1
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Verhezen T, Wouters A, Smits E, De Waele J. Powering immunity: mitochondrial dynamics in natural killer cells. Trends Mol Med 2025:S1471-4914(25)00106-6. [PMID: 40393875 DOI: 10.1016/j.molmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for eliminating malignant and infected cells, and have significant therapeutic potential against cancer and viral infections. However, their functionality is often impaired under pathological conditions. Emerging evidence identifies mitochondria as key regulators of NK cell metabolism, fitness, and fate. This review examines how mitochondrial dysfunction impacts on NK cell activity in cancer, viral infections, and inflammatory disorders. We discuss strategies to target mitochondrial architecture, dynamics, and function as potential therapies to restore NK cell fitness. Finally, we highlight unanswered questions and future directions to better understand mitochondrial regulation in NK cells and its implications for therapeutic development.
Collapse
Affiliation(s)
- Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
3
|
Ali MA, Shaker OG, Ezzat EM, Khalefa AA, Ahmed NA, Abu El-Ela RY, Amin AAI, Mohamed FAH, Abdelhafeez MMA, Ahmed MSZ, AbdelHafez MN, Abdulqader AKA, Fares R. Expression Profile of Serum CircFUNDC1 and CircUHRF1 Can Differentiate Between Colorectal Cancer and Inflammatory Bowel Diseases (Ulcerative Colitis and Crohn's Disease). J Clin Lab Anal 2025:e70039. [PMID: 40376950 DOI: 10.1002/jcla.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a worldwide burden. Circular RNAs are promising biomarkers for diagnosing and prognosis of CRC. OBJECTIVE To investigate the possible association of sera levels of CircFUNDC1 and CircUHRF1 expression with predisposition and clinicopathological findings in CRC, ulcerative colitis (UC), and Crohn's disease (CD) in Egyptian patients. METHODS The serum levels of CircFUNDC1 and CircUHRF1 were evaluated in 113 Egyptian subjects divided into four groups; CRC (31), UC (26), and CD (25) and compared to healthy controls (31) using quantitative polymerase chain reaction. RESULTS The median values of log2 serum fold change (FC) of CircFUNDC1 in CRC, UC, and CD patients were 9.11, 6.58, and 6.17, respectively. It was upregulated in all case groups. CRC, UC, and CD patients had significantly higher serum CircFUNDC1 levels than controls (p < 0.001). However, there were no significant differences among patient groups (CRC, UC, and CD). The medians of log 2 of serum FC CircUHRF1 in patients with CRC, UC, and CD were -2.00, 3.33, and 3.12, respectively. The CircUHRF1 serum level was lower in the CRC group of patients, with no significant difference between the CRC group and the controls. Serum CircUHRF1 was significantly overexpressed in patients with UC and CD compared to the CRC groups or controls (p < 0.001). By Roc curve analysis, both genes can differentiate CRC patients from inflammatory bowel disease (IBD) patients or healthy controls with p < 0.05. CONCLUSION Serum CircFUNDC1 is a biomarker for CRC, while CircUHRF1 is a biomarker of IBD.
Collapse
Affiliation(s)
- Marwa A Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman M Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abeer A Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa A Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Department of Physiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | | | - Amal A Ibrahim Amin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | | | | | | | - Marwa N AbdelHafez
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Reham Fares
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
4
|
Wang L, Markus H, Chen D, Chen S, Zhang F, Gao S, Khunsriraksakul C, Chen F, Olsen N, Foulke G, Jiang B, Carrel L, Liu DJ. An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment. CELL GENOMICS 2025; 5:100820. [PMID: 40154479 PMCID: PMC12008810 DOI: 10.1016/j.xgen.2025.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.
Collapse
Affiliation(s)
- Lida Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Havell Markus
- Bioinformatics and Genomics PhD Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dieyi Chen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Siyuan Chen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fan Zhang
- Bioinformatics and Genomics PhD Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shuang Gao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chachrit Khunsriraksakul
- Bioinformatics and Genomics PhD Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fang Chen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy Olsen
- Department of Medicine, Penn State University, College of Medicine, Hershey, PA 17033, USA
| | - Galen Foulke
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Laura Carrel
- Bioinformatics and Genomics PhD Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Dajiang J Liu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Bioinformatics and Genomics PhD Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
5
|
Wei ZX, Jiang SH, Qi XY, Cheng YM, Liu Q, Hou XY, He J. scRNA-seq of the intestine reveals the key role of mast cells in early gut dysfunction associated with acute pancreatitis. World J Gastroenterol 2025; 31:103094. [PMID: 40182603 PMCID: PMC11962851 DOI: 10.3748/wjg.v31.i12.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Intestinal barrier dysfunction is a prevalent and varied manifestation of acute pancreatitis (AP). Molecular mechanisms underlying the early intestinal barrier in AP remain poorly understood. AIM To explore the biological processes and mechanisms of intestinal injury associated with AP, and to find potential targets for early prevention or treatment of intestinal barrier injury. METHODS This study utilized single-cell RNA sequencing of the small intestine, alongside in vitro and in vivo experiments, to examine intestinal barrier function homeostasis during the early stages of AP and explore involved biological processes and potential mechanisms. RESULTS Seventeen major cell types and 33232 cells were identified across all samples, including normal, AP1 (4x caerulein injections, animals sacrificed 2 h after the last injection), and AP2 (8x caerulein injections, animals sacrificed 4 h after the last injection). An average of 980 genes per cell was found in the normal intestine, compared to 927 in the AP1 intestine and 1382 in the AP2 intestine. B cells, dendritic cells, mast cells (MCs), and monocytes in AP1 and AP2 showed reduced numbers compared to the normal intestine. Enterocytes, brush cells, enteroendocrine cells, and goblet cells maintained numbers similar to the normal intestine, while cytotoxic T cells and natural killer (NK) cells increased. Enterocytes in early AP exhibited elevated programmed cell death and intestinal barrier dysfunction but retained absorption capabilities. Cytotoxic T cells and NK cells showed enhanced pathogen-fighting abilities. Activated MCs, secreted chemokine (C-C motif) ligand 5 (CCL5), promoted neutrophil and macrophage infiltration and contributed to barrier dysfunction. CONCLUSION These findings enrich our understanding of biological processes and mechanisms in AP-associated intestinal injury, suggesting that CCL5 from MCs is a potential target for addressing dysfunction.
Collapse
Affiliation(s)
- Zu-Xing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiao-Yan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yi-Miao Cheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xu-Yang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
6
|
Liang Y, Han Y, Xiao L, Su Y, Bao T, Ji X, Jia L, Zhang J. Coenzyme Q10 modulates the immunity by enhancing mononuclear macrophage, NK cell activity, and regulating gut microbiota. Front Nutr 2025; 12:1504831. [PMID: 40165818 PMCID: PMC11955478 DOI: 10.3389/fnut.2025.1504831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Coenzyme Q10 (CoQ10), an important fat-soluble, bioactive molecule that predominantly found in the inner mitochondrial membrane, is widely used in functional food and health food raw materials, which has garnered considerable attention due to its potential role in immunoregulation. However, the intrinsic mechanism of CoQ10 on immunity, and the relationship to the gut microbiota have not been elucidated. Methods Here, we conducted a series of in vivo experiments with the aim of comprehensively exploring the effect of CoQ10 on both cellular and humoral immune functions, and on gut microbiota communities in mice. Results CoQ10 showed negligible impact on both mouse body weight fluctuations and tissue indices, but enhanced the mouse body immunity by elevating the carbon clearance ability and natural killer (NK) cellular viability. 16S rRNA gene sequencing revealed that administration of CoQ10 modulated the structure and composition of the gut microbiota in mice, notably by enhancing the abundance of Lactobacillus, Limosilactobacillus, and decreasing the abundance of Paramuribaculum species. Discussion This work makes a contribution to the application of CoQ10 as an immunomodulator in the biological, pharmaceutical and health care product industries.
Collapse
Affiliation(s)
- Yajun Liang
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Yang Han
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Ling Xiao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yupeng Su
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Tongen Bao
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Xia Ji
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Zhang
- College of Pharmacy, Qilu Medical University, Zibo, China
| |
Collapse
|
7
|
Calvez V, Puca P, Di Vincenzo F, Del Gaudio A, Bartocci B, Murgiano M, Iaccarino J, Parand E, Napolitano D, Pugliese D, Gasbarrini A, Scaldaferri F. Novel Insights into the Pathogenesis of Inflammatory Bowel Diseases. Biomedicines 2025; 13:305. [PMID: 40002718 PMCID: PMC11853239 DOI: 10.3390/biomedicines13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammatory bowel diseases (IBDs), encompassing Crohn's disease and ulcerative colitis, are complex chronic disorders characterized by an intricate interplay between genetic predisposition, immune dysregulation, gut microbiota alterations, and environmental exposures. This review aims to synthesize recent advances in IBD pathogenesis, exploring key mechanisms and potential avenues for prevention and personalized therapy. A comprehensive literature search was conducted across major bibliographic databases, selecting the most recent and impactful studies on IBD pathogenesis. The review integrates findings from multi-omics analyses, single-cell transcriptomics, and longitudinal cohort studies, focusing on immune regulation, gut microbiota dynamics, and environmental factors influencing disease onset and progression. Immune dysregulation, including macrophage polarization (M1 vs. M2) and Th17 activation, emerges as a cornerstone of IBD pathogenesis. Dysbiosis, as a result of reduced alpha and beta diversity and overgrowth of harmful taxa, is one of the main contributing factors in causing inflammation in IBD. Environmental factors, including air and water pollutants, maternal smoking, and antibiotic exposure during pregnancy and infancy, significantly modulate IBD risk through epigenetic and microbiota-mediated mechanisms. While recent advances have supported the development of new therapeutic strategies, deeply understanding the complex dynamics of IBD pathogenesis remains challenging. Future efforts should aim to reduce the burden of disease with precise, personalized treatments and lower the incidence of IBD through early-life prevention and targeted interventions addressing modifiable risk factors.
Collapse
Affiliation(s)
- Valentin Calvez
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Pierluigi Puca
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Jacopo Iaccarino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Erfan Parand
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Daniele Napolitano
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
| | - Daniela Pugliese
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Franco Scaldaferri
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| |
Collapse
|
8
|
Hu Y, Tang J, Yu D, Su S, Fang J, Xia L, Xu W, Zhu W, Song N, Wang F, Diao D, Zhang W. Correlation and diagnostic significance of CD4 T cell subsets and NLRP3 inflammasome in ulcerative colitis: the role of the NLRP3/T-bet/GATA3 axis. BMC Gastroenterol 2025; 25:23. [PMID: 39833691 PMCID: PMC11748810 DOI: 10.1186/s12876-025-03603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND AIM Ulcerative colitis (UC) is characterized by complex immunological interactions involving CD4 T cell subsets and the NLRP3 inflammasome, which influence inflammatory responses. This investigation focused on delineating the activation profiles of these components and their correlation with disease severity and activity, assessing their diagnostic implications in UC. METHODS We conducted immunohistochemistry and ELISA assays to measure markers expression of CD4 T cell subsets and the NLRP3 inflammasome in UC patients versus controls. Findings were validated using correlation analysis, molecular docking and ROC curves. RESULTS UC patients displayed increased Th1 (T-bet, TNF-α), Th2 (GATA3, IL-6), and Th17 (RORγt, IL-17, IL-22, IL-23) markers versus controls. Additionally, Th1 and Th2 cytokines (IL-2 and IL-4) were significantly elevated in severe UC, while Treg markers (FOXP3, IL-10, TGF-β1) were elevated only in mild-to-moderate UC. Enhanced NLRP3 inflammasome activation, indicated by elevated NLRP3, Caspase-1, and IL-1β levels. These molecular patterns, confirmed through correlation analysis and molecular docking, underscored strong correlations among NLRP3, T-bet, and GATA3, supporting the proposed NLRP3/T-bet/GATA3 axis. This axis, along with other biomarkers, showed strong associations with UC severity, Mayo score, UCEIS, demonstrated relatively high diagnostic value. CONCLUSION The NLRP3/T-bet/GATA3 axis provides a referable strategy for multi-targeted combined treatment of UC and may serve as potential biomarkers for enhancing diagnostic accuracy and guiding therapy.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Su
- Department of Spleen and Stomach Diseases, Qujiang District Hospital of Traditional Chinese Medicine, Quzhou, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ninping Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, CN310005, People's Republic of China
| | - Fengyong Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, CN310005, People's Republic of China
| | - Dechang Diao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, CN310005, People's Republic of China.
| |
Collapse
|
9
|
Fanijavadi S, Jensen LH. Dysbiosis-NK Cell Crosstalk in Pancreatic Cancer: Toward a Unified Biomarker Signature for Improved Clinical Outcomes. Int J Mol Sci 2025; 26:730. [PMID: 39859442 PMCID: PMC11765696 DOI: 10.3390/ijms26020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects. Dysbiosis can affect NK cell function, leading to resistance and side effects. We propose that a combined biomarker approach, integrating microbiome composition and NK cell profiles, can help predict treatment resistance and side effects, enabling more personalized therapies. This review examines how dysbiosis contributes to NK cell dysfunction in PDAC and discusses strategies (e.g., antibiotics, probiotics, vaccines) to modulate the microbiome and enhance NK cell function. Targeting dysbiosis could modulate NK cell activity, improve the effectiveness of PDAC treatments, and reduce side effects. However, further research is needed to develop unified NK cell-microbiome interaction-based biomarkers for more precise and effective patient outcomes.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Trøndelag, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
10
|
Liu Y, Lui KS, Ye Z, Chen L, Cheung AKL. Epstein-Barr Virus BRRF1 Induces Butyrophilin 2A1 in Nasopharyngeal Carcinoma NPC43 Cells via the IL-22/JAK3-STAT3 Pathway. Int J Mol Sci 2024; 25:13452. [PMID: 39769218 PMCID: PMC11677325 DOI: 10.3390/ijms252413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Epstein-Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
Collapse
Affiliation(s)
- Yue Liu
- Medical School, Fuyang Normal University, Fuyang 236000, China;
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Ka Sin Lui
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Zuodong Ye
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China;
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| |
Collapse
|
11
|
Tian Y, Dai J, Yang Y, Guo X, Wang W, Li F, Wang J, Liu R. Relationship between the risk of intestinal mucosal Epstein-Barr virus and/or cytomegalovirus infection and peripheral blood NK cells numbers in patients with ulcerative colitis: a cross-sectional study in Chinese population. Front Microbiol 2024; 15:1498483. [PMID: 39697654 PMCID: PMC11652489 DOI: 10.3389/fmicb.2024.1498483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Objective This study aimed to analyze the relationship between the risk of common opportunistic pathogens Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infection in intestinal mucosal tissues of Ulcerative Colitis (UC) patients and the number of peripheral blood NK cells. Methods UC patients admitted to a third-grade class-A hospital from January 2018 to December 2023 were selected as research population. Clinical data of the patients were collected from the electronic medical record system. Additionally, samples of intestinal mucosal tissues were obtained for real-time fluorescence quantitative PCR to detect and analyze the viral load of CMV and EBV. Blood samples were collected for lymphocyte subsets analysis. Multivariable logistic regression models analyses was used to determine the odds ratio (OR) and 95% confidence interval (95% CI) for the independent association between NK cells and EBV/CMV infections in UC. We further applied the restricted cubic spline analysis and smooth curve fitting to examine the non-linear relationship between them. Results 378 UC patients were enrolled. Of these patients, there were 194 patients (51.32%) with EBV /CMV infection. In multivariable logistic regression analyses NK cells was independently associated with EBV and/or CMV infection after adjusted potential confounders (OR 8.24, 95% CI 3.75-18.13, p < 0.001). A nonlinear relationship was found between NK cells and EBV/CMV infections, which had a threshold around 10.169. The effect sizes and CIs below and above the threshold were 0.535 (0.413-0.692), p < 0.001 and 1.034 (0.904-1.183), p > 0.05, respectively. Conclusion There was a non-linear relationship between NK cells and EBV/CMV infections. The risk for EBV/CMV infections was not increased with increasing NK cells in individuals with NK cells ≥ 10.169%, whereas the risk for EBV and/or CMV infection was increased with an decreasing NK cells in those with NK cells < 10.169%. The risk of EBV/CMV infections increases when NK cells were below a certain level.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Jinghua Dai
- School of Nursing, Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yunfeng Yang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Xiaofeng Guo
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Fengxia Li
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Juzi Wang
- Nursing Department, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Ruiyun Liu
- Shanxi Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Ishikawa D, Zhang X, Nomura K, Shibuya T, Hojo M, Yamashita M, Koizumi S, Yamazaki F, Iwamoto S, Saito M, Kunigo K, Nakano R, Honma N, Urakawa I, Nagahara A. Anti-inflammatory Effects of Bacteroidota Strains Derived From Outstanding Donors of Fecal Microbiota Transplantation for the Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:2136-2145. [PMID: 38733623 DOI: 10.1093/ibd/izae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 05/13/2024]
Abstract
BACKGROUND The proportion of certain Bacteroidota species decreased in patients with ulcerative colitis, and the recovery of Bacteroidota is associated with the efficacy of fecal microbiota transplantation therapy. We hypothesized that certain Bacteroidota may advance ulcerative colitis treatment. Accordingly, we aimed to evaluate the anti-inflammatory effects of Bacteroidota strains isolated from donors. METHODS Donors with proven efficacy of fecal microbiota transplantation for ulcerative colitis were selected, and Bacteroidota strains were isolated from their stools. The immune function of Bacteroidota isolates was evaluated through in vitro and in vivo studies. RESULTS Twenty-four Bacteroidota strains were isolated and identified. Using an in vitro interleukin (IL)-10 induction assay, we identified 4 Bacteroidota strains with remarkable IL-10-induction activity. Of these, an Alistipes putredinis strain exhibited anti-inflammatory effects in a mouse model of colitis induced by sodium dextran sulfate and oxazolone. However, 16S rRNA gene-based sequencing analysis of A. putredinis cultures in the in vivo study revealed unexpected Veillonella strain contamination. A second in vitro study confirmed that the coculture exhibited an even more potent IL-10-inducing activity. Furthermore, the production of A. putredinis-induced IL-10 was likely mediated via toll-like receptor 2 signaling. CONCLUSIONS This study demonstrated that A. putredinis, a representative Bacteroidota species, exhibits anti-inflammatory effects in vivo and in vitro; however, the effects of other Bacteroidota species remain unexplored. Our fecal microbiota transplantation-based reverse translation approach using promising bacterial species may represent a breakthrough in microbiome drug development for controlling dysbiosis during ulcerative colitis.
Collapse
Affiliation(s)
- Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Nomura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Yamashita
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Ibaraki, Japan
| | - Satoshi Koizumi
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Ibaraki, Japan
| | - Fuhito Yamazaki
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Ibaraki, Japan
| | - Susumu Iwamoto
- Research Core Function Laboratories, Research Unit, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Masato Saito
- Medical Pharmacology Department, Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Keisuke Kunigo
- Medical Pharmacology Department, Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Ryosuke Nakano
- Research Strategy & Planning Department, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Nakayuki Honma
- Research Strategy & Planning Department, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Itaru Urakawa
- Tokyo Research Park, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Cheng Y, Xiao S, Lan L, Liu D, Tang R, Gu J, Ma L, He Z, Chen X, Geng L, Chen P, Li H, Ren L, Zhu Y, Cheng Y, Gong S. WNT2B high‑expressed fibroblasts induce the fibrosis of IBD by promoting NK cells secreting IL-33. J Mol Med (Berl) 2024; 102:1199-1215. [PMID: 39138828 DOI: 10.1007/s00109-024-02477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis is an important pathological change in inflammatory bowel disease (IBD), but the mechanism has yet to be elucidated. WNT2B high‑expressed fibroblasts are enriched in IBD intestinal tissues, although the precise function of this group of fibroblasts remains unclear. This study investigated whether WNT2B high‑expressed fibroblasts aggravated intestinal tissue damage and fibrosis. Our study provides evidence that WNT2B high‑expressed fibroblasts and NK cells were enriched in colitis tissue of patients with IBD. WNT2B high‑expressed fibroblasts secreted wnt2b, which bound to FZD4 on NK cells and activated the NF-κB and STAT3 pathways to enhance IL-33 expression. TCF4, a downstream component of the WNT/β-catenin pathway, bound to p65 and promoted binding to IL-33 promoter. Furthermore, Salinomycin, an inhibitor of the WNT/β-catenin pathway, inhibited IL-33 secretion in colitis, thereby reducing intestinal inflammation.Knocking down WNT2B reduces NK cell infiltration and IL-33 secretion in colitis, and reduce intestinal inflammation and fibrosis. In conclusion, WNT2B high‑expressed fibroblasts activate NK cells by secreting wnt2b, which activates the WNT/β-catenin and NF-κB pathways to promote IL-33 expression and secretion, potentially culminating in the induction of colonic fibrosis in IBD. KEY MESSAGES: WNT2B high-expressed fibroblasts and NK cells are enriched in colitis tissue, promoting NK cells secreting IL-33. Wnt2b activates NF-κB and STAT3 pathways promotes IL-33 expression by activating p65 and not STAT3. syndrome TCF4 binds to p65 and upregulates the NF- κB pathway. Salinomycin reduces NK cell infiltration and IL-33 secretion in colitis. Knocking down WNT2B mitigates inflammation and fibrosis in chronic colitis.
Collapse
Affiliation(s)
- Yanling Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Pediatrics, Shantou Central Hospital, Shantou, 515031, China
| | - Shuzhe Xiao
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lin Lan
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Danqiong Liu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui Tang
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianbiao Gu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Ma
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhihua He
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xirong Chen
- Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lanlan Geng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Peiyu Chen
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Huiwen Li
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lu Ren
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yun Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Sitang Gong
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Hassan-Zahraee M, Ye Z, Xi L, Dushin E, Lee J, Romatowski J, Leszczyszyn J, Danese S, Sandborn WJ, Banfield C, Gale JD, Peeva E, Longman RS, Hyde CL, Hung KE. Baseline Serum and Stool Microbiome Biomarkers Predict Clinical Efficacy and Tissue Molecular Response After Ritlecitinib Induction Therapy in Ulcerative Colitis. J Crohns Colitis 2024; 18:1361-1370. [PMID: 38141256 PMCID: PMC11369066 DOI: 10.1093/ecco-jcc/jjad213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Ritlecitinib, an oral JAK3/TEC family kinase inhibitor, was well-tolerated and efficacious in the phase 2b VIBRATO study in participants with moderate-to-severe ulcerative colitis [UC]. The aim of this study was to identify baseline serum and microbiome markers that predict subsequent clinical efficacy and to develop noninvasive serum signatures as potential real-time noninvasive surrogates of clinical efficacy after ritlecitinib. METHODS Tissue and peripheral blood proteomics, transcriptomics, and faecal metagenomics were performed on samples before and after 8 weeks of oral ritlecitinib induction therapy [20 mg, 70 mg, 200 mg, or placebo once daily, N = 39, 41, 33, and 18, respectively]. Linear mixed models were used to identify baseline and longitudinal protein markers associated with efficacy. The combined predictivity of these proteins was evaluated using a logistic model with permuted efficacy data. Differential expression of faecal metagenomics was used to differentiate responders and nonresponders. RESULTS Peripheral blood serum proteomics identified four baseline serum markers [LTA, CCL21, HLA-E, MEGF10] predictive of modified clinical remission [MR], endoscopic improvement [EI], histological remission [HR], and integrative score of tissue molecular improvement. In responders, 37 serum proteins significantly changed at Week 8 compared with baseline [false discovery rate of <0.05]; of these, changes in four [IL4R, TNFRSF4, SPINK4, and LAIR-1] predicted concurrent EI and HR responses. Faecal metagenomics analysis revealed baseline and treatment response signatures that correlated with EI, MR, and tissue molecular improvement. CONCLUSIONS Blood and microbiome biomarkers stratify endoscopic, histological, and tissue molecular responses to ritlecitinib, which may help guide future precision medicine approaches to UC treatment. ClinicalTrials.gov NCT02958865.
Collapse
Affiliation(s)
| | - Zhan Ye
- Pfizer Inc, Cambridge, MA, USA
| | - Li Xi
- Pfizer Inc, Cambridge, MA, USA
| | | | | | - Jacek Romatowski
- Provincial Complex Hospital, Gastroenterology, Bialystok, Poland
| | | | - Silvio Danese
- IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | - Randy S Longman
- Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, NY, USA
| | | | | |
Collapse
|
15
|
Dong S, Zhang Y, Ye L, Cao Q. Identification of a Novel Activated NK-Associated Gene Score Associated with Diagnosis and Biological Therapy Response in Ulcerative Colitis. Digestion 2024; 106:1-22. [PMID: 39182484 PMCID: PMC11825133 DOI: 10.1159/000540939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Natural killer (NK) cells are associated with the pathogenesis of ulcerative colitis (UC); however, their precise contributions remain unclear. The present study aimed to investigate the diagnostic value of the activated NK-associated gene (ANAG) score in UC and evaluate its predictive value in response to biological therapy. METHODS Bulk RNA-seq and scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) and Single Cell Portal (SCP) databases. In the bulk RNA-seq, differentially expressed genes (DEGs) were screened by the "Batch correction" and "Robust rank aggregation" (RRA) methods. The immune infiltration landscape was estimated using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. DEGs that correlated with activated NK cells were identified as activated NK-associated genes (ANAGs). Protein-protein interaction (PPI) analysis and least absolute shrinkage and selection operator (LASSO) regression were used to screen key ANAGs and establish an ANAG score. The expression levels of the four key ANAGs were validated in human samples by real-time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence. The potential therapeutic drugs for UC were identified using the DSigDB database. Through scRNA-seq data analysis, the cell scores based on the ANAGs were calculated by "AddModuleScore" and "AUCell." RESULTS Immune infiltration analysis revealed a higher abundance of activated NK cells in noninflamed UC tissues (ssGSEA, p < 0.001; CIBERSORT, p < 0.01). Fifty-four DEGs correlated with activated NK cells were identified as ANAGs. The ANAG score was established using four key ANAGs (SELP, TIMP1, MMP7, and ABCG2). The ANAG scores were significantly higher in inflamed tissues (p < 0.001) and in biological therapy nonresponders (NR) tissues before treatment (golimumab, p < 0.05; ustekinumab, p < 0.001). The ANAG score demonstrated an excellent diagnostic value (AUC = 0.979). Patients with higher ANAG scores before treatment were more likely to experience a lack of response to golimumab or ustekinumab (golimumab, p < 0.05; ustekinumab, p < 0.001). CONCLUSION This study established a novel ANAG score with the ability to precisely diagnose UC and distinguish the efficacy of biological treatment. INTRODUCTION Natural killer (NK) cells are associated with the pathogenesis of ulcerative colitis (UC); however, their precise contributions remain unclear. The present study aimed to investigate the diagnostic value of the activated NK-associated gene (ANAG) score in UC and evaluate its predictive value in response to biological therapy. METHODS Bulk RNA-seq and scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) and Single Cell Portal (SCP) databases. In the bulk RNA-seq, differentially expressed genes (DEGs) were screened by the "Batch correction" and "Robust rank aggregation" (RRA) methods. The immune infiltration landscape was estimated using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. DEGs that correlated with activated NK cells were identified as activated NK-associated genes (ANAGs). Protein-protein interaction (PPI) analysis and least absolute shrinkage and selection operator (LASSO) regression were used to screen key ANAGs and establish an ANAG score. The expression levels of the four key ANAGs were validated in human samples by real-time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence. The potential therapeutic drugs for UC were identified using the DSigDB database. Through scRNA-seq data analysis, the cell scores based on the ANAGs were calculated by "AddModuleScore" and "AUCell." RESULTS Immune infiltration analysis revealed a higher abundance of activated NK cells in noninflamed UC tissues (ssGSEA, p < 0.001; CIBERSORT, p < 0.01). Fifty-four DEGs correlated with activated NK cells were identified as ANAGs. The ANAG score was established using four key ANAGs (SELP, TIMP1, MMP7, and ABCG2). The ANAG scores were significantly higher in inflamed tissues (p < 0.001) and in biological therapy nonresponders (NR) tissues before treatment (golimumab, p < 0.05; ustekinumab, p < 0.001). The ANAG score demonstrated an excellent diagnostic value (AUC = 0.979). Patients with higher ANAG scores before treatment were more likely to experience a lack of response to golimumab or ustekinumab (golimumab, p < 0.05; ustekinumab, p < 0.001). CONCLUSION This study established a novel ANAG score with the ability to precisely diagnose UC and distinguish the efficacy of biological treatment.
Collapse
Affiliation(s)
- Siyuan Dong
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lingna Ye
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
17
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms 2024; 12:1641. [PMID: 39203483 PMCID: PMC11357228 DOI: 10.3390/microorganisms12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Recurrent Pregnancy Loss (RPL) affects 1-2% of women, and its triggering factors are unclear. Several studies have shown that the vaginal, endometrial, and gut microbiota may play a role in RPL. A decrease in the quantity of Lactobacillus crispatus in local microbiota has been associated with an increase in local (vaginal and endometrial) inflammatory response and immune cell activation that leads to pregnancy loss. The inflammatory response may be triggered by gram-negative bacteria, lipopolysaccharides (LPS), viral infections, mycosis, or atypia (tumor growth). Bacterial structures and metabolites produced by microbiota could be involved in immune cell modulation and may be responsible for immune cell activation and molecular mimicry. Gut microbiota metabolic products may increase the amount of circulating pro-inflammatory lymphocytes, which, in turn, will migrate into vaginal or endometrial tissues. Local pro-inflammatory Th1 and Th17 subpopulations and a decrease in local Treg and tolerogenic NK cells are accountable for the increase in pregnancy loss. Local microbiota may modulate the local inflammatory response, increasing pregnancy success. Analyzing local and gut microbiota may be necessary to characterize some RPL patients. Although oral supplementation of probiotics has not been shown to modify vaginal or endometrial microbiota, the metabolites produced by it may benefit patients. Lactobacillus crispatus transplantation into the vagina may enhance the required immune tolerogenic response to achieve a normal pregnancy. The effect of hormone stimulation and progesterone to maintain early pregnancy on microbiota has not been adequately studied, and more research is needed in this area. Well-designed clinical trials are required to ascertain the benefit of microbiota modulation in RPL.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc (FNOL), Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
18
|
Wang Y, Ma H, Zhang X, Xiao X, Yang Z. The Increasing Diagnostic Role of Exosomes in Inflammatory Diseases to Leverage the Therapeutic Biomarkers. J Inflamm Res 2024; 17:5005-5024. [PMID: 39081872 PMCID: PMC11287202 DOI: 10.2147/jir.s475102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory diseases provide substantial worldwide concerns, affecting millions of people and healthcare systems by causing ongoing discomfort, diminished quality of life, and increased expenses. In light of the progress made in treatments, the limited effectiveness and negative side effects of present pharmaceuticals need a more comprehensive comprehension of the underlying processes in order to develop more precise remedies. Exosomes, which are tiny vesicles that play a vital role in cell communication, have been identified as prospective vehicles for effective delivery of anti-inflammatory medicines, immunomodulators, and gene treatments. Vesicles, which are secreted by different cells, have a crucial function in communicating between cells. This makes them valuable in the fields of diagnostics and therapies, particularly for inflammatory conditions. Exosomes have a role in regulating the immune system, transporting cytokines, and influencing cell signaling pathways associated with inflammation. They consist of proteins, lipids, and genetic information that have an impact on immune responses and inflammation. Scientists are now investigating exosomes as biomarkers for inflammatory disease. This review article aims to develop non-invasive diagnostic techniques with improved sensitivity and specificity. Purpose of this review is a thorough examination of exosomes in pharmacology, specifically emphasizing their origin, contents, and functions, with the objective of enhancing diagnostic and therapeutic strategies for inflammatory conditions. Gaining a comprehensive understanding of the intricate mechanisms involved in exosome-mediated interactions and their impact on immune responses is of utmost importance in order to devise novel approaches for tackling inflammatory disease and enhancing patient care.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xiaohua Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| |
Collapse
|
19
|
Hu Y, Tang J, Xie Y, Xu W, Zhu W, Xia L, Fang J, Yu D, Liu J, Zheng Z, Zhou Q, Shou Q, Zhang W. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117956. [PMID: 38428658 DOI: 10.1016/j.jep.2024.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1β, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iβ, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1β, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1β. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongfeng Xie
- Department of Burn Plastic Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Jiangsu, 223001, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Liu
- Department of General Surgery, Haining City Central Hospital, Jiaxing, 314408, China
| | - Zhipeng Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiujing Zhou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiyang Shou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
20
|
Diez-Martin E, Hernandez-Suarez L, Muñoz-Villafranca C, Martin-Souto L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int J Mol Sci 2024; 25:7062. [PMID: 39000169 PMCID: PMC11241012 DOI: 10.3390/ijms25137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), the immune system relentlessly attacks intestinal cells, causing recurrent tissue damage over the lifetime of patients. The etiology of IBD is complex and multifactorial, involving environmental, microbiota, genetic, and immunological factors that alter the molecular basis of the organism. Among these, the microbiota and immune cells play pivotal roles; the microbiota generates antigens recognized by immune cells and antibodies, while autoantibodies target and attack the intestinal membrane, exacerbating inflammation and tissue damage. Given the altered molecular framework, the analysis of multiple molecular biomarkers in patients proves exceedingly valuable for diagnosing and prognosing IBD, including markers like C reactive protein and fecal calprotectin. Upon detection and classification of patients, specific treatments are administered, ranging from conventional drugs to new biological therapies, such as antibodies to neutralize inflammatory molecules like tumor necrosis factor (TNF) and integrin. This review delves into the molecular basis and targets, biomarkers, treatment options, monitoring techniques, and, ultimately, current challenges in IBD management.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Carmen Muñoz-Villafranca
- Department of Gastroenterology, University Hospital of Basurto, Avda Montevideo 18, 48013 Bilbao, Spain
| | - Leire Martin-Souto
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
21
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
22
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Neri B, Mancone R, Fiorillo M, Schiavone SC, De Cristofaro E, Migliozzi S, Biancone L. Comprehensive overview of novel chemical drugs for ulcerative colitis: focusing on phase 3 and beyond. Expert Opin Pharmacother 2024; 25:485-499. [PMID: 38591242 DOI: 10.1080/14656566.2024.2339926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Despite the growing number of highly efficacious biologics and chemical drugs for ulcerative colitis (UC), steroid-free disease control is still difficult to achieve in subgroups of patients due to refractoriness, adverse events, primary or secondary failure. New treatments are therefore still required in order to optimize clinical management of patients with UC. AREAS COVERED The efficacy and safety of both currently available and newly developed small molecules have been summarized. The PubMed database and clinicaltrials.gov were considered in order to search for phase 2b and 3 trials on new chemical drugs for UC. The study drugs reviewed included Janus kinases (JAK) and sphingosine-1-phosphate receptor (S1Pr) inhibitors, α4 integrin antagonist, and micro-RNA-124 upregulators. EXPERT OPINION Rapidity of onset, low immunogenicity, and safety are the main characteristics of small molecules currently available or under evaluation for treatment patients with UC. Among the currently available chemical drugs, the selective JAK and the S1Pr inhibitors are characterized by a good safety profile combined with the ability to induce clinical remission in UC. A relatively low frequency of endoscopic improvement and healing currently appears associated with their use, being higher in UC patients treated with S1Pr inhibitor Etrasimod. Overall, additional new safe and effective drugs are still required in order to optimize disease control in a larger majority of UC patients.
Collapse
Affiliation(s)
- Benedetto Neri
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Roberto Mancone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Mariasofia Fiorillo
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Sara Concetta Schiavone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Elena De Cristofaro
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Stefano Migliozzi
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Livia Biancone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| |
Collapse
|
24
|
Soleiman-Meigooni S, Yarahmadi A, Kheirkhah AH, Afkhami H. Recent advances in different interactions between toll-like receptors and hepatitis B infection: a review. Front Immunol 2024; 15:1363996. [PMID: 38545106 PMCID: PMC10965641 DOI: 10.3389/fimmu.2024.1363996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis B virus (HBV) B infections remain a primary global health concern. The immunopathology of the infection, specifically the interactions between HBV and the host immune system, remains somewhat unknown. It has been discovered that innate immune reactions are vital in eliminating HBV. Toll-like receptors (TLRs) are an essential category of proteins that detect pathogen-associated molecular patterns (PAMPs). They begin pathways of intracellular signals to stimulate pro-inflammatory and anti-inflammatory cytokines, thus forming adaptive immune reactions. HBV TLRs include TLR2, TLR3, TLR4, TLR7 and TLR9. Each TLR has its particular molecule to recognize; various TLRs impact HBV and play distinct roles in the pathogenesis of the disease. TLR gene polymorphisms may have an advantageous or disadvantageous efficacy on HBV infection, and some single nucleotide polymorphisms (SNPs) can influence the progression or prognosis of infection. Additionally, it has been discovered that similar SNPs in TLR genes might have varied effects on distinct populations due to stress, diet, and external physical variables. In addition, activation of TLR-interceded signaling pathways could suppress HBV replication and increase HBV-particular T-cell and B-cell reactions. By identifying these associated polymorphisms, we can efficiently advance the immune efficacy of vaccines. Additionally, this will enhance our capability to forecast the danger of HBV infection or the threat of dependent liver disease development via several TLR SNPs, thus playing a role in the inhibition, monitoring, and even treatment guidance for HBV infection. This review will show TLR polymorphisms, their influence on TLR signaling, and their associations with HBV diseases.
Collapse
Affiliation(s)
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Amir-Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
25
|
Burke Schinkel SC, Barros PO, Berthoud T, Byrareddy SN, McGuinty M, Cameron DW, Angel JB. Comparative analysis of human gut- and blood-derived mononuclear cells: contrasts in function and phenotype. Front Immunol 2024; 15:1336480. [PMID: 38444848 PMCID: PMC10912472 DOI: 10.3389/fimmu.2024.1336480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Alterations in the gut immune system have been implicated in various diseases.The challenge of obtaining gut tissues from healthy individuals, commonly performed via surgical explants, has limited the number of studies describing the phenotype and function of gut-derived immune cells in health. Methods Here, by means of recto-sigmoid colon biopsies obtained during routine care (colon cancer screening in healthy adults), the phenotype and function of immune cells present in the gut were described and compared to those found in blood. Results The proportion of CD4+, CD8+, MAIT, γδ+ T, and NK cells phenotype, expression of integrins, and ability to produce cytokine in response to stimulation with PMA and ionomycin. T cells in the gut were found to predominantly have a memory phenotype as compared to T cells in blood where a naïve phenotype predominates. Recto-sigmoid mononuclear cells also had higher PD-1 and Ki67 expression. Furthermore, integrin expression and cytokine production varied by cell type and location in blood vs. gut. Discussion These findings demonstrate the differences in functionality of these cells when compared to their blood counterparts and validate previous studies on phenotype within gut-derived immune cells in humans (where cells have been obtained through surgical means). This study suggests that recto-sigmoid biopsies collected during colonoscopy can be a reliable yet more accessible sampling method for follow up of alterations of gut derived immune cells in clinical settings.
Collapse
Affiliation(s)
| | - Priscila O Barros
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tamara Berthoud
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michaeline McGuinty
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - D William Cameron
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan B Angel
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Apaza CJ, Días M, García Tejedor A, Boscá L, Laparra Llopis JM. Contribution of Nucleotide-Binding Oligomerization Domain-like (NOD) Receptors to the Immune and Metabolic Health. Biomedicines 2024; 12:341. [PMID: 38397943 PMCID: PMC10886542 DOI: 10.3390/biomedicines12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.
Collapse
Affiliation(s)
- César Jeri Apaza
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| | - Marisol Días
- Center of Biological Enginneering (CEB), Iberian Nantotechnology Laboratory (INL), University of Minho, 4715-330 Braga, Portugal;
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia (VIU), Pintor Sorolla 21, 46002 Valencia, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| |
Collapse
|
27
|
Anthofer M, Windisch M, Haller R, Ehmann S, Wrighton S, Miller M, Schernthanner L, Kufferath I, Schauer S, Jelušić B, Kienesberger S, Zechner EL, Posselt G, Vales-Gomez M, Reyburn HT, Gorkiewicz G. Immune evasion by proteolytic shedding of natural killer group 2, member D ligands in Helicobacter pylori infection. Front Immunol 2024; 15:1282680. [PMID: 38318189 PMCID: PMC10839011 DOI: 10.3389/fimmu.2024.1282680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection. Methods We analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines. Results In biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells. Conclusion H. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy.
Collapse
Affiliation(s)
- Margit Anthofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Windisch
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Rosa Haller
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sandra Ehmann
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Michael Miller
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Iris Kufferath
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Barbara Jelušić
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| | - Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, Madrid, Spain
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| |
Collapse
|
28
|
Ma L, Ge Y, Brown J, Choi SC, Elshikha A, Kanda N, Terrell M, Six N, Garcia A, Mohamadzadeh M, Silverman G, Morel L. Dietary tryptophan and genetic susceptibility expand gut microbiota that promote systemic autoimmune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575942. [PMID: 38293097 PMCID: PMC10827173 DOI: 10.1101/2024.01.16.575942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Tryptophan modulates disease activity and the composition of microbiota in the B6.Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Seung-Chul Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Ahmed Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Abigail Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | | | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
29
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
30
|
Di Petrillo A, Kumar A, Onali S, Favale A, Fantini MC. GPR120/FFAR4: A Potential New Therapeutic Target for Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:1981-1989. [PMID: 37542525 DOI: 10.1093/ibd/izad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 08/07/2023]
Abstract
Inflammatory bowel disease, whose major forms are Crohn's disease and ulcerative colitis, is characterized by chronic inflammation of the gut due to the loss of tolerance toward antigens normally contained in the gut lumen. G protein-coupled receptor (GPR) 120 has gained considerable attention as a potential therapeutic target for metabolic disorders due to its implication in the production of the incretin hormone glucagon-like peptide 1 and the secretion of cholecystokinin. Recent studies have also highlighted the role of GPR120 in regulating immune system activity and inflammation. GPR120, expressed by intestinal epithelial cells, proinflammatory macrophages, enteroendocrine L cells, and CD4+ T cells, suppresses proinflammatory and enhances anti-inflammatory cytokine production, suggesting that GPR120 might have a pivotal role in intestinal inflammation and represent a possible therapeutic target in inflammatory bowel disease. This narrative review aims at summarizing the role of GPR120 in the maintenance of intestinal homeostasis through the analysis of the most recent studies.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Sara Onali
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Agnese Favale
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | | |
Collapse
|
31
|
Khatiwada A, Yilmaz AS, Wolf BJ, Pietrzak M, Chung D. multi-GPA-Tree: Statistical approach for pleiotropy informed and functional annotation tree guided prioritization of GWAS results. PLoS Comput Biol 2023; 19:e1011686. [PMID: 38060592 PMCID: PMC10729974 DOI: 10.1371/journal.pcbi.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified over two hundred thousand genotype-trait associations. Yet some challenges remain. First, complex traits are often associated with many single nucleotide polymorphisms (SNPs), most with small or moderate effect sizes, making them difficult to detect. Second, many complex traits share a common genetic basis due to 'pleiotropy' and and though few methods consider it, leveraging pleiotropy can improve statistical power to detect genotype-trait associations with weaker effect sizes. Third, currently available statistical methods are limited in explaining the functional mechanisms through which genetic variants are associated with specific or multiple traits. We propose multi-GPA-Tree to address these challenges. The multi-GPA-Tree approach can identify risk SNPs associated with single as well as multiple traits while also identifying the combinations of functional annotations that can explain the mechanisms through which risk-associated SNPs are linked with the traits. First, we implemented simulation studies to evaluate the proposed multi-GPA-Tree method and compared its performance with existing statistical approaches. The results indicate that multi-GPA-Tree outperforms existing statistical approaches in detecting risk-associated SNPs for multiple traits. Second, we applied multi-GPA-Tree to a systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), and to a Crohn's disease (CD) and ulcertive colitis (UC) GWAS, and functional annotation data including GenoSkyline and GenoSkylinePlus. Our results demonstrate that multi-GPA-Tree can be a powerful tool that improves association mapping while facilitating understanding of the underlying genetic architecture of complex traits and potential mechanisms linking risk-associated SNPs with complex traits.
Collapse
Affiliation(s)
- Aastha Khatiwada
- Department of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, United States of America
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Bethany J. Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
32
|
Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B, Baig Z. Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev 2023; 74:56-75. [PMID: 37743134 DOI: 10.1016/j.cytogfr.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Innate lymphoid cells (ILCs), a growing class of immune cells, imitate the appearance and abilities of T cells. However, unlike T cells, ILCs lack acquired antigen receptors, and they also do not undergo clonal selection or proliferation in response to antigenic stimuli. Despite lacking antigen-specific receptors, ILCs respond quickly to signals from infected or damaged tissues and generate an array of cytokines that regulate the development of adaptive immune response. ILCs can be categorized into four types based on their signature cytokines and transcription factors: ILC1, ILC2, ILC3 (including Lymphoid Tissue inducer- LTi cells), and regulatory ILCs (ILCregs). ILCs play key functions in controlling and resolving inflammation, and variations in their proportion are linked to various pathological diseases including cancer, gastrointestinal, pulmonary, and skin diseases. We highlight current advancements in the biology and classification of ILCs in this review. Additionally, we provide a thorough overview of their contributions to several inflammatory bone-related pathologies, including osteoporosis, rheumatoid arthritis, periodontitis, and ankylosing spondylitis. Understanding the multiple functions of ILCs in both physiological and pathological conditions will further mobilize future research towards targeting ILCs for therapeutic purposes.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences(AIIMS), New Delhi-110029, India
| | - Zainab Baig
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
33
|
Anmella G, Amoretti S, Safont G, Meseguer A, Vieta E, Pons-Cabrera MT, Alfonso M, Hernández C, Sanchez-Autet M, Pérez-Baldellou F, González-Blanco L, García-Portilla MP, Bernardo M, Arranz B. Intestinal permeability and low-grade chronic inflammation in schizophrenia: A multicentre study on biomarkers. Rationale, objectives, protocol and preliminary results. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023:S2950-2853(23)00040-6. [PMID: 38591828 DOI: 10.1016/j.sjpmh.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND Altered intestinal permeability and low-grade chronic inflammation disrupt the integrity of the blood-brain barrier (microbiota-gut-brain axis), probably playing a role in the pathophysiology of schizophrenia-spectrum disorders. However, studies assessing the microbiota-gut-brain axis are inconsistent. This article describes the rationale, objectives, protocol, and presents descriptive results for a new project. METHODS The sample of this study came from an observational, cross-sectional and multisite study including four centers in Spain (PI17/00246) recruiting adult patients with DSM-5 schizophrenia-spectrum disorders at any stage of the disease. The aims of the project are to assess the interrelation between intestinal permeability and low-grade chronic inflammation in schizophrenia-spectrum disorders and the role of peripheral biomarkers, diet, exercise, metabolic syndrome, disease severity and functioning as well as cognition. Assessments included the following variables: (1) anthropometric, (2) intestinal permeability, diet, and physical exercise, (3) clinical and functional, (4) neuropsychological and cognitive reserve, and (5) peripheral biomarkers from blood. RESULTS A total of 646 patients were enrolled (257, 39.7% female). Mean age was 43.2±13.6 years, illness duration 15.1±11.5 years. 55.8% consumed tobacco. Positive PANSS score was 13.68±6.55, and 20.38±8.69 in the negative symptoms. CGI was 4.16±2.22 and GAF was 60.00±14.84. CONCLUSION The results obtained by this project are expected to contribute toward the understanding of the physiopathology of schizophrenia-spectrum disorders. This will likely aid to personalize treatments in real-world clinical practice, potentially including variables related to intestinal permeability and inflammation.
Collapse
Affiliation(s)
- Gerard Anmella
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain
| | - Silvia Amoretti
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Gemma Safont
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Mutua de Terrassa, Universitat de Barcelona, Barcelona, Spain
| | - Ana Meseguer
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Maria Teresa Pons-Cabrera
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain
| | - Miqueu Alfonso
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Carla Hernández
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Monica Sanchez-Autet
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Ferran Pérez-Baldellou
- Department of Psychiatry, Hospital Universitari Mutua de Terrassa, Universitat de Barcelona, Barcelona, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, University of Oviedo, Servicio de Salud Mental del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), INEUROPA, Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Oviedo, Spain
| | - Maria Paz García-Portilla
- Department of Psychiatry, University of Oviedo, Servicio de Salud Mental del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), INEUROPA, Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Oviedo, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain.
| | - Belén Arranz
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
34
|
Lim SH, Ju HJ, Han JH, Lee JH, Lee WS, Bae JM, Lee S. Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19. JAMA Netw Open 2023; 6:e2336120. [PMID: 37801317 PMCID: PMC10559181 DOI: 10.1001/jamanetworkopen.2023.36120] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Importance Multiple cases of autoimmune and autoinflammatory diseases after COVID-19 have been reported. However, their incidences and risks have rarely been quantified. Objective To investigate the incidences and risks of autoimmune and autoinflammatory connective tissue disorders after COVID-19. Design, Setting, and Participants This was a retrospective population-based study conducted between October 8, 2020, and December 31, 2021, that used nationwide data from the Korea Disease Control and Prevention Agency COVID-19 National Health Insurance Service cohort and included individuals who received a diagnosis of COVID-19 via polymerase chain reaction testing and a control group with no evidence of COVID-19 identified from National Health Insurance Service of Korea cohort. Data analysis was conducted from September 2022 to August 2023. Exposures Receipt of diagnosis of COVID-19. Main Outcomes and Measures The primary outcomes were the incidence and risk of autoimmune and autoinflammatory connective tissue disorders following COVID-19. A total of 32 covariates, including demographics, socioeconomic statuses, lifestyle factors, and comorbidity profiles, were balanced through inverse probability weighting. The incidences and risks of autoimmune and autoinflammatory connective tissue disorders were compared between the groups using multivariable Cox proportional hazard analyses. Results A total of 354 527 individuals with COVID-19 (mean [SD] age, 52.24 [15.55] years; 179 041 women [50.50%]) and 6 134 940 controls (mean [SD] age, 52.05 [15.63] years; 3 074 573 women [50.12%]) were included. The risks of alopecia areata (adjusted hazard ratio [aHR], 1.12; 95% CI, 1.05-1.19), alopecia totalis (aHR, 1.74; 95% CI, 1.39-2.17), antineutrophil cytoplasmic antibody-associated vasculitis (aHR, 2.76; 95% CI, 1.64-4.65), Crohn disease (aHR, 1.68; 95% CI, 1.31-2.15), and sarcoidosis (aHR, 1.59; 95% CI, 1.00-2.52) were higher in the COVID-19 group. The risks of alopecia totalis, psoriasis, vitiligo, vasculitis, Crohn disease, ulcerative colitis, rheumatoid arthritis, adult-onset Still disease, Sjögren syndrome, ankylosing spondylitis, and sarcoidosis were associated with the severity of COVID-19. Conclusions and Relevance In this retrospective cohort study, COVID-19 was associated with a substantial risk for autoimmune and autoinflammatory connective tissue disorders, indicating that long-term management of patients with COVID-19 should include evaluation for such disorders.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hyun Jeong Ju
- Department of Dermatology, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Ju Hee Han
- Department of Dermatology, Seoul St Mary’s Hospital College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hae Lee
- Department of Dermatology, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Won-Soo Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jung Min Bae
- Department of Dermatology, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
35
|
Alhasan MM, Hölsken O, Duerr C, Helfrich S, Branzk N, Philipp A, Leitz D, Duerr J, Almousa Y, Barrientos G, Mohn WW, Gamradt S, Conrad ML. Antibiotic use during pregnancy is linked to offspring gut microbial dysbiosis, barrier disruption, and altered immunity along the gut-lung axis. Eur J Immunol 2023; 53:e2350394. [PMID: 37431194 DOI: 10.1002/eji.202350394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.
Collapse
Affiliation(s)
- Moumen M Alhasan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Oliver Hölsken
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
- German Rheuma Research Center Berlin (DRFZ), Mucosal and Developmental Immunology, Berlin, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Claudia Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora Branzk
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alina Philipp
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dominik Leitz
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yahia Almousa
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Sandborn WJ, Danese S, Leszczyszyn J, Romatowski J, Altintas E, Peeva E, Hassan-Zahraee M, Vincent MS, Reddy PS, Banfield C, Salganik M, Banerjee A, Gale JD, Hung KE. Oral Ritlecitinib and Brepocitinib for Moderate-to-Severe Ulcerative Colitis: Results From a Randomized, Phase 2b Study. Clin Gastroenterol Hepatol 2023; 21:2616-2628.e7. [PMID: 36623678 DOI: 10.1016/j.cgh.2022.12.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The efficacy and safety of ritlecitinib (oral JAK3/TEC family kinase inhibitor) and brepocitinib (oral TYK2/JAK1 inhibitor) as induction therapy were assessed in patients with active, moderate-to-severe ulcerative colitis. METHODS This phase 2b, parallel-arm, double-blind umbrella study randomized patients with moderate-to-severe ulcerative colitis to receive 8-week induction therapy with ritlecitinib (20, 70, 200 mg), brepocitinib (10, 30, 60 mg), or placebo once daily. The primary endpoint was total Mayo Score (TMS) at week 8. RESULTS Of 319 randomized patients, 317 received ritlecitinib (n = 150), brepocitinib (n = 142), or placebo (n = 25). The placebo-adjusted mean TMSs (90% confidence interval) at week 8 were -2.0 (-3.2 to -0.9), -3.9 (-5.0 to -2.7), and -4.6 (-5.8 to -3.5) for ritlecitinib 20, 70, and 200 mg, respectively (P = .003, P < .001, P < .001), and -1.8 (-2.9 to -0.7), -2.3 (-3.4 to -1.1), and -3.2 (-4.3 to -2.1) for brepocitinib 10, 30, and 60 mg, respectively (P = .009, P = .001, P < .001). Estimates (90% confidence interval) for placebo-adjusted proportions of patients with modified clinical remission at week 8 were 13.7% (0.5%-24.2%), 32.7% (20.2%-45.3%), and 36.0% (23.6%-48.6%) for ritlecitinib 20, 70, and 200 mg, respectively, and 14.6% (1.9%-25.7%), 25.5% (11.0%-38.1%), and 25.5% (11.0%-38.1%) for brepocitinib 10, 30, and 60 mg, respectively. Adverse events were mostly mild, and there were no serious cases of herpes zoster infection. Infections were observed with brepocitinib (16.9% [12.5%-23.7%]), ritlecitinib (8.7% [5.2%-13.4%]), and placebo (4.0% [0.2%-17.6%]). One death due to myocardial infarction (ritlecitinib) and 1 thromboembolic event (brepocitinib) occurred; both were considered unrelated to study drug. CONCLUSIONS Ritlecitinib and brepocitinib induction therapies were more effective than placebo for the treatment of moderate-to-severe active ulcerative colitis, with an acceptable short-term safety profile. CLINICALTRIALS gov number: NCT02958865.
Collapse
Affiliation(s)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | | | - Jacek Romatowski
- Provincial Complex Hospital, Gastroenterology, Bialystok, Poland
| | | | - Elena Peeva
- Pfizer Global Research and Development, Cambridge, Massachusetts
| | | | | | | | | | - Mikhail Salganik
- Pfizer Inc, Early Clinical Development, Cambridge, Massachusetts
| | | | - Jeremy D Gale
- Pfizer Inc, Early Clinical Development, Cambridge, Massachusetts
| | - Kenneth E Hung
- Pfizer Inc, Early Clinical Development, Cambridge, Massachusetts
| |
Collapse
|
37
|
Ma L, Terrell M, Brown J, Castellanos Garcia A, Elshikha A, Morel L. TLR7/TLR8 activation and susceptibility genes synergize to breach gut barrier in a mouse model of lupus. Front Immunol 2023; 14:1187145. [PMID: 37483626 PMCID: PMC10358848 DOI: 10.3389/fimmu.2023.1187145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Mounting evidence suggests that increased gut permeability, or leaky gut, and the resulting translocation of pathobionts or their metabolites contributes to the pathogenesis of Systemic Lupus Erythematosus. However, the mechanisms underlying the induction of gut leakage remain unclear. In this study, we examined the effect of a treatment with a TLR7/8 agonist in the B6.Sle1.Sle2.Sle3 triple congenic (TC) mouse, a spontaneous mouse model of lupus without gut leakage. Materials and methods Lupus-prone mice (TC), TC.Rag1-/- mice that lack B and T cells, and congenic B6 healthy controls were treated with R848. Gut barrier integrity was assessed by measuring FITC-dextran in the serum following oral gavage. Claudin-1 and PECAM1 expression as well as the extent of CD45+ immune cells, B220+ B cells, CD3+ T cells and CD11b+ myeloid cells were measured in the ileum by immunofluorescence. NKp46+ cells were measured in the ileum and colon by immunofluorescence. Immune cells in the ileum were also analyzed by flow cytometry. Results R848 decreased gut barrier integrity in TC but not in congenic control B6 mice. Immunofluorescence staining of the ileum showed a reduced expression of the tight junction protein Claudin-1, endothelial cell tight junction PECAM1, as well as an increased infiltration of immune cells, including B cells and CD11b+ cells, in R848-treated TC as compared to untreated control mice. However, NKp46+ cells which play critical role in maintaining gut barrier integrity, had a lower frequency in treated TC mice. Flow cytometry showed an increased frequency of plasma cells, dendritic cells and macrophages along with a decreased frequency of NK cells in R848 treated TC mice lamina propria. In addition, we showed that the R848 treatment did not induce gut leakage in TC.Rag1-/- mice that lack mature T and B cells. Conclusions These results demonstrate that TLR7/8 activation induces a leaky gut in lupus-prone mice, which is mediated by adaptive immune responses. TLR7/8 activation is however not sufficient to breach gut barrier integrity in non-autoimmune mice.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Abigail Castellanos Garcia
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Ahmed Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
38
|
Thoda C, Touraki M. Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. APPLIED SCIENCES 2023; 13:4726. [DOI: 10.3390/app13084726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune system modulation is an intriguing part of scientific research. It is well established that the immune system plays a crucial role in orchestrating cellular and molecular key mediators, thus establishing a powerful defense barrier against infectious pathogens. Gut microbiota represent a complex community of approximately a hundred trillion microorganisms that live in the mammalian gastrointestinal (GI) tract, contributing to the maintenance of gut homeostasis via regulation of the innate and adaptive immune responses. However, impairment in the crosstalk between intestinal immunity and gut microbiota may reflect on detrimental health issues. In this context, many studies have indicated that probiotics and their bioactive compounds, such as bacteriocins and short chain fatty acids (SCFAs), display distinct immunomodulatory properties through which they suppress inflammation and enhance the restoration of microbial diversity in pathological states. This review highlights the fundamental features of probiotics, bacteriocins, and SCFAs, which make them ideal therapeutic agents for the amelioration of inflammatory and autoimmune diseases. It also describes their underlying mechanisms on gut microbiota modulation and emphasizes how they influence the function of immune cells involved in regulating gut homeostasis. Finally, it discusses the future perspectives and challenges of their administration to individuals.
Collapse
Affiliation(s)
- Christina Thoda
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
39
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Zhang K, Zhu L, Zhong Y, Xu L, Lang C, Chen J, Yan F, Li J, Qiu J, Chen Y, Sun D, Wang G, Qu K, Qin X, Wu W. Prodrug Integrated Envelope on Probiotics to Enhance Target Therapy for Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205422. [PMID: 36507607 PMCID: PMC9896077 DOI: 10.1002/advs.202205422] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Indexed: 05/25/2023]
Abstract
Ulcerative colitis (UC), affecting millions of patients worldwide, is associated with disorders of the gut microbiota. Probiotics-based therapy positively regulating the community structure of gut microbiota is regarded as an efficient intervention for UC. However, oral probiotics delivery is restricted by limited bioactivity, short retention time, complex pathological condition, and single therapeutic efficacy. Here, a bioengineered probiotic decorated with a multifunctional prodrug coating is constructed to ameliorate the aforementioned shortcomings. The results of UC mice induced by dextran sulfate sodium demonstrate that the intrinsic features of the fabricated coating integrate gut microbes protection, colon-targeted drug release, prolonged drug retention, and inflammation regulation. In parallel, the probiotics Lactobacillus rhamnosus GG (LGG) could regulate the composition of the gut microbiota and improve epithelial barrier function, thereby synergistically ameliorating UC. These results provide ample shreds of evidence of the therapeutic effect on UC, therefore, demonstrate a great promise as the potential therapeutic strategy for UC treatment.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Lixin Xu
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Chunhui Lang
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Jian Chen
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Fei Yan
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Jiawei Li
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang ProvinceWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jin Feng LaboratoryChongqing401329P. R. China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jin Feng LaboratoryChongqing401329P. R. China
| |
Collapse
|
41
|
Li T, Han L, Ma S, Lin W, Ba X, Yan J, Huang Y, Tu S, Qin K. Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Front Mol Biosci 2023; 10:1140325. [PMID: 36950522 PMCID: PMC10025541 DOI: 10.3389/fmolb.2023.1140325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related death. In recent years, the relationship between gut microbiota and CRC has attracted increasing attention from researchers. Studies reported that changes in the composition of gut microbiota, such as increase in the number of Fusobacterium nucleatum and Helicobacter hepaticus, impair the immune surveillance by affecting the intestinal mucosal immunity and increase the risk of tumor initiation and progression. The tumor microenvironment is the soil for tumor survival. Close contacts between gut microbiota and the tumor microenvironment may directly affect the progression of tumors and efficacy of antitumor drugs, thus influencing the prognosis of patients with CRC. Recently, many studies have shown that traditional Chinese medicine can safely and effectively improve the efficacy of antitumor drugs, potentially through remodeling of the tumor microenvironment by regulated gut microbiota. This article describes the effect of gut microbiota on the tumor microenvironment and possible mechanisms concerning the initiation and progression of CRC, and summarizes the potential role of traditional Chinese medicine.
Collapse
Affiliation(s)
- Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Ma
- Department of Nosocomial Infection Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kai Qin,
| |
Collapse
|
42
|
Bahadorian D, Mollazadeh S, Mirazi H, Faraj TA, Kheder RK, Esmaeili SA. Regulatory NK cells in autoimmune disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:609-616. [PMID: 37275764 PMCID: PMC10237161 DOI: 10.22038/ijbms.2023.68653.14969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 06/07/2023]
Abstract
NK cells are defined as the major components of the immunological network which exerts defense against tumors and viral infections as well as regulation of innate and adaptive immunity, shaped through interaction with other cells like T cells. According to the surface markers, NK cells can be divided into CD56dim NK and CD56bright NK subsets. CD56bright NK cells usually are known as regulatory NK cells. Once the immune system loses its self-tolerance, autoimmune diseases develop. NK cells and their subsets can be altered during autoimmune diseases, indicative of their prominent regulatory roles and even pathological and protective functions in autoimmune disorders. In this regard, activation of CD56bright NK cells can suppress activated autologous CD4+ T cells and subsequently prevent the initiation of autoimmunity. In this review article, we summarize the roles of regulatory NK cells in autoimmune disease occurrence which needs more research to uncover their exact related mechanism. It seems that targeting NK cells can be a promising therapeutic platform against autoimmune diseases.
Collapse
Affiliation(s)
- Davood Bahadorian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hosein Mirazi
- Department of Biomedical Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Muñoz L, Caparrós E, Albillos A, Francés R. The shaping of gut immunity in cirrhosis. Front Immunol 2023; 14:1139554. [PMID: 37122743 PMCID: PMC10141304 DOI: 10.3389/fimmu.2023.1139554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cirrhosis is the common end-stage of chronic liver diseases of different etiology. The altered bile acids metabolism in the cirrhotic liver and the increase in the blood-brain barrier permeability, along with the progressive dysbiosis of intestinal microbiota, contribute to gut immunity changes, from compromised antimicrobial host defense to pro-inflammatory adaptive responses. In turn, these changes elicit a disruption in the epithelial and gut vascular barriers, promoting the increased access of potential pathogenic microbial antigens to portal circulation, further aggravating liver disease. After summarizing the key aspects of gut immunity during homeostasis, this review is intended to update the contribution of liver and brain metabolites in shaping the intestinal immune status and, in turn, to understand how the loss of homeostasis in the gut-associated lymphoid tissue, as present in cirrhosis, cooperates in the advanced chronic liver disease progression. Finally, several therapeutic approaches targeting the intestinal homeostasis in cirrhosis are discussed.
Collapse
Affiliation(s)
- Leticia Muñoz
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Caparrós
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Agustín Albillos
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| | - Rubén Francés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnologiía Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| |
Collapse
|
44
|
Liu Y, Zhang J, Feng L. Disrupted metabolic signatures in amniotic fluid associated with increased risk of intestinal inflammation in cesarean section offspring. Front Immunol 2023; 14:1067602. [PMID: 36761749 PMCID: PMC9903135 DOI: 10.3389/fimmu.2023.1067602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Children born by cesarean section (CS) are at a greater risk of inflammatory bowel disease (IBD). However, the mechanisms underlying the association are not yet well understood. Herein, we investigated the impact of CS delivery on colonic inflammation and mechanisms underlying these effects in offspring. Methods CS mice model and dextran sulfate sodium (DSS)-induced colitis model were constructed and used to analyze the impact of CS on the development of colitis. Colonic tight junction markers and epithelium differentiation markers were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Levels of zonulin in serum were detected by enzyme-linked immunosorbent assay (ELISA). Immune cells in colon were analyzed by flow cytometry. Metabolic profiling between human vaginal delivery (VD) and CS AF were analyzed by using mass spectrometry. Transcriptome changes between VD AF- and CS AF-treated human intestine epithelial cells were analyzed by RNA-sequencing. A multi-omics approach that integrated transcriptomics with metabolomics to identify the pathways underlying colonic inflammation associated with delivery modes. Then, the identified pathways were confirmed by immunoblotting and ELISA. Results Mice pups delivered by CS exhibited a defective intestinal homeostasis manifested by decreased expression of tight junction markers of ZO-1 and Occludin in the colons, increased levels of zonulin in serum and dysregulated expression of intestinal epithelium differentiation markers of Lysozyme, Mucin2, and Dipeptidyl peptidase-4. CS pups were more susceptible to DSS-induced colitis compared to VD pups. The proportion of macrophage, dendritic cells (DCs), and natural killer cells (NKs) in the colons were altered in an age-dependent manner compared with pups born naturally. The metabolites in AF differed between CS and VD cases, and the CS AF-induced differentially expressed genes (DEGs) were significantly enriched in pathways underlying IBD. Signal transducer and activator of transcription 3 (STAT3) signaling was downregulated in NCM460 intestinal epithelial cells by CS AF compared to VD AF and in colon of CS pups compared to VD pups. Deficiency in metabolites like vitamin D2 glucosiduronate in CS AF may attribute to the risk of inflammatory intestine through STAT3 signaling. Conclusion Our study provides a novel insight into the underlying mechanisms of CS-associated intestinal inflammation and potential prevention strategies.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
45
|
Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, Yousefi B, Khazaie S. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application. Biochimie 2022; 209:20-36. [PMID: 36535545 DOI: 10.1016/j.biochi.2022.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is a chronic inflammatory disease and has periods of recurrence and remission. Improper immune responses to gut flora bacteria, along with genetic susceptibility, appear to be involved in causing this complex disease. It seems dysbiosis and oxidative stress may also be involved in IBD pathogenesis. A significant number of clinical studies have shown an interesting association between sleep disturbances and IBD. Studies in animal models have also shown that sleep deprivation has a significant effect on the pathogenesis of IBD and can aggravate inflammation. These interesting findings have drawn attention to melatonin, a sleep-related hormone. Melatonin is mainly produced by the pineal gland, but many tissues in the body, including the intestines, can produce it. Melatonin can have an interesting effect on the pathogenesis of IBD. Melatonin can enhance the intestinal mucosal barrier, alter the composition of intestinal bacteria in favor of bacteria with anti-inflammatory properties, regulate the immune response, alleviate inflammation and attenuate oxidative stress. It seems that, melatonin supplementation is effective in relieving inflammation and healing intestinal ulcers in IBD animal models. Some clinical studies have also shown that melatonin supplementation as an adjuvant therapy may be helpful in reducing disease activity in IBD patients. In this review article, in addition to reviewing the effects of sleep disturbances and melatonin on key mechanisms involved in the pathogenesis of IBD, we will review the findings of clinical studies regarding the effects of melatonin supplementation on IBD treatment.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sepideh Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
46
|
Wu C, Liang JA, Brenchley JM, Shin T, Fan X, Mortlock RD, Abraham D, Allan DS, Thomas ML, Hong S, Dunbar CE. Barcode clonal tracking of tissue-resident immune cells in rhesus macaque highlights distinct clonal distribution pattern of tissue NK cells. Front Immunol 2022; 13:994498. [PMID: 36605190 PMCID: PMC9808525 DOI: 10.3389/fimmu.2022.994498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jialiu A. Liang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diana M. Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David S.J. Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marvin L. Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
47
|
Menees KB, Lee JK. New Insights and Implications of Natural Killer Cells in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S83-S92. [PMID: 35570499 PMCID: PMC9535577 DOI: 10.3233/jpd-223212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of dopaminergic neurons in the substantia nigra and the abnormal aggregation and accumulation of the alpha-synuclein (α-syn) protein into Lewy bodies. It is established that there is an association between inflammation and PD; however, the time course of the inflammatory process as well as the immune cells involved are still debated. Natural killer (NK) cells are innate lymphocytes with numerous functions including targeting and killing infected or malignant cells, antimicrobial defense, and resolving inflammation. NK cell subsets differ in their effector function capacities which are modulated by activating and inhibitory receptors expressed at the cell surface. Alterations in NK cell numbers and receptor expression have been reported in PD patients. Recently, NK cell numbers and frequency were shown to be altered in the periphery and in the central nervous system in a preclinical mouse model of PD. Moreover, NK cells have recently been shown to internalize and degrade α-syn aggregates and systemic NK cell depletion exacerbated synuclein pathology in a preclinical mouse model of PD, indicating a potential protective role of NK cells. Here, we review the inflammatory process in PD with a particular focus on alterations in NK cell numbers, phenotypes, and functions.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
48
|
Pu D, Liu L, Wang N, Wang D, Zhang Z, Feng B. Case report: Single-cell mapping of peripheral blood mononuclear cells from a patient with both Crohn’s disease and isolated congenital asplenia. Front Immunol 2022; 13:959281. [PMID: 36091029 PMCID: PMC9459022 DOI: 10.3389/fimmu.2022.959281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Crohn’s disease (CD), as one of the principal form of inflammatory bowel disease (IBD), is characterized by the chronic and recurring inflammatory conditions in the intestine resulting from the over-activation of intestinal immunity. Hyposplenism is strongly associated with CD, while the effect of human spleen on the differentiation and development of immune cell subsets in CD patients remains unclear. Isolated congenital asplenia (ICA) is an extremely rare condition characterized by the absence of a spleen at birth without any other developmental defects. Here, we describe the first case of a patient with both ICA and CD, and follow the progression of CD from remission to active stage. Using cytometry by time of flight (CyTOF) analysis, we draw the first single-cell mapping of peripheral blood mononuclear cells (PBMC) from this unique patient, tracing back to the innate or adaptive immune cell subsets and cell surface markers affected by the spleen. Based on our analysis, it is speculated that the spleen contributes to maintaining immune homeostasis, alleviating intestinal inflammation and improving prognosis by influencing the differentiation and development of peripheral immune cell subsets and the expression of cell surface markers in patients with CD.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| |
Collapse
|
49
|
Gao GF, Liu D, Zhan X, Li B. Analysis of KIR gene variants in The Cancer Genome Atlas and UK Biobank using KIRCLE. BMC Biol 2022; 20:191. [PMID: 36002830 PMCID: PMC9400285 DOI: 10.1186/s12915-022-01392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells represent a critical component of the innate immune system's response against cancer and viral infections, among other diseases. To distinguish healthy host cells from infected or tumor cells, killer immunoglobulin receptors (KIR) on NK cells bind and recognize Human Leukocyte Antigen (HLA) complexes on their target cells. However, NK cells exhibit great diversity in their mechanism of activation, and the outcomes of their activation are not yet understood fully. Just like the HLAs they bind, KIR receptors exhibit high allelic diversity in the human population. Here we provide a method to identify KIR allele variants from whole exome sequencing data and uncover novel associations between these variants and various molecular and clinical correlates. RESULTS In order to better understand KIRs, we have developed KIRCLE, a novel method for genotyping individual KIR genes from whole exome sequencing data, and used it to analyze approximately sixty-thousand patient samples in The Cancer Genome Atlas (TCGA) and UK Biobank. We were able to assess population frequencies for different KIR alleles and demonstrate that, similar to HLA alleles, individuals' KIR alleles correlate strongly with their ethnicities. In addition, we observed associations between different KIR alleles and HLA alleles, including HLA-B*53 with KIR3DL2*013 (Fisher's exact FDR = 7.64e-51). Finally, we showcased statistically significant associations between KIR alleles and various clinical correlates, including peptic ulcer disease (Fisher's exact FDR = 0.0429) and age of onset of atopy (Mann-Whitney U FDR = 0.0751). CONCLUSIONS We show that KIRCLE is able to infer KIR variants accurately and consistently, and we demonstrate its utility using data from approximately sixty-thousand individuals from TCGA and UK Biobank to discover novel molecular and clinical correlations with KIR germline variants. Peptic ulcer disease and atopy are just two diseases in which NK cells may play a role beyond their "classical" realm of anti-tumor and anti-viral responses. This tool may be used both as a benchmark for future KIR-variant-inference algorithms, and to better understand the immunogenomics of and disease processes involving KIRs.
Collapse
Affiliation(s)
- Galen F Gao
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dajiang Liu
- Institute for Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Brigleb PH, Kouame E, Fiske KL, Taylor GM, Urbanek K, Medina Sanchez L, Hinterleitner R, Jabri B, Dermody TS. NK cells contribute to reovirus-induced IFN responses and loss of tolerance to dietary antigen. JCI Insight 2022; 7:159823. [PMID: 35993365 PMCID: PMC9462493 DOI: 10.1172/jci.insight.159823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Celiac disease is an immune-mediated intestinal disorder that results from loss of oral tolerance (LOT) to dietary gluten. Reovirus elicits inflammatory Th1 cells and suppresses Treg responses to dietary antigen in a strain-dependent manner. Strain type 1 Lang (T1L) breaks oral tolerance, while strain type 3 Dearing reassortant virus (T3D-RV) does not. We discovered that intestinal infection by T1L in mice leads to the recruitment and activation of NK cells in mesenteric lymph nodes (MLNs) in a type I IFN-dependent manner. Once activated following infection, NK cells produce type II IFN and contribute to IFN-stimulated gene expression in the MLNs, which in turn induces inflammatory DC and T cell responses. Immune depletion of NK cells impairs T1L-induced LOT to newly introduced food antigen. These studies indicate that NK cells modulate the response to dietary antigen in the presence of a viral infection.
Collapse
Affiliation(s)
- Pamela H. Brigleb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elaine Kouame
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Kay L. Fiske
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Gwen M. Taylor
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Kelly Urbanek
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Luzmariel Medina Sanchez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA.,Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Terence S. Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| |
Collapse
|