which is the first report of liposome encapsulation with anti-vancomycin resistant Enterococcus bacteriocin.
Collapse
Affiliation(s)
- Hadeer Youssef
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed F Azmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Ehab B Eldomany
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma Molham
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
3
|
Pang X, Du X, Hu X, Feng Z, Sun J, Li X, Lu Y. Inhibitory Effect of DNase-Chitosan-Nisin Nanoparticles on Cell Viability, Motility, and Spatial Structures of Listeria monocytogenes Biofilms. Foods 2024; 13:3544. [PMID: 39593960 PMCID: PMC11592910 DOI: 10.3390/foods13223544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Listeria monocytogenes biofilm contamination on food contact surfaces is a major concern for the food industry. Nanoparticle encapsulation appears as a novel strategy for food surface disinfection to prevent biofilm formation. Chitosan nanoparticles loaded with nisin and DNase I (DNase-CS-N) have been constructed to exhibit antimicrobial activity against L. monocytogenes. This study aimed to investigate their ability to inhibit L. monocytogenes biofilm formation and eliminate preformed biofilms on food contact surfaces (polystyrene, polyurethane, and stainless steel). DNase-CS-N could decrease 99% and 99.5% biofilm cell numbers at 1/2 MIC and MIC, respectively. At sub-MICs, DNase-CS-N could reduce cell motility (swimming and swarming) and slime production of L. monocytogenes. In terms of effect on biofilm elimination, DNase-CS-N at the concentration of 4 MIC led to 3-4 log reduction in biofilm cells in preformed biofilms, performing higher efficiency compared with other treatments (CSNPs, CS-N). Furthermore, the three-dimensional structure of L. monocytogenes biofilms was severely disrupted after DNase-CS-N treatment, with bacterial cells scattered on the surface. The morphology of biofilm cells was also greatly damaged with wrinkled surfaces, disrupted cell membranes, and leakage of intracellular nucleic acids and proteins. These results indicate the potential applicability of DNase-CS-N for inhibiting and eliminating L. monocytogenes biofilms on food contact surfaces.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (X.P.); (X.D.); (X.H.); (Z.F.); (J.S.); (X.L.)
| |
Collapse
|
4
|
Chandrika K, Sachan A. Biosynthesis of bacteriocin BacZY05-silver nanoconjugates and evaluation of their antibacterial properties. World J Microbiol Biotechnol 2024; 40:287. [PMID: 39090427 DOI: 10.1007/s11274-024-04093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria to prevent the growth of pathogens. Combining bacteriocins with metal nanoparticles, like silver nanoparticles (AgNPs), has developed into a viable strategy to get over bacteriocin limitations. In this study, bacteriocin BacZY05 was extracted from Bacillus subtilis ZY05 and purified using various techniques. The resulting purified bacteriocin was then combined with silver nanoparticles to form bacteriocin silver nanoconjugates (BacZY05-AgNPs). The physicochemical properties of the BacZY05-AgNPs were characterized using various analytical techniques. The mean diameter of the synthesized AgNPs was approximately 20-60 nm with an oval or spherical shape. The antimicrobial activity of the BacZY05-AgNPs was evaluated against several indicator strains by their zone of inhibition (ZOI), using the agar well diffusion method. Compared to bacteriocin (ZOI- 13 to 20 mm) and AgNPs (ZOI- 10-22 mm) alone, the antibacterial activity data demonstrated a 1.3-1.5-fold increase in the activity of bacteriocin-nanoconjugates (ZOI- 22 to 26 mm). For Staphylococcus aureus MTCC3103 and Klebsiella pneumoniae MTCC109, BacZY05-capped AgNPs exhibited the lowest minimum inhibitory concentration (MIC), measuring 10.93 µg/mL. For Salmonella typhi NCIM2501, the MIC was 28.75 µg/mL. The highest MIC value was 57.5 µg/mL for Escherichia coli DH5α and Vibrio cholerae MTCC3909. With BacZY05-capped AgNPs, the lowest minimum bactericidal concentration (MBC) of 28.75 µg/mL was observed for Staphylococcus aureus MTCC31003. In the cases of Salmonella typhi NCIM2501 and Klebsiella pneumoniae MTCC109 concentration was 57.5 µg/mL. Vibrio cholerae MTCC3909 and Escherichia coli DH5α had the highest MBC values at 115 µg/mL.
Collapse
Affiliation(s)
- Kumari Chandrika
- Department of Life Sciences, Central University of Jharkhand, Jharkhand, Ranchi, 835 222, India
| | - Ashish Sachan
- Department of Life Sciences, Central University of Jharkhand, Jharkhand, Ranchi, 835 222, India.
| |
Collapse
|
5
|
Cui M, Wang M, Sun H, Yu L, Su Z, Zhang X, Zheng Y, Xia M, Shen Y, Wang M. Identifying and characterization of novel broad-spectrum bacteriocins from the Shanxi aged vinegar microbiome: Machine learning, molecular simulation, and activity validation. Int J Biol Macromol 2024; 270:132272. [PMID: 38734334 DOI: 10.1016/j.ijbiomac.2024.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, molecular simulation and activity validation. A total of 158 potential bacteriocins were innovatively mined from 117,552 representative genes based on metatranscriptomic information from the Shanxi aged vinegar microbiome using machine learning techniques and 12 microorganisms were identified to secrete bacteriocins at the genus level. Subsequently, employing AlphaFold2 structure prediction and molecular dynamics simulations, eight bacteriocins with high stability were further screened, and all of them were confirmed to have bacteriostatic activity by the Escherichia coli BL21 expression system. Then, gene_386319 (named LAB-3) and gene_403047 (named LAB-4) with the strongest antibacterial activities were purified by two-step methods and analyzed by mass spectrometry. The two bacteriocins have broad-spectrum antimicrobial activity with minimum inhibitory concentration values of 6.79 μg/mL-15.31 μg/mL against Staphylococcus aureus and Escherichia coli. Furthermore, molecular docking analysis indicated that LAB-3 and LAB-4 could interact with dihydrofolate reductase through hydrogen bonds, salt-bridge forces and hydrophobic forces. These findings suggested that the two bacteriocins could be considered as promising broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Meili Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengyue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoyan Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenhua Su
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanbing Shen
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Mohanty D, Suar M, Panda SK. Nanotechnological interventions in bacteriocin formulations - advances, and scope for challenging food spoilage bacteria and drug-resistant foodborne pathogens. Crit Rev Food Sci Nutr 2023; 65:1126-1143. [PMID: 38069682 DOI: 10.1080/10408398.2023.2289184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Food spoilage bacteria (FSB) and multidrug-resistant (MDR) foodborne pathogens have emerged as one of the principal public health concerns in the twenty first century. The harmful effects of FSB lead to economic losses for the food industries. Similarly, MDR foodborne pathogens are accountable for multiple illnesses and pose a threat to consumers. Therefore, there is an urgent need to establish effective formulations for successful application against such microorganisms. In this context, the fusion of knowledge from biotechnology and nanotechnology can explore endless possibilities in the development of innovative formulations against FSB and foodborne pathogens. The current review critically examines the application of bacteriocins in the food industry and the use of nanomaterials to enhance the antimicrobial activity, stability, and precision in the target delivery of bacteriocins. This review also explores the technologies involved in the development of bacteriocin-based nanoformulations and their action against FSB and MDR foodborne pathogens, offering new possibilities in preservation technologies and addressing food safety issues in the food industry. The review highlights the challenges in the commercialization and technoeconomical feasibility of nanobacteriocin. Overall, it provides essential information and interpretation about nanotechnological advancements in bacteriocin formulation action against FSB and foodborne pathogens and future scopes.
Collapse
Affiliation(s)
- Debapriya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Sandeep Kumar Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Muthuvelu KS, Ethiraj B, Pramnik S, Raj NK, Venkataraman S, Rajendran DS, Bharathi P, Palanisamy E, Narayanan AS, Vaidyanathan VK, Muthusamy S. Biopreservative technologies of food: an alternative to chemical preservation and recent developments. Food Sci Biotechnol 2023; 32:1337-1350. [PMID: 37457405 PMCID: PMC10348988 DOI: 10.1007/s10068-023-01336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives. The hurdle technology method that combines multiple antimicrobial strategies is often used to improve the effectiveness of food biopreservation. This review attempts to provide a research summary on the utilization of lactic acid bacteria, bacteriocins, endolysins, bacteriophages, and biopolymers helps in the improvement of the shelf-life of food and lower the risk of food-borne pathogens throughout the food supply chain. This review also aims to evaluate current technologies that successfully employ the aforementioned preservatives to address obstacles in food biopreservation.
Collapse
Affiliation(s)
- Kirupa Sankar Muthuvelu
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077 India
| | - Shreyasi Pramnik
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - N. Keerthish Raj
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Elakiya Palanisamy
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Anusri Sathiya Narayanan
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Shanmugaprakash Muthusamy
- Downstream Processing Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| |
Collapse
|
8
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Abstract
A wound is an injury to the skin or damage to the body tissue. The healing process differs between various kinds of wounds. Treatment of hard-to-heal (chronic) wounds becomes challenging for healthcare practitioners, especially if patients have underlying health complications such as diabetes. Infection of wounds is another factor that interferes with the healing process and extends its duration. Active research is being conducted into the development of advanced wound dressing technologies. These wound dressings are intended to manage the exudate, reduce bacterial infection and speed up the healing process. Probiotics have been receiving much attention because of their potential application in the clinical field, especially in diagnostics and treatment strategies of various infectious and non-infectious diseases. The host immune-modulatory response and antimicrobial activity of probiotics are expanding their role in the development of improved wound dressing technology.
Collapse
Affiliation(s)
- Shanmugaraja Meenakshi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Chennai, Tamil Nadu, India
| | - Ramadevi Santhanakumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Leonida MD, Benzecry A, Lozanovska B, Mahmoud Z, Reid A, Belbekhouche S. Impact of tannic acid on nisin encapsulation in chitosan particles. Int J Biol Macromol 2023; 233:123489. [PMID: 36736978 DOI: 10.1016/j.ijbiomac.2023.123489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
This study investigates the effect of addition of tannic acid on nisin encapsulated in chitosan matrices. Composite materials were prepared using a mild, environmentally friendly procedure, ionotropic gelation of chitosan by sodium tripolyphosphate in the presence of nisin (N) at different concentrations. In two parallel sets of preparations, tannic acid (TA) was added at 10:1 and 5:1 N:TA, respectively. The obtained particles were characterized by FTIR, SEM, size, zeta potential, encapsulation efficiency, loading capacity, and ratio of residual free amino groups. The kinetics of nisin release from the particles was studied to assess the role of TA as a potential modulator thereof. Its addition resulted in enhanced release, higher at lower N:TA ratio. An additional benefit was that TA, a strong antioxidant, imparted antioxidant activity to the composites. Antimicrobial turbidimetric tests were performed against one gram-positive bacterium (Staphylococcus aureus) and two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), all relevant for the food, pharmaceutical, and cosmetic industries. All the composites showed synergistic effects against all the bacteria tested. The positive coaction was stronger against the gram-negative species. This is remarkable since nisin by itself has not known activity against them.
Collapse
Affiliation(s)
- Mihaela D Leonida
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA.
| | - Alice Benzecry
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Bisera Lozanovska
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Zainab Mahmoud
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Ashley Reid
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Sabrina Belbekhouche
- Université Paris Est Créteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
11
|
Kilic T, Bali EB. Biofilm control strategies in the light of biofilm-forming microorganisms. World J Microbiol Biotechnol 2023; 39:131. [PMID: 36959476 DOI: 10.1007/s11274-023-03584-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Biofilm is a complex consortium of microorganisms attached to biotic or abiotic surfaces and live in self-produced or acquired extracellular polymeric substances (EPSs). EPSs are mainly formed by lipids, polysaccharides, proteins, and extracellular DNAs. The adherence to the surface of microbial communities is seen in food, medical, dental, industrial, and environmental fields. Biofilm development in food processing areas challenges food hygiene, and human health. In addition, bacterial attachment and biofilm formation on medical implants inside human tissue can cause multiple critical chronic infections. More than 30 years of international research on the mechanisms of biofilm formation have been underway to address concerns about bacterial biofilm infections. Antibiofilm strategies contain cold atmospheric plasma, nanotechnological, phage-based, antimicrobial peptides, and quorum sensing inhibition. In the last years, the studies on environmentally-friendly techniques such as essential oils and bacteriophages have been intensified to reduce microbial growth. However, the mechanisms of the biofilm matrix formation are still unclear. This review aims to discuss the latest antibiofilm therapeutic strategies against biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tugba Kilic
- Department of Medical Services and Techniques, Program of Medical Laboratory Techniques, Vocational School of Health Services, Gazi University, Ankara, 06830, Turkey.
| | - Elif Burcu Bali
- Department of Medical Services and Techniques, Program of Medical Laboratory Techniques, Vocational School of Health Services, Gazi University, Ankara, 06830, Turkey
| |
Collapse
|
12
|
Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha) 2023; 68:337-353. [PMID: 36780113 PMCID: PMC9924211 DOI: 10.1007/s12223-022-01030-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/29/2022] [Indexed: 02/14/2023]
Abstract
Recent studies manifest an increase of inflammatory diseases at an alarming rate due to gut microbiota dysbiosis, genetic and other environmental factors. Lactic acid bacteria (LAB) are known for their antimicrobial properties and their extensive applications in food and pharmaceutical industries. Cyclic peptides are receiving increased attention due to their remarkable stability to withstand variations in temperature and pH. LAB produces anti-inflammatory that can inhibit lipopolysaccharide-induced production of proinflammatory cytokines in macrophages. The structural backbones of cyclic peptides offer a promising approach for the treatment of chronic inflammatory conditions. The current review aims to present the overview of anti-inflammatory and wound healing properties of LAB-derived cyclic peptides.
Collapse
Affiliation(s)
- Parikhshith Saravanan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Pooja R
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Nanditaa Balachander
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Kesav Ram Singh K
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Silpa S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| |
Collapse
|
13
|
Sharma S, Sharma N, Kaushal N. Utilization of novel bacteriocin synthesized silver nanoparticles (AgNPs) for their application in antimicrobial packaging for preservation of tomato fruit. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1072738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
IntroductionThe current need of the food industry is to develop a safe packaging system that maintains the quality of food and prevents its spoilage. Food safety techniques improvised using functional nanoparticles minimize the chances of spoilage by maintaining moisture stability, mechanical strength, and durability and ensuring product safety. In the present study, we synthesized silver nanoparticles using purified bacteriocins obtained from probiotics. Bacteriocin-synthesized AgNPs are eco-friendly and secure packaging solutions that can be utilized in the packaging industry for the storage of food products.MethodsCrude, partially purified and purified bacteriocin was obtained from three potential probiotic isolates, i.e., Lactobacillus pentosus S6 (KU92122), Lactobacillus crustorum F11 (KT865221) and Lactobacillus spicheri G2 (JX481912). The antimicrobial efficacy of bacteriocin was tested against two food-borne spoilage-causing pathogens, i.e., Bacillus cereus and Staphylococcus aureus. The purified bacteriocin obtained was used for the synthesis of AgNPs. The synthesized AgNPs were characterized using UV-vis spectroscopy, TEM, and SEM techniques. The AgNPs were used for coating cellulose paper. The coated paper was characterized using SEM and was used for the storage of tomato fruit.Results and discussionThe purified bacteriocin obtained was used for the synthesis of AgNPs. The formation of AgNPs was confirmed by using UV-vis spectroscopy, which showed maximum absorption at 450 nm. Furthermore, we confirm shape and morphology by using Scanning Electron Microscopy (SEM). Transmission Electron Microscopy (TEM) analysis showed the mean size of synthesized AgNPs in the range of 5–20 nm. Bacteriocin-synthesized AgNPs were then used for the coating of cellulose paper with the main motive to avoid spoilage and enhance the shelf stability of tomato fruit during storage. SEM analysis confirmed the coating of AgNPs in the cellulose paper. The enhanced antimicrobial efficacy of different treatments coated paper was observed against B. cereus and S. aureus. Out of all, F11 AgNPs coated paper showed maximum inhibition of 24 mm for S. aureus and 22 mm for B. cereus. The coated paper from three different bacteriocin-synthesized AgNPs, along with silver nitrate (AgNO3) coated and uncoated paper, was used for the storage of tomato fruit for a period of 10 days at room temperature. Changes during storage were determined by analyzing morphological and color changes. Compared to AgNO3 coated and uncoated paper, tomato fruit preserved in F11 AgNPs coated paper maintained and held its appearance and firmness, thereby confirming their effectiveness in the preservation of tomatoes.
Collapse
|
14
|
Shafique B, Ranjha MMAN, Murtaza MA, Walayat N, Nawaz A, Khalid W, Mahmood S, Nadeem M, Manzoor MF, Ameer K, Aadil RM, Ibrahim SA. Recent Trends and Applications of Nanoencapsulated Bacteriocins against Microbes in Food Quality and Safety. Microorganisms 2022; 11:microorganisms11010085. [PMID: 36677377 PMCID: PMC9864013 DOI: 10.3390/microorganisms11010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized peptides or proteins produced by bacterial strains and can inhibit pathogenic bacteria. Numerous factors influence the potential activity of bacteriocins in food matrices. For example, food additives usage, chemical composition, physical conditions of food, and sensitivity of proteolytic enzymes can constrain the application of bacteriocins as beneficial food preservatives. However, novel bacteriocin nanoencapsulation has appeared as an encouraging solution. In this review, we highlight the bacteriocins produced by Gram-negative bacteria and Gram-positive bacteria including lactic acid bacteria that have shown positive results as potential food preservatives. In addition, this review encompasses the major focus on bacteriocins encapsulation with nanotechnology to enhance the antimicrobial action of bacteriocins. Several strategies can be employed to encapsulate bacteriocins; however, the nanotechnological approach is one of the most effective strategies for avoiding limitations. Nanoparticles such as liposomes, chitosan, protein, and polysaccharides have been discussed to show their importance in the nanoencapsulation method. The nanoparticles are combined with bacteriocins to develop the nano-encapsulated bacteriocins from Gram-negative and Gram-positive bacteria including LAB. In food systems, nanoencapsulation enhances the stability and antimicrobial functionality of active peptides. This nanotechnological application provides a formulation of a broad range of antimicrobial peptides at the industry-scale level. Nano-formulated bacteriocins have been discussed along with examples to show a broader antimicrobial spectrum, increase bacteriocins' applicability, extend antimicrobial spectrum and enhance stability.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Waseem Khalid
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Mahmood
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528011, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| |
Collapse
|
15
|
Zhao J, Ge G, Huang Y, Hou Y, Hu SQ. Butelase 1-Mediated Enzymatic Cyclization of Antimicrobial Peptides: Improvements on Stability and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15869-15878. [PMID: 36471508 DOI: 10.1021/acs.jafc.2c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antibacterial properties and safety as food preservatives, whereas the stability and antibacterial activity require improvement. Here, the "head-to-tail" cyclization of linear AMP GKE was catalyzed by butelase 1, which resulted in an improved pronouncedly antibacterial effect. Cell morphology and propidium iodide uptake revealed that the increased membrane permeability was one of the bacteriostatic mechanisms of GKE and could be enhanced after cyclization. As cyclic GKE (cGKE) exhibited more stability than the linear counterpart under the microorganism culture environment, the increase in effective bacteriostatic concentration should be a reason for the superior antibacterial effect. Moreover, cGKE exhibited the ordered secondary structure, while GKE possessed a similar structure only in sodium dodecyl sulfate micelles. The structure was also beneficial to improve the antibacterial activity caused by the increased affinity of cGKE to the membranes. Overall, butelase 1-mediated cyclization is a promising strategy for enhancing the antibacterial activity of linear AMPs.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ge Ge
- Beijing Food Safety Monitoring and Risk Assessment Center, Beijing 100094, China
| | - Yanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Suryaletha K, Savithri AV, Nayar SA, Asokan S, Rajeswary D, Thomas S. Demystifying Bacteriocins of Human Microbiota by Genome Guided Prospects: An Impetus to Rekindle the Antimicrobial Research. Curr Protein Pept Sci 2022; 23:811-822. [PMID: 36278460 DOI: 10.2174/1389203724666221019111515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022]
Abstract
The human microbiome is a reservoir of potential bacteriocins that can counteract multidrug resistant bacterial pathogens. Unlike antibiotics, bacteriocins selectively inhibit a spectrum of competent bacteria and are said to safeguard gut commensals, reducing the chance of dysbiosis. Bacteriocinogenic probiotics or bacteriocins of human origin will be more pertinent in human physiological conditions for therapeutic applications to act against invading pathogens. Recent advancement in the omics approach enables the mining of diverse and novel bacteriocins by identifying biosynthetic gene clusters from the human microbial genome, pangenome or shotgun metagenome, which is a breakthrough in the discovery line of novel bacteriocins. This review summarizes the most recent trends and therapeutic potential of bacteriocins of human microbial origin, the advancement in the in silico algorithms and databases in the discovery of novel bacteriocin, and how to bridge the gap between the discovery of bacteriocin genes from big datasets and their in vitro production. Besides, the later part of the review discussed the various impediments in their clinical applications and possible solution to bring them into the frontline therapeutics to control infections, thereby meeting the challenges of global antimicrobial resistance.
Collapse
Affiliation(s)
- Karthika Suryaletha
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Akhila Velappan Savithri
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Seema A Nayar
- Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sijo Asokan
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Divya Rajeswary
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sabu Thomas
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Xiang YZ, Wu G, Zhang YP, Yang LY, Zhang YM, Zhao ZS, Deng XY, Zhang QL. Inhibitory effect of a new bacteriocin RSQ04 purified from Lactococcus lactis on Listeria monocytogenes and its application on model food systems. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060794. [PMID: 35740200 PMCID: PMC9220075 DOI: 10.3390/antibiotics11060794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.
Collapse
|
19
|
Rathod NB, Nirmal NP, Pagarkar A, Özogul F, Rocha JM. Antimicrobial Impacts of Microbial Metabolites on the Preservation of Fish and Fishery Products: A Review with Current Knowledge. Microorganisms 2022; 10:773. [PMID: 35456823 PMCID: PMC9028172 DOI: 10.3390/microorganisms10040773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial metabolites have proven effects to inhibit food spoilage microbiota, without any development of antimicrobial resistance. This review provides a recent literature update on the preservative action of metabolites derived from microorganisms on seafood. Fish and fishery products are regarded as a myriad of nutrition, while being highly prone to spoilage. Several proven controversies (antimicrobial resistance and health issues) related to the use of synthetic preservatives have caused an imminent problem. The demand for minimally processed and naturally preserved clean-label fish and fishery products is on rise. Metabolites derived from microorganisms have exhibited diverse preservation capacities on fish and fishery products' spoilage. Inclusions with other preservation techniques, such as hurdle technology, for the shelf-life extension of fish and fishery products are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Postharvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Raigad 402116, Maharashtra, India;
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Asif Pagarkar
- Marine Biological Research Station, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Ratnagiri 415612, Maharashtra, India;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
20
|
Pereira WA, Piazentin ACM, de Oliveira RC, Mendonça CMN, Tabata YA, Mendes MA, Fock RA, Makiyama EN, Corrêa B, Vallejo M, Villalobos EF, de S Oliveira RP. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens. Sci Rep 2022; 12:5530. [PMID: 35365686 PMCID: PMC8975912 DOI: 10.1038/s41598-022-09263-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
The conditions of aquatic environments have a great influence on the microbiota of several animals, many of which are a potential source of microorganisms of biotechnological interest. In this study, bacterial strains isolated from aquatic environments were bioprospected to determine their probiotic profile and antimicrobial effect against fish and food pathogens. Two isolates, identified via 16S rRNA sequencing as Lactococcus lactis (L1 and L2) and one as Enterococcus faecium 135 (EF), produced a bacteriocin-like antimicrobial substance (BLIS), active against Listeria monocytogenes, Salmonella Choleraesuis and Salmonella Typhimurium. Antimicrobial activity of BLIS was reduced when exposed to high temperatures and proteolytic enzymes (trypsin, pepsin, papain and pancreatin). All strains were sensitive to 7 types of antibiotics (vancomycin, clindamycin, streptomycin, gentamicin, chloramphenicol, rifampicin and ampicillin), exhibited a high rate of adherence to Caco-2 cells and expressed no hemolysin and gelatinase virulence factors. EF showed some resistance at pH 2.5 and 3.0, and L2/EF showed higher resistance to the action of bile salts. Finally, the presence of bacteriocin genes encoding for proteins, including Nisin (L1 and L2), Enterocin A, B, P, and Mundticin KS (EF) was detected. The molecular and physiological evidence suggests that the bacterial isolates in this study could be used as natural antimicrobial agents and may be considered safe for probiotic application.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Anna Carolina M Piazentin
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Rodrigo Cardoso de Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Carlos Miguel N Mendonça
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Yara Aiko Tabata
- Fishing Institute of São Paulo/Salmoniculture Experimental Station, Av. Campos Do Jordão, Residencial Horto Florestal, Campos do Jordão, São Paulo, 12460-000, Brazil
| | - Maria Anita Mendes
- Chemical Engineering Department, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil
| | - Ricardo Ambrósio Fock
- Laboratory of Experimental Hematology, University of São Paulo, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, 05508- 000, Brazil
| | - Edson Naoto Makiyama
- Laboratory of Experimental Hematology, University of São Paulo, Av. Prof. Lineu Prestes, 580, Cidade Universitária, São Paulo, 05508- 000, Brazil
| | - Benedito Corrêa
- Laboratory of Toxigenic Fungi and Mycotoxins, Av. Prof. Lineu Prestes, 1.374, Edifício Biomédicas II, 05508-900, São Paulo, Brasil
| | - Marisol Vallejo
- Bacterial Biotechnology Laboratory, Faculty of Natural Sciences and Health Sciences, UNPSJB, Sede Trelew, Chubut, Argentina
| | - Elias Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Ricardo Pinheiro de S Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo, 05508-000, Brazil.
| |
Collapse
|
21
|
Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, Li X, Lu Y, Yuk HG. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022; 21:1657-1676. [PMID: 35181977 DOI: 10.1111/1541-4337.12922] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoye Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
22
|
Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, Gangadaran P, Ahn BC. An Update on the Effectiveness of Probiotics in the Prevention and Treatment of Cancer. Life (Basel) 2022; 12:59. [PMID: 35054452 PMCID: PMC8779143 DOI: 10.3390/life12010059] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics are living microbes that play a significant role in protecting the host in various ways. Gut microbiota is one of the key players in maintaining homeostasis. Cancer is considered one of the most significant causes of death worldwide. Although cancer treatment has received much attention in recent years, the number of people suffering from neoplastic syndrome continues to increase. Despite notable improvements in the field of cancer therapy, tackling cancer has been challenging due to the multiple properties of cancer cells and their ability to evade the immune system. Probiotics alter the immunological and cellular responses by enhancing the epithelial barrier and stimulating the production of anti-inflammatory, antioxidant, and anticarcinogenic compounds, thereby reducing cancer burden and growth. The present review focuses on the various mechanisms underlying the role of probiotics in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology, Srimad Andavan Arts and Science College, Bharathidasan University, Trichy 620005, India;
| | | | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Sridharan Gurunagarajan
- Department of Biochemistry, Srimad Andavan Arts and Science College, Bharathidasan University, Trichy 620005, India;
| | - Rajapandiyan Krishnamoorthy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 4545, Saudi Arabia;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
23
|
Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021; 11:766944. [PMID: 34950607 PMCID: PMC8688827 DOI: 10.3389/fcimb.2021.766944] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.
Collapse
Affiliation(s)
- Lea M. Sedghi
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Margot Bacino
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Yvonne Lorraine Kapila
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Periodontology, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Bekiaridou A, Karlafti E, Oikonomou IM, Ioannidis A, Papavramidis TS. Probiotics and Their Effect on Surgical Wound Healing: A Systematic Review and New Insights into the Role of Nanotechnology. Nutrients 2021; 13:nu13124265. [PMID: 34959817 PMCID: PMC8704946 DOI: 10.3390/nu13124265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Skin tissue repair is of fundamental importance for maintaining homeostasis regulation, protection barrier, absorption, and excretion of skin tissue. Wound healing is a complicated process that can be impaired by infections and therefore have a significant economic and social impact. Simultaneously, the overuse of antibiotics has led to antimicrobial resistance and loss of their efficacy. Thus, the need for alternative antimicrobial agents is urgent. The newest approaches on wound dressings employ new therapeutic agents, such as probiotics. Probiotics alone or in tandem with nanotechnology-based techniques exhibit a broad range of benefits on surgical wounds. This systematic review aims to consider current knowledge of probiotic effects on animals and humans regarding surgical wound healing and provide new insights into the role of nanotechnology. The databases included were PubMed (MEDLINE), Scopus, and Cochrane Library (CENTRAL). Studies focused on burns, chronic wounds, and diabetic ulcers were excluded. The promising industry of probiotics demonstrates a significant upsurge as more and more healthy individuals rely their well-being on alternative medicine. Included probiotics illustrated positive results on wound re-epithelization, neovascularization, and wound healing. No adverse effects were noted.
Collapse
Affiliation(s)
- Alexandra Bekiaridou
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (A.B.); (E.K.); (I.M.O.)
| | - Eleni Karlafti
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (A.B.); (E.K.); (I.M.O.)
| | - Ilias Marios Oikonomou
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (A.B.); (E.K.); (I.M.O.)
| | - Aristidis Ioannidis
- 1st Propaedeutic Surgical Department, University Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki (AUTH), 54621 Thessaloniki, Greece;
| | - Theodossis S. Papavramidis
- 1st Propaedeutic Surgical Department, University Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki (AUTH), 54621 Thessaloniki, Greece;
- Correspondence: ; Fax: +30-231-042-0293
| |
Collapse
|
25
|
Surendhiran D, Li C, Cui H, Lin L. Marine algae as efficacious bioresources housing antimicrobial compounds for preserving foods - A review. Int J Food Microbiol 2021; 358:109416. [PMID: 34601353 DOI: 10.1016/j.ijfoodmicro.2021.109416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Certain synthetic chemicals used in global food industries eliminate pathogenic food microbes and prevent spoilage. Nevertheless, their toxicity precludes human consumption. This phenomenon has made scientific fraternity to look for alternative antimicrobial compounds from natural resources. In recent times, marine algae have been illustrated to be potent and rich sources of antimicrobial agents as chemical replacements for applications in food. Identifying novel antimicrobial agents from natural resources have become a worldwide research with immense significance. Marine algae are now considered as one of the most inexhaustible and unexposed sources of antimicrobial agents due to their abundance in seawaters and renewability. This review elaborated on marine algal antimicrobial agents against foodborne pathogens, mode of action and cumulated the prospective use of algal compounds in active food packaging as a natural food preservative. Due to poor solubility, unpleasant odor and ineffectiveness of plant derived antimicrobial agents against Gram-negative bacteria, researchers opted for marine algae, an ideal candidate to be used as natural food preservatives. This article elaborates and summarizes the efficient bioactive molecules in marine algae and their possible application in food preservation to extend shelf life of foods without causing any toxicity. In conclusion, marine algae have potential antimicrobial property against food pathogens and have more advantages than other natural sources of antimicrobial agents.
Collapse
Affiliation(s)
| | - Changzhu Li
- Department of Bioresource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
26
|
Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, Mathiesen G, Diep DB. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021; 11:13909. [PMID: 34230527 PMCID: PMC8260761 DOI: 10.1038/s41598-021-93158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus—an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karolina T Bartkiewicz
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Mikkel Brønner
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn P Cavanagh
- Pediatric Infections Group, Department of Pediatrics, University Hospital of North Norway, Tromsö, Norway.,Pediatric Infections Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsö, Norway
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
27
|
Rathod NB, Ranveer RC, Benjakul S, Kim SK, Pagarkar AU, Patange S, Ozogul F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr Rev Food Sci Food Saf 2021; 20:4182-4210. [PMID: 34146459 DOI: 10.1111/1541-4337.12787] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology Hanyang University Erica, Ansan-si, Gyeonggi-do, South Korea
| | - Asif Umar Pagarkar
- Marine Biological Research Station, (DBSKKV), Ratnagiri, Maharashtra, 415 612, India
| | - Surendra Patange
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey, 01330, Turkey
| |
Collapse
|
28
|
D'Souza SM, Houston K, Keenan L, Yoo BS, Parekh PJ, Johnson DA. Role of microbial dysbiosis in the pathogenesis of esophageal mucosal disease: A paradigm shift from acid to bacteria? World J Gastroenterol 2021; 27:2054-2072. [PMID: 34025064 PMCID: PMC8117736 DOI: 10.3748/wjg.v27.i18.2054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic sequencing, bioinformatics, and initial speciation (e.g., relative abundance) of the commensal microbiome have revolutionized the way we think about the "human" body in health and disease. The interactions between the gut bacteria and the immune system of the host play a key role in the pathogenesis of gastrointestinal diseases, including those impacting the esophagus. Although relatively stable, there are a number of factors that may disrupt the delicate balance between the luminal esophageal microbiome (EM) and the host. These changes are thought to be a product of age, diet, antibiotic and other medication use, oral hygiene, smoking, and/or expression of antibiotic products (bacteriocins) by other flora. These effects may lead to persistent dysbiosis which in turn increases the risk of local inflammation, systemic inflammation, and ultimately disease progression. Research has suggested that the etiology of gastroesophageal reflux disease-related esophagitis includes a cytokine-mediated inflammatory component and is, therefore, not merely the result of esophageal mucosal exposure to corrosives (i.e., acid). Emerging evidence also suggests that the EM plays a major role in the pathogenesis of disease by inciting an immunogenic response which ultimately propagates the inflammatory cascade. Here, we discuss the potential role for manipulating the EM as a therapeutic option for treating the root cause of various esophageal disease rather than just providing symptomatic relief (i.e., acid suppression).
Collapse
Affiliation(s)
- Steve M D'Souza
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Kevin Houston
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Lauren Keenan
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Byung Soo Yoo
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - Parth J Parekh
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| | - David A Johnson
- Department of Internal Medicine, Division of Gastroenterology, Eastern Virginia Medical School, Norfolk, VA 23502, United States
| |
Collapse
|
29
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
30
|
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci 2021; 8:654038. [PMID: 33996906 PMCID: PMC8116899 DOI: 10.3389/fmolb.2021.654038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a pathogen commonly found in nosocomial environments where infections can easily spread - especially given the reduced immune response of patients and large overlap between personnel in charge of their care. Although antibiotics are available to treat nosocomial infections, the increased occurrence of antibiotic resistance has rendered many treatments ineffective. Such is the case for methicillin resistant S. aureus (MRSA), which has continued to be a threat to public health since its emergence. For this reason, alternative treatment technologies utilizing antimicrobials such as bacteriocins, bacteriophages (phages) and phage endolysins are being developed. These antimicrobials provide an advantage over antibiotics in that many have narrow inhibition spectra, enabling treatments to be selected based on the target (pathogenic) bacterium while allowing for survival of commensal bacteria and thus avoiding collateral damage to the microbiome. Bacterial resistance to these treatments occurs less frequently than with antibiotics, particularly in circumstances where combinatory antimicrobial therapies are used. Phage therapy has been well established in Eastern Europe as an effective treatment against bacterial infections. While there are no Randomized Clinical Trials (RCTs) to our knowledge examining phage treatment of S. aureus infections that have completed all trial phases, numerous clinical trials are underway, and several commercial phage preparations are currently available to treat S. aureus infections. Bacteriocins have primarily been used in the food industry for bio-preservation applications. However, the idea of repurposing bacteriocins for human health is an attractive one considering their efficacy against many bacterial pathogens. There are concerns about the ability of bacteriocins to survive the gastrointestinal tract given their proteinaceous nature, however, this obstacle may be overcome by altering the administration route of the therapy through encapsulation, or by bioengineering protease-resistant variants. Obstacles such as enzymatic digestion are less of an issue for topical/local administration, for example, application to the surface of the skin. Bacteriocins have also shown impressive synergistic effects when used in conjunction with other antimicrobials, including antibiotics, which may allow antibiotic-based therapies to be used more sparingly with less resistance development. This review provides an updated account of known bacteriocins, phages and phage endolysins which have demonstrated an impressive ability to kill S. aureus strains. In particular, examples of antimicrobials with the ability to target MRSA strains and their subsequent use in a clinical setting are outlined.
Collapse
Affiliation(s)
- Lauren Walsh
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal N Johnson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| |
Collapse
|
31
|
Deshwal GK, Tiwari S, Kumar A, Raman RK, Kadyan S. Review on factors affecting and control of post-acidification in yoghurt and related products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Sidhu PK, Nehra K. Purification and characterization of bacteriocin Bac23 extracted from Lactobacillus plantarum PKLP5 and its interaction with silver nanoparticles for enhanced antimicrobial spectrum against food-borne pathogens. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:164. [PMID: 33562778 PMCID: PMC7916047 DOI: 10.3390/antibiotics10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the "post-antibiotic" era. The emergence of so-called "superbugs"-pathogen strains that develop resistance to multiple conventional antibiotics-is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(-) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.
Collapse
Affiliation(s)
| | | | | | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, LV-1067 Riga, Latvia; (N.Z.); (V.K.); (Z.R.); (A.L.)
| |
Collapse
|
34
|
Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge. Pharmaceutics 2021; 13:pharmaceutics13020196. [PMID: 33540560 PMCID: PMC7912925 DOI: 10.3390/pharmaceutics13020196] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Decades of antibiotic misuse in clinical settings, animal feed, and within the food industry have led to a concerning rise in antibiotic-resistant bacteria. Every year, antimicrobial-resistant infections cause 700,000 deaths, with 10 million casualties expected by 2050, if this trend continues. Hence, innovative solutions are imperative to curb antibiotic resistance. Bacteria produce a potent arsenal of drugs with remarkable diversity that are all distinct from those of current antibiotics. Bacteriocins are potent small antimicrobial peptides synthetized by certain bacteria that may be appointed as alternatives to traditional antibiotics. These molecules are strategically employed by commensals, mostly Firmicutes, to colonize and persist in the human gut. Bacteriocins form channels in the target cell membrane, leading to leakage of low-molecular-weight, causing the disruption of the proton motive force. The objective of this review was to list and discuss the potential of bacteriocins as antimicrobial therapeutics for infections produced mainly by resistant pathogens.
Collapse
|
35
|
Naskar A, Kim KS. Potential Novel Food-Related and Biomedical Applications of Nanomaterials Combined with Bacteriocins. Pharmaceutics 2021; 13:86. [PMID: 33440722 PMCID: PMC7826801 DOI: 10.3390/pharmaceutics13010086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
Bacteriocins are antimicrobial peptides or proteinaceous materials produced by bacteria against pathogens. These molecules have high efficiency and specificity and are equipped with many properties useful in food-related applications, such as food preservatives and additives, as well as biomedical applications, such as serving as alternatives to current antibacterial, antiviral, anticancer, and antibiofilm agents. Despite their advantages as alternative therapeutics over existing strategies, several limitations of bacteriocins, such as the high cost of isolation and purification, narrow spectrum of activity, low stability and solubility, and easy enzymatic degradation, need to be improved. Nanomaterials are promising agents in many biological applications. They are widely used in the conjugation or decoration of bacteriocins to augment the activity of bacteriocins or reduce problems related to their use in biomedical applications. Therefore, bacteriocins combined with nanomaterials have emerged as promising molecules that can be used in various biomedical applications. This review highlights the features of bacteriocins and their limitations in biomedical applications and provides a detailed overview of the uses of different nanomaterials in improving the limitations. Our review focuses on the potential applications of nanomaterials combined with bacteriocins as new designer molecules for use in future therapeutic strategies.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
36
|
Sulthana R, Archer AC. Bacteriocin nanoconjugates: boon to medical and food industry. J Appl Microbiol 2021; 131:1056-1071. [PMID: 33368869 DOI: 10.1111/jam.14982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Resistance to antibiotics is an ongoing problem in the biomedical industry. Developing active, alternative drug therapies would reduce our reliance on antibiotics that induce resistance in micro-organisms. To date, bacteriocins and antimicrobial peptides have shown a positive outcome as antibiotic substitutes and synergists apart from phage therapy, antibodies and probiotics. Bacteriocins are proteinaceous antimicrobial peptides synthesized by lactic acid bacteria extensively used as bio-preservatives and alternative to traditional antibiotics to overcome the problem of drug-resistant pathogens. Nonetheless, the use of bacteriocins has several limitations such as limited antimicrobial spectrum, requiring high dose, sensitivity to proteolytic enzymes, etc. Nanoparticles are one of the promising area of research explored to improve antimicrobial spectrum of bacteriocins. This review therefore highlights the recent developments and research pertaining to use of nanoparticles and bacteriocin conjugates to tackle the resistance crisis as well as its applications in food industry.
Collapse
Affiliation(s)
- R Sulthana
- Division of Microbiology and Tissue Culture, School of Life Sciences, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, Karnataka, India
| | - A C Archer
- Division of Microbiology and Tissue Culture, School of Life Sciences, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, Karnataka, India
| |
Collapse
|
37
|
Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. Int J Biol Macromol 2020; 164:845-854. [DOI: 10.1016/j.ijbiomac.2020.07.192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
|
38
|
Qiao Z, Chen J, Zhou Q, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Purification, characterization, and mode of action of a novel bacteriocin BM173 from Lactobacillus crustorum MN047 and its effect on biofilm formation of Escherichia coli and Staphylococcus aureus. J Dairy Sci 2020; 104:1474-1483. [PMID: 33246623 DOI: 10.3168/jds.2020-18959] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023]
Abstract
There is an increasing demand for dairy products, but the presence of food-spoilage bacteria seriously affects the development of the dairy industry. Bacteriocins are considered to be a potential antibacterial or antibiofilm agent that can be applied as a preservative. In this study, bacteriocin BM173 was successfully expressed in the Escherichia coli expression system and purified by a 2-step method. Furthermore, it exhibited a broad-spectrum antibacterial activity, high thermal stability (121°C, 20 min), and broad pH stability (pH 3-11). Moreover, the minimum inhibitory concentration values of BM173 against E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923 were 14.8 μg/mL and 29.6 μg/mL, respectively. Growth and time-kill curves showed that BM173 exhibited antibacterial and bactericidal activity. The results of scanning electron microscopy and transmission electron microscopy demonstrated that BM173 increased membrane permeability, facilitated pore formation, and even promoted cell lysis. The disruption of cell membrane integrity was further verified by propidium iodide uptake and lactic dehydrogenase release. In addition, BM173 exhibited high efficiency in inhibiting biofilm formation. Therefore, BM173 has promising potential as a preservative used in the dairy industry.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qiaqia Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
39
|
Cheng J, Kenaan A, Zhao D, Qi D, Song J. Photo-polymerizable ferrous sulfate liposomes as vehicles for iron fortification of food. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102286. [DOI: 10.1016/j.nano.2020.102286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
|
40
|
Anti-Proliferative and Anti-Biofilm Potentials of Bacteriocins Produced by Non-Pathogenic Enterococcus sp. Probiotics Antimicrob Proteins 2020; 13:571-585. [PMID: 33010007 DOI: 10.1007/s12602-020-09711-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 01/25/2023]
Abstract
The incidence of cancer is increasing worldwide; likewise, the emergence of antibiotic-resistant biofilm-forming pathogens has led to a tremendous increase in morbidity and mortality. This study aimed to evaluate the probiotic properties of bacteriocin-producing Enterococcus sp. with a focus on their anti-biofilm and anticancer activities. Three of 79 Enterococcus isolates (FM43, FM65, FM50) were identified as producers of broad-spectrum bioactive molecules and were molecularly characterized as Enterococcus faecium by 16S rRNA sequencing. Phenotypic and genotypic screening for potential virulence factors revealed no factors known to promote pathogenicity. Treatment with proteinase K resulted in diminished antimicrobial activity; PCR-based screening for bacteriocin genes suggested the presence of both entA and entB genes that encode enterocins A and B, respectively. Maximum antimicrobial activity was detected during the early stationary phase, while activity disappeared after 24 h in culture. Bacteriocins from these isolates were stable at high temperatures and over a wide range of pH. Interestingly, crude supernatants of Ent. faecium FM43 and Ent. faecium FM50 resulted in significant destruction (80% and 48%, respectively; P < 0.05) of Streptococcus mutans ATCC 25175-associated preformed biofilms. Moreover, in vitro cytotoxicity assays revealed that extracts from Ent. faecium isolates FM43, FM65, and FM50 inhibited Caco-2 cell proliferation by 76.9%, 70%, and 85.3%, respectively. Taken together, the multifunctional capabilities of the microbial-derived proteins identified in our study suggest potentially important roles as alternative treatments for biofilm-associated infections and cancer.
Collapse
|
41
|
Schofs L, Sparo MD, Sánchez Bruni SF. Gram-positive bacteriocins: usage as antimicrobial agents in veterinary medicine. Vet Res Commun 2020; 44:89-100. [PMID: 32656740 DOI: 10.1007/s11259-020-09776-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a worldwide spread phenomenon that affects both human and veterinary medicine. This issue has led to a "One Health" approach in order to coordinate efforts and set back the development of drug-resistant microbes. In the search for alternatives therapies, bacteriocins or antimicrobial peptides have proven to be effective both in vitro and in vivo for multiples pathogens, even those resistant to many classic antibiotics. Gram-positive bacteriocins have been the most studied to the present. The use of bacteriocins as therapeutically active molecules is limited mainly due to difficulties in production, purification, delivery systems and regulatory approvals. To overcome some of these limitations, biotechnological and nanotechnological approaches are evaluated. Bacteriocins proved to be a good complement for conventional antibiotics therapy. Antimicrobial peptides are nowadays included in the veterinary products such as udder disinfectant for dairy cattle and dermatological medicated wipe for topical use on dogs, cats, and horses. But there are other potential uses to explore in the veterinary field for both companion and production animals.
Collapse
Affiliation(s)
- Laureano Schofs
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN- CONICET, B7000, Tandil, Argentina. .,Tandil Veterinary Research Center (CIVETAN) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de investigaciones científicas de la Provincia de Buenos Aires (CICPBA), Tandil, B7000, Argentina.
| | - Mónica D Sparo
- Tandil Veterinary Research Center (CIVETAN) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de investigaciones científicas de la Provincia de Buenos Aires (CICPBA), Tandil, B7000, Argentina.,Clinical Department, Faculty of Health Science, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, B7400, Argentina
| | - Sergio F Sánchez Bruni
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN- CONICET, B7000, Tandil, Argentina.,Tandil Veterinary Research Center (CIVETAN) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de investigaciones científicas de la Provincia de Buenos Aires (CICPBA), Tandil, B7000, Argentina
| |
Collapse
|
42
|
Steve M D, Lindsey B C, Byung Soo Y, Parth J P, David A J. Microbiome and Gastroesophageal Disease: Pathogenesis and Implications for Therapy. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.acgh.1001018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Sidhu PK, Nehra K. Bacteriocin-capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens. IET Nanobiotechnol 2020; 14:245-252. [PMID: 32338634 PMCID: PMC8676405 DOI: 10.1049/iet-nbt.2019.0323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 08/13/2023] Open
Abstract
Bacteriocins produced by lactic acid bacteria are safer alternatives to the more popularly used chemical preservatives which exhibit several adverse effects. The bacteriocins have an advantage of being efficient in controlling food pathogens without possessing any side-effects. However, the bacteriocins have a limitation of exhibiting a narrow antimicrobial spectrum and having a high-dosage requirement. With an aim to combat these limitations, the present study involved the biosynthesis of bacteriocin-capped nanoparticles, using two bacteriocins (Bac4463 and Bac22) extracted and purified from Lactobacillus strains. Nanoconjugates synthesised at optimum conditions were characterized using various physico-chemical techniques. The interaction of bacteriocin-capped silver nanoparticles with the pathogenic bacteria was observed using scanning electron microscopy, wherein the deformed and elongated cells were clearly visible. In vitro antimicrobial efficacy of both Bac4463-capped silver nanoparticles and Bac22-capped silver nanoparticles against different food pathogens was observed to be enhanced in comparison to the antimicrobial activity of bacteriocins alone. Minimum inhibitory concentration was observed to be as low as 8 μg/ml for Bac4463-capped silver nanoparticles against Staphylococcus aureus, and 2 μg/ml for Bac22-capped silver nanoparticles against Shigella flexneri. This study, therefore, recommends the use of bacteriocin-capped nanoparticles as food preservatives to control the growth of food spoiling bacteria.
Collapse
Affiliation(s)
- Parveen Kaur Sidhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039, Sonipat, Haryana, India
| | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039, Sonipat, Haryana, India.
| |
Collapse
|
44
|
Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. J Control Release 2020; 321:100-118. [PMID: 32035192 DOI: 10.1016/j.jconrel.2020.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMP) are molecules consisting of 12-100 amino acids synthesized by certain microbes and released extracellularly to inhibit the growth of other microbes. Among the AMP molecules, bacteriocins are produced by both gram-positive and gram-negative bacterial species and are used to kill or inhibit other prokaryotes in the environment. Due to their broad-spectrum antimicrobial activity, some bacteriocins have the potential of becoming the next generation of antibiotics for use in the crisis of multi antibiotic-resistant bacteria. Recently, bacteriocins have even been used to treat cancer. However, bacteriocins present a few drawbacks, such as sensitivity to proteases, immunogenicity issues, and the development of bacteriocin resistance by pathogenic bacteria. In this regard, nanoscale drug delivery systems (Nano-DDS) have led to the expectation that they will eventually improve the treatment of many diseases by addressing these limitations and improving bacteriocin pharmacokinetics and pharmacodynamics. Thus, combining bacteriocins with nano-DDS may be useful in overcoming these drawbacks and thereby reveal the full potential of bacteriocins. In this review article, we highlight the importance of tailoring nano-DDS to address bacteriocin limitations, the successes and failures of this technology thus far, the challenges that this technology still has to overcome before reaching the market, and future perspectives. Therefore, the purpose of this review is to highlight, categorize, compare and contrast the different nano-DDS described in the literature so far, and compare their effectiveness in order to improve the next generation of bacteriocin nano-sized drug delivery systems (Nano-DDS).
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Marcelo Bispo de Jesus
- Nano-Cell Interaction Lab., Department of Tissue Biology and Biochemistry, Biology Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Yvonne L Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
45
|
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 2019; 10:57. [PMID: 31321032 PMCID: PMC6615095 DOI: 10.1186/s40104-019-0368-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles (NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods. Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, non-toxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal's body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor’ Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
46
|
Rothrock MJ, Micciche AC, Bodie AR, Ricke SC. Listeria Occurrence and Potential Control Strategies in Alternative and Conventional Poultry Processing and Retail. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Micciche AC, Rubinelli PM, Ricke SC. Source of Water and Potential Sanitizers and Biological Antimicrobials for Alternative Poultry Processing Food Safety Applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
48
|
Gomaa EZ. Synergistic Antibacterial Efficiency of Bacteriocin and Silver Nanoparticles Produced by Probiotic Lactobacillus paracasei Against Multidrug Resistant Bacteria. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9759-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Yi L, Li X, Luo L, Lu Y, Yan H, Qiao Z, Lü X. A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Yi L, Luo L, Lü X. Efficient Exploitation of Multiple Novel Bacteriocins by Combination of Complete Genome and Peptidome. Front Microbiol 2018; 9:1567. [PMID: 30057579 PMCID: PMC6053492 DOI: 10.3389/fmicb.2018.01567] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Backgroud: The growing emergence of antibiotic-resistant pathogens including the most dangerous superbugs requires quick discovery of novel antibiotics/biopreservatives for human health and food safety. Bacteriocins, a subgroup of antimicrobial peptides, have been considered as promising alternatives to antibiotics. Abundant novel bacteriocins are stored in genome sequences of lactic acid bacteria. However, discovery of novel bacteriocins still mainly relies on dubious traditional purification with low efficiency. Moreover, sequence alignment is invalid for novel bacteriocins which have no homology to known bacteriocins in databases. Therefore, an efficient, simple, universal, and time-saving method was needed to discover novel bacteriocins. Methods and Results: Crude bacteriocins from both cell-related and culture supernatant of Lactobacillus crustorum MN047 fermentation were applied to LC-MS/MS for peptidome assay, by which 131 extracellular peptides or proteins were identified in the complete genome sequence of L. crustorum MN047. Further, the genes of suspected bacteriocins were verified by expressed in Escherichia coli BL21 (DE3) pLysS. Thereafter, eight novel bacteriocins and two nonribosomal antimicrobial peptides were identified to be broad-spectrum activity against both Gram-positive and Gram-negative bacteria, including some multidrug-resistant strains. Among them, BM1556 located within predicted bacteriocin gene cluster. The most active bacteriocin BM1122 had low MIC values of 13.7 mg/L against both Staphylococcus aureus ATCC29213 and E. coli ATCC25922. The BM1122 had bactericidal action mode by biofilm-destruction, pore-formation, and membrane permeability change. Conclusions: The combination of complete genome and peptidome is a valid approach for quick discovery of novel bacteriocins without/with-low homology to known ones. This method will contribute to deep exploitation of novel bacteriocins in genome of bacteria submitted to GenBank.
Collapse
Affiliation(s)
- Lanhua Yi
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|