1
|
Van Roy Z, Kielian T. Immune-based strategies for the treatment of biofilm infections. Biofilm 2025; 9:100264. [PMID: 40093652 PMCID: PMC11909721 DOI: 10.1016/j.bioflm.2025.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Biofilms are bacterial communities surrounded by a polymeric matrix that can form on implanted materials and biotic surfaces, resulting in chronic infection that is recalcitrant to immune- and antibiotic-mediated clearance. Therefore, biofilm infections present a substantial clinical challenge, as treatment often involves additional surgical interventions to remove the biofilm nidus, prolonged antimicrobial therapy to clear residual bacteria, and considerable risk of treatment failure or infection recurrence. These factors, combined with progressive increases in antimicrobial resistance, highlight the need for alternative therapeutic strategies to circumvent undue morbidity, mortality, and resource strain on the healthcare system resulting from biofilm infections. One promising option is reprogramming dysfunctional immune responses elicited by biofilm. Here, we review the literature describing immune responses to biofilm infection with a focus on targets or strategies ripe for clinical translation. This represents a complex and dynamic challenge, with context-dependent host-pathogen interactions that differ across infection models, microenvironments, and individuals. Nevertheless, consistencies among these variables exist, which could facilitate the development of immune-based strategies for the future treatment of biofilm infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
2
|
Gong S, Zhang Y, Cong CQ, Wang GL, Jiang L, Yuan HJ, Tan JH, Luo MJ. Cumulus cells and the TNF-alpha signaling facilitate aging of ovine oocytes. Theriogenology 2025; 235:210-220. [PMID: 39855038 DOI: 10.1016/j.theriogenology.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Post-maturation oocyte aging (PMOA) is known to significantly impair the developmental potential of oocytes; however, comprehensive studies on ovine PMOA remain limited. In mice, cumulus cells (CCs) accelerate oocyte aging by releasing cytokines, but the roles of CCs and cytokines in PMOA of domestic animals are poorly understood. This study aimed to elucidate the involvement of CCs and tumor necrosis factor (TNF)-α in the PMOA of ovine oocytes. Our findings reveal that PMOA significantly reduced blastocyst rates and the expression of development-promoting genes, while increasing oocyte degeneration and activation rates, along with expression of development-inhibiting genes, compared to newly matured oocytes. These detrimental effects were more pronounced in oocytes aged as cumulus-oocyte complexes than as cumulus-denuded oocytes. Additionally, PMOA led to increased apoptotic rates, TNF-α production, and TNF receptor 1 (TNFR1) expression in CCs, coupled with a significant reduction in the expression of anti-apoptotic genes. Mature oocytes expressed TNFR1, with levels decreasing significantly during PMOA. Importantly, the addition of the TNF-α antagonist Etanercept to the aging medium markedly improved parthenogenetic embryo development and the expression of competence-related genes, while mitigating CC apoptosis during PMOA of COCs. In conclusion, PMOA compromises developmental potential while heightening oocyte degeneration and activation sensitivity in ovine oocytes. Cumulus cells exacerbate PMOA through increased TNF-α signaling activity, highlighting the potential of TNF-α antagonists as therapeutic agents to counteract the deleterious effects of PMOA.
Collapse
Affiliation(s)
- Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Yan Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Chao-Qun Cong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Guo-Liang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Lin Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China.
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China.
| |
Collapse
|
3
|
Kgoadi K, Bajpai P, Ibegbu CC, Dkhar HK, Enriquez AB, Dawa S, Cribbs SK, Rengarajan J. Alveolar macrophages from persons with HIV mount impaired TNF signaling networks to M. tuberculosis infection. Nat Commun 2025; 16:2397. [PMID: 40064940 PMCID: PMC11894076 DOI: 10.1038/s41467-025-57668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
People living with HIV (PLWH) have an increased risk for developing tuberculosis after M. tuberculosis infection, despite anti-retroviral therapy (ART). To delineate the underlying mechanisms, we conducted single cell transcriptomics on bronchoalveolar lavage cells from PLWH on ART and HIV uninfected healthy controls infected with M. tuberculosis ex vivo. We identify an M1-like proinflammatory alveolar macrophage subset that sequentially acquires TNF signaling capacity in controls but not in PLWH. Cell-cell communication analyses reveal interactions between M1-like macrophages and effector memory T cells within TNF superfamily, chemokine, and costimulatory networks in the airways of controls. These interaction networks were lacking in PLWH infected with M. tuberculosis, where anti-inflammatory M2-like alveolar macrophages and T regulatory cells dominated along with dysregulated T cell signatures. Our data support a model in which impaired TNF-TNFR signaling, M2-like alveolar macrophages and aberrant macrophage-T cell crosstalk, lead to ineffective immunity to M. tuberculosis in PLWH on ART.
Collapse
Affiliation(s)
- Khanyisile Kgoadi
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Prashant Bajpai
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Chris C Ibegbu
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | | | - Ana Beatriz Enriquez
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Stanzin Dawa
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Sushma K Cribbs
- Division of Pulmonary, Allergy, Critical Care & Sleep, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Moriwaki C, Takahashi S, Thi Vu N, Miyake Y, Kataoka T. 1'-Acetoxychavicol Acetate Selectively Downregulates Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) Expression. Molecules 2025; 30:1243. [PMID: 40142019 PMCID: PMC11945442 DOI: 10.3390/molecules30061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
1'-Acetoxychavicol acetate (ACA) is a natural compound derived from rhizomes of the Zingiberaceae family that suppresses the nuclear factor κB (NF-κB) signaling pathway; however, the underlying mechanisms remain unclear. Therefore, the present study investigated the molecular mechanisms by which ACA inhibits the NF-κB signaling pathway in human lung adenocarcinoma A549 cells. The results obtained showed ACA decreased tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression in A549 cells. It also inhibited TNF-α-induced ICAM-1 mRNA expression and ICAM-1 promoter-driven and NF-κB-responsive luciferase reporter activities. Furthermore, the TNF-α-induced degradation of the inhibitor of NF-κB α protein in the NF-κB signaling pathway was suppressed by ACA. Although ACA did not affect TNF receptor 1, TNF receptor-associated death domain, or receptor-interacting protein kinase 1 protein expression, it selectively downregulated TNF receptor-associated factor 2 (TRAF2) protein expression. The proteasome inhibitor MG-132, but not inhibitors of caspases or lysosomal degradation, attenuated ACA-induced reductions in TRAF2 expression. ACA also downregulated TRAF2 protein expression in human fibrosarcoma HT-1080 cells. This is the first study to demonstrate that ACA selectively downregulates TRAF2 protein expression.
Collapse
Affiliation(s)
- Chihiro Moriwaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Takahashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nhat Thi Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
Ramirez A, Hernandez-Davies JE, Jain A, Wang L, Strahsburger E, Davies DH, Wang SW. Co-Delivery of Multiple Toll-Like Receptor Agonists and Avian Influenza Hemagglutinin on Protein Nanoparticles Enhances Vaccine Immunogenicity and Efficacy. Adv Healthc Mater 2025:e2404335. [PMID: 39924738 DOI: 10.1002/adhm.202404335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Indexed: 02/11/2025]
Abstract
Most seasonal and pandemic influenza vaccines are derived from inactivated or attenuated virus propagated in chicken eggs, while more advanced delivery technologies, such as the use of recombinant proteins and adjuvants, are under-utilized. In this study, the E2 protein nanoparticle (NP) platform is engineered to synthesize vaccines that simultaneously co-deliver influenza hemagglutinin (H5) antigen, TLR5 agonist flagellin (FliCc), and TLR9 agonist CpG 1826 (CpG) all on one particle (termed H5-FliCc-CpG-E2), with uniform molecular orientation significant for immunomodulation. Antigen-bound NP formulations elicit higher IgG antibody responses and broader homosubtypic cross-reactivity against different H5 variants than unconjugated antigen alone. IgG1/IgG2c skewing is modulated by adjuvant type and NP attachment. Conjugation of flagellin to the NP causes significant IgG1 (Th2) skewing while attachment of CpG yields significant IgG2c (Th1) skewing, and simultaneous conjugation of both flagellin and CpG results in a balanced IgG1/IgG2c (Th2/Th1) response. Animals immunized with E2-based NP vaccines and subsequently challenged with H5N1 influenza show 100% survival, and only animals that receive adjuvanted NP formulations are also protected against morbidity. This investigation highlights that NP-based delivery of antigen and multiple adjuvants can be designed to effectively modulate the strength, breadth toward variants, and bias of an immune response against influenza viruses.
Collapse
Affiliation(s)
- Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Jenny E Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Lu Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Erwin Strahsburger
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
- Institute for Immunology, University of California, Irvine, CA, 92697, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
- Institute for Immunology, University of California, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Ramón-Luing LA, Martínez-Gómez LE, Martinez-Armenta C, Martínez-Nava GA, Medina-Quero K, Pérez-Rubio G, Falfán-Valencia R, Buendia-Roldan I, Flores-Gonzalez J, Ocaña-Guzmán R, Selman M, López-Reyes A, Chavez-Galan L. TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes. Int J Mol Sci 2025; 26:1139. [PMID: 39940907 PMCID: PMC11817726 DOI: 10.3390/ijms26031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
TNF and IFN-γ are key proinflammatory cytokines implicated in the pathophysiology of COVID-19. Toll-like receptor (TLR)7 and TLR8 are known to recognize SARS-CoV-2 and induce TNF and IFN-γ production. However, it is unclear whether TNF and IFN-γ levels are altered through TLR-dependent pathways and whether these pathways mediate disease severity during COVID-19. This study aimed to investigate the association between TNF/IFN-γ levels and immune cell activation to understand their role in disease severity better. We enrolled 150 COVID-19 patients, who were classified by their systemic TNF and IFN-γ levels (high (H) or normal-low (N-L)) as TNFHIFNγH, TNFHIFNγN-L, TNFN-LIFNγH, and TNFN-LIFNγN-L. Compared to patients with TNFN-LIFNγN-L, patients with TNFHIFNγH had high systemic levels of pro- and anti-inflammatory cytokines and cytotoxic molecules, and their T cells and monocytes expressed TNF receptor 1 (TNFR1). Patients with TNFHIFNγH presented the SNP rs3853839 to TLR7 and increased levels of MYD88, NFκB, and IRF7 (TLR signaling), FADD, and TRADD (TNFR1 signaling). Moreover, critical patients were observed in the four COVID-19 groups, but patients with TNFHIFNγH or TNFHIFNγN-L most required invasive mechanical ventilation. We concluded that increased TNF/IFN-γ levels are associated with hyperactive immune cells, whereas normal/low levels are associated with hypoactivity, suggesting a model to explain that the pathophysiology of critical COVID-19 may be mediated through different pathways depending on TNF and IFN-γ levels. These findings highlight the potential for exploring the modulation of TNF and IFN-γ as a therapeutic strategy in severe COVID-19.
Collapse
Affiliation(s)
- Lucero A. Ramón-Luing
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico;
| | - Gloria Pérez-Rubio
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ramcés Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Julio Flores-Gonzalez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ranferi Ocaña-Guzmán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| |
Collapse
|
7
|
Li Y, Ye R, Dai H, Lin J, Cheng Y, Zhou Y, Lu Y. Exploring TNFR1: from discovery to targeted therapy development. J Transl Med 2025; 23:71. [PMID: 39815286 PMCID: PMC11734553 DOI: 10.1186/s12967-025-06122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention. Given the potential risks associated with targeting tumor necrosis factor-alpha (TNF-α), selective inhibition of the TNFR1 signaling pathway has been proposed as a promising strategy to reduce side effects and enhance therapeutic efficacy. This review emphasizes the emerging field of targeted therapies aimed at selectively modulating TNFR1 activity, identifying promising therapeutic strategies that exploit TNFR1 as a drug target through an evaluation of current clinical trials and preclinical studies. In conclusion, this study contributes novel insights into the biological functions of TNFR1 and presents potential therapeutic strategies for clinical application, thereby having substantial scientific and clinical significance.
Collapse
Affiliation(s)
- Yingying Li
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiwei Ye
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Haorui Dai
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiayi Lin
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yue Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghong Zhou
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yiming Lu
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Xu L, Zhou S, Li J, Yu W, Gao W, Luo H, Fang X. The Anti-Inflammatory Effects of Formononetin, an Active Constituent of Pueraria montana Var. Lobata, via Modulation of Macrophage Autophagy and Polarization. Molecules 2025; 30:196. [PMID: 39795251 PMCID: PMC11721999 DOI: 10.3390/molecules30010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (P. lobata) is a medicinal herb widely used in the food and pharmaceutical industries, and studies have shown that P. lobata possesses significant anti-inflammatory pharmacological activities. In this paper, a total of 16 compounds were isolated and identified from P. lobata, among which compounds 1-3, 7, 14, and 16 were isolated from P. lobata for the first time. The results of an in vitro anti-inflammatory activity screening assay showed that compounds 1, 4, 6, 8, and 15 were able to significantly reduce the levels of pro-inflammatory cytokines IL-6 and IL-1β in LPS-induced RAW264.7 macrophages, with the most obvious effect produced by compound 6 (formononetin), while formononetin was able to significantly reduce the number of macrophages at the site of inflammation in transgenic zebrafish. In addition, network pharmacological analysis revealed that the anti-inflammatory activity of formononetin is closely related to autophagy and polarization targets such as TNF, EGFR, PTGS2, and ESR1. In vitro validation experiments showed that formononetin could enhance the expression of LCII/LCI and reduce the expression of P62 protein, reduce the expression of CD86, and enhance the expression of CD206, which further indicated that formononetin could reduce inflammation by regulating macrophage autophagy and polarization processes.
Collapse
Affiliation(s)
- Linyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuo Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenbo Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenyi Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.X.); (S.Z.); (J.L.); (W.Y.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
9
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
10
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
11
|
Hwang J, Rao TC, Tao J, Sha B, Narimatsu Y, Clausen H, Mattheyses AL, Bellis SL. Apoptotic signaling by TNFR1 is inhibited by the α2-6 sialylation, but not α2-3 sialylation, of the TNFR1 N-glycans. J Biol Chem 2025; 301:108043. [PMID: 39615678 PMCID: PMC11732462 DOI: 10.1016/j.jbc.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024] Open
Abstract
The TNF-TNFR1 signaling pathway plays a pivotal role in regulating the balance between cell survival and cell death. Upon binding to TNF, plasma membrane-localized TNFR1 initiates survival signaling, whereas TNFR1 internalization promotes caspase-mediated apoptosis. We previously reported that the α2-6 sialylation of TNFR1 by the tumor-associated sialyltransferase ST6GAL1 diverts signaling toward survival by inhibiting TNFR1 internalization. In the current investigation, we interrogated the mechanisms underlying sialylation-dependent regulation of TNFR1 and uncovered a novel role for α2-6 sialylation, but not α2-3 sialylation, in mediating apoptosis-resistance. Our studies utilized HEK293 cells with deletion of sialyltransferases that modify N-glycans with either α2-3-linked sialic acids (ST3GAL3/4/6) or α2-6-linked sialic acids (ST6GAL1/2). Additionally, ST6GAL1 was re-expressed in cells with ST6GAL1/2 deletion to restore α2-6 sialylation. Using total internal reflection fluorescence (TIRF) microscopy and BS3 cross-linking, we determined that, under basal conditions, cells expressing TNFR1 devoid of α2-6 sialylation displayed enhanced TNFR1 oligomerization, an event that poises cells for activation by TNF. Moreover, upon stimulation with TNF, greater internalization of TNFR1 was observed via time-lapse TIRF and flow cytometry, and this correlated with increased caspase-dependent apoptosis. These effects were reversed by ST6GAL1 re-expression. Conversely, eliminating α2-3 sialylation did not significantly alter TNFR1 clustering, internalization or apoptosis. We also evaluated the Fas receptor, given its structural similarity to TNFR1. As with TNFR1, α2-6 sialylation had a selective effect in protecting cells against Fas-mediated apoptosis. These results collectively suggest that ST6GAL1 may serve a unique function in shielding cancer cells from apoptotic stimuli within the tumor microenvironment.
Collapse
Affiliation(s)
- Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexa L Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
12
|
Potyka K, Dąbek J. Transcriptional Activity of Tumor Necrosis Factor Alpha Genes and Their Receptors in Patients with Varying Degrees of Coronary Artery Disease. Int J Mol Sci 2024; 25:13102. [PMID: 39684812 DOI: 10.3390/ijms252313102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Coronary artery disease and its complications are one of the most common causes of morbidity and death worldwide. The aims of this study were to assess the transcriptional activity of the studied TNF-α genes and their receptors in patients with various degrees of coronary artery disease and in the control group, as well as to attempt to link it with the size of the left ventricular ejection fraction and the number of diseased coronary arteries. Taking into account the inclusion and exclusion criteria, a total of 240 people (100%) qualified for this study. For proper interpretation of the results of the molecular analyzes, the study group (240, 100%) was divided into a control group (C: n = 60; 25%), a group of patients with early coronary artery disease (W: n = 60; 25%), a group with stable coronary artery disease (S: n = 60; 25%), and a group of patients with acute coronary syndrome (ACS: n = 60; 25%). The transcriptional activity of the TNF-α genes and their receptors was assessed in peripheral blood mononuclear cells by a quantitative real-time polymerase chain reaction. The expression of the studied genes was inferred from the number of mRNA copies per 1 ug of total RNA. The analysis of the obtained results showed a significant increase in the transcriptional activity of the TNF-α gene with the severity of coronary artery disease, accompanied by a decrease in the activity of its receptor genes. Taking into account the number of affected coronary arteries and the size of the ejection fraction in the examined patients, there were no statistically significant differences in the transcriptional activity of the TNF-α receptor gene type I and II. The observed increase in the transcriptional activity of the TNF-α gene with a concomitant decrease in the activity of its receptor genes with the advancement of coronary artery disease, compared to the control group, may indicate their significant participation in the development and progression of the disease and constitute a useful marker in non-invasive, early diagnostics. In the patients of the study group, no changes in the transcriptional activity of the TNF-α genes and their receptors were demonstrated depending on the number of diseased coronary arteries and the size of the ejection fraction of the left ventricle.
Collapse
Affiliation(s)
- Katarzyna Potyka
- Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-635 Katowice, Poland
| | - Józefa Dąbek
- Department of Cardiology, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-635 Katowice, Poland
| |
Collapse
|
13
|
Lambuk F, Nordin NA, Mussa A, Lambuk L, Ahmad S, Hassan R, Kadir R, Mohamud R, Yahya NK. Towards understanding the role of nanomedicine in targeting TNFR2 in rheumatoid arthritis. Immunology 2024; 173:622-633. [PMID: 39191474 DOI: 10.1111/imm.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the synovium and progressive joint destruction which significantly affects both quality of life and socioeconomic status. Admittedly, various treatments are available, but they are usually accompanied by various side effects, from mild to severe, and potentially with adverse events. Tumour necrosis factor-alpha (TNF-α) plays a crucial role in the pathophysiology of RA. It promotes inflammatory, apoptosis and necroptosis via TNF receptor-1 (TNFR1) but elicit anti-inflammatory effects via TNFR2. Herein, targeting TNFR2 has gained attention in RA studies. Understanding the role of nanomedicine in modulating TNFR2 signalling may be the instrument in development of RA therapies. Nanotechnology has made a significant progress in treating various conditions of diseases since its inception. Due to this, nanomedicine has emerged as a promising therapeutics approach for RA. Recent studies have demonstrated the potential of nanomedicine in RA theranostics, combining therapy and diagnostics for improved treatment outcomes. Owing to the challenges and advancements in the field of nanotechnology, nanoparticles are seen as an applicable candidate in the treatment of RA. In this review, we provide an overview of the role of nanomedicine in targeting TNFR2 for the treatment of RA and highlight the limitations of current therapies as well as the potential of nanocarriers with controlled drug release and active targeting abilities.
Collapse
Affiliation(s)
- Fatmawati Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Suhana Ahmad
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nurul Khaiza Yahya
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
14
|
Yu Q, Zhang L, Wang Z, Wang Q, Sun X, Deng W, Cao X, Yu J, Xu X. Anti-inflammatory oligosaccharide licensed mesenchymal stem cells allow prolonged survival of septic rats via the promotion of glutathione synthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156173. [PMID: 39471736 DOI: 10.1016/j.phymed.2024.156173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) possess the capability to mitigate multiorgan failure (MOF) and reduce mortality rates in sepsis. However, their survival is significantly limited due to oxidative stress responses triggered by excessive sepsis inflammation. Previous studies have demonstrated that the paracrine effect of MSCs can be enhanced by cytokine stimuli such as IL-1β, TNF-α, and IFN-γ, a process known as inflammatory licensing. This enhancement, however, may potentially lead to the apoptosis of MSCs. PURPOSE To investigate the therapeutic effects of Fructus Lycii oligosaccharide (FLO)-nasal mucosa-derived ectodermal MSCs (EMSCs) on septic rats and the underlying mechanisms. STUDY DESIGN AND METHODS FLO was screened from 21 distinct saccharides derived from traditional Chinese medicine (TCM), utilizing macrophage lipid raft chromatography prepared by our laboratory as the primary screening method.. The comparison of EMSCs primed with/without FLO was assessed through RNA-seq. Cecal ligation and puncture (CLP) surgery was performed in the CLP, EMSCs, and FLO-EMSCs groups (n = 10). The NC group underwent cecal ligation without puncture. The therapeutic effects of EMSCs and FLO-EMSCs on septic rats were evaluated through multiple tests including RT-PCR, western blot, histochemical staining, etc. RESULTS: FLO promoted M2 polarization of macrophages and enhanced the paracrine effect of EMSCs, without inducing apoptosis. Furthermore, FLO promoted GSH synthesis in EMSCs, aiding in the removal of reactive oxygen species (ROS) within these cells. The FLO-treated EMSCs demonstrated enhanced protection against pyroptosis in macrophages, thereby preventing immune paralysis during sepsis. CONCLUSION This study presents an innovative approach for enhancing the anti-inflammatory properties of MSCs using a TCM-derived oligosaccharide, thereby improving their therapeutic efficacy in sepsis models.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Linzhi Zhang
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Qilong Wang
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China.
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, 212013, ZhenJiang, PR China.
| |
Collapse
|
15
|
Aksu MD, van der Ent T, Zhang Z, Riza AL, de Nooijer AH, Ricaño-Ponce I, Janssen N, Engel JJ, Streata I, Dijkstra H, Lemmers H, Grondman I, Koeken VACM, Antoniadou E, Antonakos N, van de Veerdonk FL, Li Y, Giamarellos-Bourboulis EJ, Netea MG, Ziogas A. Regulation of plasma soluble receptors of TNF and IL-1 in patients with COVID-19 differs from that observed in sepsis. J Infect 2024; 89:106300. [PMID: 39357572 PMCID: PMC11624491 DOI: 10.1016/j.jinf.2024.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES IL-1α/β and TNF are closely linked to the pathology of severe COVID-19 and sepsis. The soluble forms of their receptors, functioning as decoy receptors, exhibit inhibitory effects. However, little is known about their regulation in severe bacterial and viral infections, which we aimed to investigate in this study. METHODS The circulating soluble receptors of TNF (sTNFR1 and sTNFR2) and IL-1α/β (sIL-1R1, sIL-1R2) were evaluated in the plasma of patients with COVID-19, severe bacterial infections, and sepsis and compared with healthy controls. Additionally, IL1R1, IL1R2, TNFRSF1A, and TNFRSF1B expression was evaluated at the single cell level in PBMCs derived from COVID-19 or sepsis patients. RESULTS Plasma concentrations of sIL-1R1, sTNFR1, and sTNFR2 were significantly higher in COVID-19 patients compared to healthy subjects. Notably, sIL-1R1 levels were particularly elevated in ICU COVID-19 patients, and transcriptome analysis indicated heightened IL1R1 expression in PBMCs from severe COVID-19 patients. In severe bacterial infections, only sTNFR1 and sTNFR2 exhibited increased levels compared to healthy controls. Sepsis patients had decreased sIL-1R1 plasma concentrations but elevated sIL-1R2, sTNFR1, and sTNFR2 levels compared to healthy individuals, reflecting the heightened expression due to the increased numbers of monocytes present in sepsis. Finally, elevated concentrations of sIL-1R2, sTNFR1, and sTNFR2 were moderately associated with reduced 28-day survival in sepsis patients. CONCLUSION Our study reveals distinct regulation of plasma concentrations of soluble IL-1 receptors in COVID-19 and sepsis. Moreover, soluble TNF receptors 1 and 2 consistently rise in all conditions and show a positive correlation with disease severity in sepsis.
Collapse
Affiliation(s)
- Muhammed D Aksu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Tijmen van der Ent
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Anca L Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Aline H de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Nico Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Job J Engel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Eleni Antoniadou
- Intensive Care Unit, "G. Gennimatas" Hospital, Thessaloniki, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
16
|
Panda SP, Kesharwani A, Singh B, Marisetti AL, Chaitanya M, Dahiya S, Ponnusankar S, Kumar S, Singh M, Shakya PK, Prasad PD, Guru A. 14-3-3 protein and its isoforms: A common diagnostic marker for Alzheimer's disease, Parkinson's disease and glaucomatous neurodegeneration. Ageing Res Rev 2024; 102:102572. [PMID: 39489380 DOI: 10.1016/j.arr.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
There is a molecular coupling between neurodegenerative diseases, including glaucomatous neurodegeneration (GN), Alzheimer's disease (AD), and Parkinson's disease (PD). Many cells in the eye and the brain have the right amount of 14-3-3 proteins (14-3-3 s) and their isoforms, such as β, ε, γ, η, θ, π, and γ. These cells include keratocytes, endothelial cells, corneal epithelial cells, and primary conjunctival epithelial cells. 14-3-3 s regulate autophagy and mitophagy, help break down built-up proteins, and connect to other proteins to safeguard against neurodegeneration in AD, PD, GN, and glioblastoma. By interacting with these proteins, 14-3-3 s stop Bad and Bax proteins from entering mitochondria and make them less effective. These interactions inhibit neuronal apoptosis. They play many important roles in managing the breakdown of lysosomal proteins, tau, and Aβ, which is why the 14-3-3 s could be used as therapeutic targets in AD. Furthermore, researchers have discovered 14-3-3 s in Lewy bodies, which are associated with various proteins like LRRK2, ASN, and Parkin, all of which play a role in developing Parkinson's disease (PD). The 14-3-3 s influence the premature aging and natural wrinkles of human skin. Studies have shown that lowering 14-3-3 s in the brain can lead to an increase in cell-death proteins like BAX and ERK, which in turn causes excitotoxicity-induced neurodegeneration. This review aimed to clarify the role of 14-3-3 s in the neuropathology of AD, PD, and GN, as well as potential diagnostic markers for improving neuronal survival and repair.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Bhoopendra Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Mvnl Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, Panjab 144411, India
| | - Saurabh Dahiya
- Department of Pharmaceutical Chemistry and Quality Assurance, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - S Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and ResearchOoty, Tamil Nadu 643001, India
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Praveen Kumar Shakya
- Shri Santanpal Singh Pharmacy College, Mirjapur, Shahjahanpur, Uttar Pradesh 242221, India
| | - P Dharani Prasad
- Department of Pharmacology, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
17
|
Rroji M, Spasovski G. Omics Studies in CKD: Diagnostic Opportunities and Therapeutic Potential. Proteomics 2024:e202400151. [PMID: 39523931 DOI: 10.1002/pmic.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Omics technologies have significantly advanced the prediction and therapeutic approaches for chronic kidney disease (CKD) by providing comprehensive molecular insights. This is a review of the current state and future prospects of integrating biomarkers into the clinical practice for CKD, aiming to improve patient outcomes by targeted therapeutic interventions. In fact, the integration of genomic, transcriptomic, proteomic, and metabolomic data has enhanced our understanding of CKD pathogenesis and identified novel biomarkers for an early diagnosis and targeted treatment. Advanced computational methods and artificial intelligence (AI) have further refined multi-omics data analysis, leading to more accurate prediction models for disease progression and therapeutic responses. These developments highlight the potential to improve CKD patient care with a precise and individualized treatment plan .
Collapse
Affiliation(s)
- Merita Rroji
- Faculty of Medicine, Department of Nephrology, University of Medicine Tirana, Tirana, Albania
| | - Goce Spasovski
- Medical Faculty, Department of Nephrology, University of Skopje, Skopje, North Macedonia
| |
Collapse
|
18
|
Corcoran WK, Cosio A, Edelstein HI, Leonard JN. Exploring structure-function relationships in engineered receptor performance using computational structure prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622438. [PMID: 39574600 PMCID: PMC11581020 DOI: 10.1101/2024.11.07.622438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Engineered receptors play increasingly important roles in transformative cell-based therapies. However, the structural mechanisms that drive differences in performance across receptor designs are often poorly understood. Recent advances in protein structural prediction tools have enabled the modeling of virtually any user-defined protein, but how these tools might build understanding of engineered receptors has yet to be fully explored. In this study, we employed structural modeling tools to perform post hoc analyses to investigate whether predicted structural features might explain observed functional variation. We selected a recently reported library of receptors derived from natural cytokine receptors as a case study, generated structural models, and from these predictions quantified a set of structural features that plausibly impact receptor performance. Encouragingly, for a subset of receptors, structural features explained considerable variation in performance, and trends were largely conserved across structurally diverse receptor sets. This work indicates potential for structure prediction-guided synthetic receptor engineering.
Collapse
Affiliation(s)
- William K. Corcoran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Amparo Cosio
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Hailey I. Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Cantor J. The Potential Role of Cigarette Smoke, Elastic Fibers, and Secondary Lung Injury in the Transition of Pulmonary Emphysema to Combined Pulmonary Fibrosis and Emphysema. Int J Mol Sci 2024; 25:11793. [PMID: 39519344 PMCID: PMC11546355 DOI: 10.3390/ijms252111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a distinct syndrome associated with heavy smoking. The fibrotic component of the disease is generally believed to be superimposed on previously existing pulmonary emphysema, but the mechanisms responsible for these changes remain poorly understood. To better understand the pathogenesis of CPFE, we performed a series of experiments that focused on the relationships between lung elastic fibers, cigarette smoke, and secondary lung injury. The results indicate that even brief smoke exposure predisposes the lung to additional forms of lung injury that may cause alveolar wall fibrosis. The proinflammatory activity of smoke-induced structural alterations in elastic fibers may contribute to this process by enhancing secondary lung inflammation, including acute exacerbations of chronic obstructive pulmonary disease. Furthermore, the levels of the unique elastin crosslinks, desmosine and isodesmosine, in blood, urine, and sputum may serve as biomarkers for the transition from pulmonary emphysema to interstitial fibrosis. While the long-term effects of these inflammatory reactions were not examined, the current studies provide insight into the potential relationships between elastic fiber injury, cigarette smoke, and secondary lung injury. Determining the mechanisms involved in combined pulmonary emphysema and fibrosis and developing a sensitive biomarker for this type of lung injury may permit timely therapeutic intervention that could mitigate the high risk of respiratory failure associated with this condition.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Allied Health Sciences, St John's University, Queens, NY 11439, USA
| |
Collapse
|
20
|
Ghosh R, Bishayi B. Neutralization of TLR2 in combination with either TNF-α or IL-1β antibody reduces the severity of septic arthritis through STAT3/mTOR signalling in lymphocytes. Cell Immunol 2024; 405-406:104878. [PMID: 39312873 DOI: 10.1016/j.cellimm.2024.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Staphylococcus aureus induced Septic arthritis is considered a medical concern. S.aureus binds TLR2 to induce an array of inflammatory responses. Generation of pro-inflammatory cytokines induces T cell responses and control Th17/Treg cell balance. Regulation of T cell-mediated immunity in response to inflammation is significantly influenced by mTOR. Presence of elevated TNF-α, IL-1β decreases Treg cell activity through STAT3/mTOR, promoting proliferation of T cells towards Th17 cells. Therefore, we postulated, neutralizing TLR2 with either TNF-α or IL-1β in combination could be useful in modifying Th17/Treg cell ratio in order to treat septic arthritis by suppressing expression of mTOR/STAT3. To date, no studies have reported effects of neutralization of TLR2 along with either TNF-α or IL-1β on amelioration of arthritis correlating with mTOR/STAT3 expression. Contribution of T lymphocytes collected from blood, spleen, synovial tissues, their derived cytokines IFN-γ, IL-6, IL-17, TGF-β, IL-10 were noted. Expression of TLR2, TNFR1, TNFR2, NF-κB along with mTOR/STAT3 also recorded. Neutralization of TLR2 along with TNF-α and IL-1β were able to shift Th17 cells into immunosuppressive Treg cells. Furthermore,elevated expression of IL-10, TNFR2 and demoted expression of mTOR/ STAT3 along with NF-κB in lymphocytes confirms its role in resolution of arthritis. It was also effective in reducing oxidative stress via increasing expression of the antioxidant enzymes. As a result, it can be inferred that Treg-derived IL-10, which may mitigate inflammatory effects of septic arthritis by influencing the mTOR/STAT3 interaction in lymphocytes, may be selected as a different therapeutic strategy for reducing the impact of septic arthritis.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
21
|
Rushendran R, Vellapandian C. Unlocking the potential of luteolin: A natural migraine management approach through network pharmacology. J Tradit Complement Med 2024; 14:611-621. [PMID: 39850605 PMCID: PMC11752114 DOI: 10.1016/j.jtcme.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 01/25/2025] Open
Abstract
Background Luteolin, a natural flavonoid, exhibits antioxidant and anti-inflammatory properties and has been investigated for potential health benefits. Its focus on migraine management arises from its ability to mitigate neuroinflammation, a key factor in migraine attacks. Methods pkCSM and Swiss ADME were employed to assess luteolin's pharmacokinetic properties, revealing challenges such as low water solubility and limited skin permeability. OSIRIS Property Explorer is used to check the toxicity. Ligand binding simulations indicated luteolin's potential to interact with calcitonin gene related peptide proteins, crucial in migraine pathophysiology. DisGeNet identified common targets related to migraine, with subsequent network analysis emphasizing promising targets. Results and Discussion Luteolin demonstrated good intestinal absorption but faced BBB limitations, suggesting a potential for oral administration but questioning direct brain impact. Nanoformulation was proposed to address solubility challenges, emphasizing the need for in vivo validation. The highest binding affinity with CGRP proteins PDBID: 6PFO (-7.63 kcal/mol) suggested a potential for migraine treatment, requiring empirical confirmation. Enrichment network analysis illustrated luteolin's potential in migraine treatment, emphasizing key targets such as PTGS2, AKT1, ESR1, MMP2, and MMP9. Luteolin shows promise for migraine management, evident in its pharmacokinetic, toxicological profiles, and interactions with CGRP proteins. Challenges like low solubility suggest the need for nanoformulations and empirical validation. Target identification and network analysis offer insights, highlighting potential therapeutic avenues in migraine treatment. Conclusion Luteolin holds promise in migraine management, necessitating further research for translation into effective interventions, considering its neuroprotective potential in broader neurological conditions.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
22
|
Zhang J, Zhao H, Zhou Q, Yang X, Qi H, Zhao Y, Yang L. Discovery of Cyclic Peptide Inhibitors Targeted on TNFα-TNFR1 from Computational Design and Bioactivity Verification. Molecules 2024; 29:5147. [PMID: 39519786 PMCID: PMC11547827 DOI: 10.3390/molecules29215147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Activating tumor necrosis factor receptor 1 (TNFR1) with tumor necrosis factor alpha (TNFα) is one of the key pathological mechanisms resulting in the exacerbation of rheumatoid arthritis (RA) immune response. Despite various types of drugs being available for the treatment of RA, a series of shortcomings still limits their application. Therefore, developing novel peptide drugs that target TNFα-TNFR1 interaction is expected to expand therapeutic drug options. In this study, the detailed interaction mechanism between TNFα and TNFR1 was elucidated, based on which, a series of linear peptides were initially designed. To overcome its large conformational flexibility, two different head-to-tail cyclization strategies were adopted by adding a proline-glycine (GP) or cysteine-cysteine (CC) to form an amide or disulfide bond between the N-C terminal. The results indicate that two cyclic peptides, R1_CC4 and α_CC8, exhibit the strongest binding free energies. α_CC8 was selected for further optimization using virtual mutations through in vitro activity and toxicity experiments due to its optimal biological activity. The L16R mutant was screened, and its binding affinity to TNFR1 was validated using ELISA assays. This study designed a novel cyclic peptide structure with potential anti-inflammatory properties, possibly bringing an additional choice for the treatment of RA in the future.
Collapse
Affiliation(s)
- Jiangnan Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Huijian Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Qianqian Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Xiaoyue Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Haoran Qi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Yongxing Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Longhua Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| |
Collapse
|
23
|
Kaltschmidt B, Czaniera NJ, Schulten W, Kaltschmidt C. NF-κB in Alzheimer's Disease: Friend or Foe? Opposite Functions in Neurons and Glial Cells. Int J Mol Sci 2024; 25:11353. [PMID: 39518906 PMCID: PMC11545113 DOI: 10.3390/ijms252111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a devasting neurodegenerative disease afflicting mainly glutamatergic neurons together with a massive neuroinflammation mediated by the transcription factor NF-κB. A 65%-plus increase in Alzheimer's patients by 2050 might be a major threat to society. Hallmarks of AD are neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and amyloid beta (Aβ) plaques. Here, we review the potential involvement of transcription factor NF-κB by hereditary mutations of the tumor necrosis factor pathway in AD patients. One of the greatest genetic risk factors is APOE4. Recently, it was shown that the APOE4 allele functions as a null allele in human astrocytes not repressing NF-κB anymore. Moreover, NF-κB seems to be involved in the repair of DNA double-strand breaks during healthy learning and memory, a function blunted in AD. NF-κB could be a friend to healthy neurons by repressing apoptosis and necroptosis. But a loss of neuronal NF-κB and activation of glial NF-κB in AD makes it a foe of neuronal survival. Hopeful therapies include TNFR2 receptor bodies relieving the activation of glial NF-κB by TNFα.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| | - Nele Johanne Czaniera
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Muchova M, Kuehne SA, Grant MM, Smith PP, Nagi M, Chapple ILC, Hirschfeld J. Fusobacterium nucleatum elicits subspecies-specific responses in human neutrophils. Front Cell Infect Microbiol 2024; 14:1449539. [PMID: 39450334 PMCID: PMC11499235 DOI: 10.3389/fcimb.2024.1449539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
Fusobacterium nucleatum as a Gram-negative anaerobe plays a key bridging role in oral biofilms. It is involved in periodontal and extraoral diseases, the most prominent being colorectal cancer. Five subspecies are recognised: animalis, fusiforme, nucleatum, polymorphum and vincentii. Subspecies interact with neutrophils constantly patrolling tissues to remove microbial intruders. Neutrophil antimicrobial activities include generation of reactive oxygen species (ROS), formation of neutrophil extracellular traps (NETs) and release of cytokines and neutrophil enzymes. Subspecies-specific differences in immunogenicity have previously been observed in a neutrophil-like cell line but were not investigated in human neutrophils. Additionally, neutrophil responses to planktonic and biofilm-grown F. nucleatum have not been studied to date. The aims of this study were to compare the immunogenicity of planktonic and biofilm-grown F. nucleatum and to investigate potential differences in human neutrophil responses when stimulated with individual F. nucleatum subspecies. Human neutrophils isolated from peripheral blood were stimulated with planktonic and biofilm-grown F. nucleatum subspecies. Generation of ROS and NET formation were quantified by luminescence and fluorescence assays, respectively. Secretion of cytokines (IL-1β, TNF-α, IL-6, IL-8), neutrophil elastase and matrix metalloproteinase-9 was quantified by enzyme-linked immunosorbent assay (ELISA). Neutrophil responses showed biofilm-grown bacteria induced a significantly higher total and intracellular ROS response, as well as shorter time to total ROS release. Biofilm-grown F. nucleatum led to significantly lower IL-1β release. We found significant differences among individual subspecies in terms of total, intracellular ROS and extracellular superoxide. Subspecies polymorphum stimulated the highest mean amount of NET release. Amounts of cytokines released differed significantly among subspecies, while no differences were found in lysosomal enzyme release. Immunogenicity of F. nucleatum in human neutrophils is highly subspecies-specific in vitro with regard to ROS release and cytokine production. Understanding subspecies-specific immunogenicity of F. nucleatum may facilitate the discovery of novel therapeutic targets in F. nucleatum-mediated diseases.
Collapse
Affiliation(s)
- Maria Muchova
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Sarah A. Kuehne
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Melissa M. Grant
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Peter P. Smith
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Malee Nagi
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Iain L. C. Chapple
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Josefine Hirschfeld
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| |
Collapse
|
25
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Zhao X, Wang M, Zhang Y, Zhang Y, Tang H, Yue H, Zhang L, Song D. Macrophages in the inflammatory response to endotoxic shock. Immun Inflamm Dis 2024; 12:e70027. [PMID: 39387442 PMCID: PMC11465138 DOI: 10.1002/iid3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Endotoxic shock, particularly prevalent in intensive care units, represents a significant medical challenge. Endotoxin, upon invading the host, triggers intricate interactions with the innate immune system, particularly macrophages. This activation leads to the production of inflammatory mediators such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta, as well as aberrant activation of the nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways. OBJECTIVE This review delves into the intricate inflammatory cascades underpinning endotoxic shock, with a particular focus on the pivotal role of macrophages. It aims to elucidate the clinical implications of these processes and offer insights into potential therapeutic strategies. RESULTS Macrophages, central to immune regulation, manifest in two distinct subsets: M1 (classically activated subtype) macrophages and M2 (alternatively activated subtype) macrophages. The former exhibit an inflammatory phenotype, while the latter adopt an anti-inflammatory role. By modulating the inflammatory response in patients with endotoxic shock, these macrophages play a crucial role in restoring immune balance and facilitating recovery. CONCLUSION Macrophages undergo dynamic changes within the immune system, orchestrating essential processes for maintaining tissue homeostasis. A deeper comprehension of the mechanisms governing macrophage-mediated inflammation lays the groundwork for an anti-inflammatory, targeted approach to treating endotoxic shock. This understanding can significantly contribute to the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Xinjie Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of MedicineXizang Minzu UniversityXianyangChina
| | - Mengjie Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yanru Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yiyi Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Haojie Tang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Hongyi Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Li Zhang
- Affiliated Hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| |
Collapse
|
27
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
28
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
29
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
30
|
Nam YW, Shin JH, Kim S, Hwang CH, Lee CS, Hwang G, Kim HR, Roe JS, Song J. EGFR inhibits TNF-α-mediated pathway by phosphorylating TNFR1 at tyrosine 360 and 401. Cell Death Differ 2024; 31:1318-1332. [PMID: 38789573 PMCID: PMC11445491 DOI: 10.1038/s41418-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Tumour necrosis factor receptor 1 (TNFR1) induces the nuclear factor kappa-B (NF-κB) signalling pathway and regulated cell death processes when TNF-α ligates with it. Although mechanisms regulating the downstream pathways of TNFR1 have been elucidated, the direct regulation of TNFR1 itself is not well known. In this study, we showed that the kinase domain of the epidermal growth factor receptor (EGFR) regulates NF-κB signalling and TNF-α-induced cell death by directly phosphorylating TNFR1 at Tyr 360 and 401 in its death domain. In contrast, EGFR inhibition by EGFR inhibitors, such as erlotinib and gefitinib, prevented their interaction. Once TNFR1 is phosphorylated, its death domain induces the suppression of the NF-κB pathways, complex II-mediated apoptosis, or necrosome-dependent necroptosis. Physiologically, in mouse models, EGF treatment mitigates TNF-α-dependent necroptotic skin inflammation induced by treatment with IAP and caspase inhibitors. Our study revealed a novel role for EGFR in directly regulating TNF-α-related pathways.
Collapse
Affiliation(s)
- Young Woo Nam
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - June-Ha Shin
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Seongmi Kim
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Chi Hyun Hwang
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Choong-Sil Lee
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Huang D, Tu Z, Karnoub AE, Wei W, Rezaeian AH. Busulfan Chemotherapy Downregulates TAF7/TNF-α Signaling in Male Germ Cell Dysfunction. Biomedicines 2024; 12:2220. [PMID: 39457533 PMCID: PMC11504710 DOI: 10.3390/biomedicines12102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Mallardo M, Mazzeo F, Lus G, Signoriello E, Daniele A, Nigro E. Impact of Lifestyle Interventions on Multiple Sclerosis: Focus on Adipose Tissue. Nutrients 2024; 16:3100. [PMID: 39339700 PMCID: PMC11434938 DOI: 10.3390/nu16183100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms underlying MS remain unclear, but current evidence suggests that inflammation and immune dysfunction play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic multifunctional organ involved in various immune diseases, including MS, due to its endocrine function and the secretion of adipokines, which can influence inflammation and immune responses. Physical activity represents an efficacious non-pharmacological strategy for the management of a spectrum of conditions that not only improves inflammatory and immune functions but also directly affects the status and function of AT. Additionally, the exploration of nutritional supplementation represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest published data about the involvement of AT and the main adipokines, such as adiponectin, leptin, and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether physical activity and dietary management could serve as useful strategies to improve the quality of life of MS patients.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Naples, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
33
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
34
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Gogulescu A, Blidisel A, Soica C, Mioc A, Voicu A, Jojic A, Voicu M, Banciu C. Neurological Side Effects of TNF-α Inhibitors Revisited: A Review of Case Reports. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1409. [PMID: 39336450 PMCID: PMC11433993 DOI: 10.3390/medicina60091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Over the past two decades, the use of tumor necrosis factor alpha (TNF-α) inhibitors has significantly improved the treatment of patients with immune-mediated inflammatory diseases. Firstly, introduced for rheumatoid arthritis, these inhibitors are currently approved and used for a variety of conditions, including ankylosing spondylitis, Crohn's disease, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ulcerative colitis, and chronic uveitis. Despite their immense therapeutic efficacy, TNF-α inhibitors have been associated with neurological adverse effects that bring new clinical challenges. The present review collects data from multiple studies to evaluate the incidence and the relationship between TNF-α inhibitors and neurological side effects and to explore the potential underlying mechanisms of this association. Moreover, it highlights the importance of patient selection, particularly in the case of individuals with a history of demyelinating diseases, raises awareness for clinicians, and calls for ongoing research that will improve TNF-α targeting strategies and offer safer and more effective therapeutic options.
Collapse
Affiliation(s)
- Armand Gogulescu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alexandru Blidisel
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alina Jojic
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Christian Banciu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| |
Collapse
|
36
|
Vu QV, Vu NT, Baba K, Sasaki S, Tamura R, Morimoto K, Hirano H, Osada H, Kataoka T. Porphyrin derivatives inhibit tumor necrosis factor α-induced gene expression and reduce the expression and increase the cross-linked forms of cellular components of the nuclear factor κB signaling pathway. Eur J Pharmacol 2024; 977:176747. [PMID: 38880218 DOI: 10.1016/j.ejphar.2024.176747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The transcription factor nuclear factor κB (NF-κB) is activated by proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and Toll-like receptor (TLR) ligands. Screening of NPDepo chemical libraries identified porphyrin derivatives as anti-inflammatory compounds that strongly inhibited the up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression induced by TNF-α, interleukin-1α, the TLR3 ligand, and TLR4 ligand in human umbilical vein endothelial cells. In the present study, the mechanisms of action of porphyrin derivatives were further elucidated using human lung adenocarcinoma A549 cells. Porphyrin derivatives, i.e., dimethyl-2,7,12,18-tetramethyl-3,8-di(1-methoxyethyl)-21H,23H-porphine-13,17-dipropionate (1) and pheophorbide a (2), inhibited TNF-α-induced ICAM-1 expression and decreased the TNF-α-induced transcription of ICAM-1, vascular cell adhesion molecule-1, and E-selectin genes. 1 and 2 reduced the expression of the NF-κB subunit RelA protein for 1 h, which was not rescued by the inhibition of proteasome- and lysosome-dependent protein degradation. In addition, 1 and 2 decreased the expression of multiple components of the TNF receptor 1 complex, and this was accompanied by the appearance of their cross-linked forms. As common components of the NF-κB signaling pathway, 1 and 2 also cross-linked the α, β, and γ subunits of the inhibitor of NF-κB kinase complex and the NF-κB subunits RelA and p50. Cellular protein synthesis was prevented by 2, but not by 1. Therefore, the present results indicate that porphyrin derivative 1 reduced the expression and increased the cross-linked forms of cellular components required for the NF-κB signaling pathway without affecting global protein synthesis.
Collapse
Affiliation(s)
- Quy Van Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Nhat Thi Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Sasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryuichi Tamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kyoko Morimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
37
|
Liou LB, Fang YF, Tsai PH, Chen YF, Chang CT, Chen CC, Chiang WY. Immunoregulatory Cells and Cytokines Discriminate Disease Activity Score 28-Remission Statuses and Ultrasound Grades in Rheumatoid Arthritis Patients with Non-High Disease Activity. Int J Mol Sci 2024; 25:8694. [PMID: 39201379 PMCID: PMC11354682 DOI: 10.3390/ijms25168694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
It is not clear whether immunoregulatory cytokines and cells are associated with Disease Activity Score 28 (DAS28) scores and ultrasound grades/scores. Here, we investigated the relationships between immunoregulatory cytokines or cells and different DAS28 scores or ultrasound grades/scores in patients with rheumatoid arthritis (RA). This study enrolled 50 RA patients (with 147 visits) who had remission/low/moderate DAS28-ESR scores (92% in remission and low disease activity) at baseline. Blood was collected and an ultrasound was performed three times in a year. Percentages of regulatory B cells and T regulatory type 1 cells and M2 macrophage numbers in the blood were examined. Plasma levels of 10 immunoregulatory cytokines IL-4, IL-5, IL-9, IL-10, IL-13, IL-27, IL-35, TGF-β1, sTNF-R1, and sTNF-R2 and monocyte chemotactic protein-1 (MCP-1) were assessed using ELISA assay. The correlations of cytokines and cells with different DAS28 scores and ultrasound grades were investigated, and cytokines and cells were compared between different categories of DAS28 scores and ultrasound grades. Plasma TGF-β1 levels were higher in the DAS28-ESR < 2.6 (remission) subgroup than in the DAS28-ESR ≥ 2.6 (nonremission) subgroup (p = 0.037). However, plasma TGF-β1 levels were higher in the high ultrasound grade subgroup than those in the low ultrasound grade subgroup (p = 0.007). The number of M2 macrophages was lower in the DAS28-MCP-1 < 2.2 subgroup than in the DAS28-MCP-1 ≥ 2.2 subgroup (p = 0.036). The levels of TGF-β1, sTNF-R2, IL-10, and IL-27 were higher in patients with high ultrasound grades than in those with low ultrasound grades. IL-27 was also higher in the nonremission DAS28-ESR subgroup than the remission one (p = 0.025). Moreover, sTNF-R1 levels in the 2011 American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) remission subgroup were significantly lower than in the 2011 ACR/EULAR nonremission subgroup (p = 0.007). This trend was reflected in that lower sTNF-R1 levels correlated with low DAS28-MCP-1 scores (rho = 0.222, p = 0.007). We conclude that high plasma TGF-β1 levels indicate the DAS28-ESR remission (<2.6) subgroup and the high ultrasound grade subgroup. IL-27 probably connects the nonremission DAS28-ESR to high ultrasound grades. Low sTNF-R1 levels probably link low DAS28-MCP-1 scores with the 2011 ACR/EULAR remission subgroup. It suggests that incongruent immuno-inflammatory abnormalities exist between DAS28 scores and ultrasound grades, and are also dissimilar among various DAS28-formula categories. Therefore, this study may provide a basis for further research into individual cytokines and immunoregulatory cells behind each DAS28 formula and ultrasound grades/scores.
Collapse
Affiliation(s)
- Lieh-Bang Liou
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Keelung, Keelung City 204, Taiwan
- Division of Rheumatology, Allergy, and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 333, Taiwan
| | - Yao-Fan Fang
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - Ping-Han Tsai
- Division of Rheumatology, Allergy, and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - Yen-Fu Chen
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - Che-Tzu Chang
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - Chih-Chieh Chen
- Division of Rheumatology, Allergy, and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| | - Wen-Yu Chiang
- Division of Rheumatology, Allergy, and Immunology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| |
Collapse
|
38
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
39
|
Li H, Wan L, Liu M, Ma E, Huang L, Yang Y, Li Q, Fang Y, Li J, Han B, Zhang C, Sun L, Hou X, Li H, Sun M, Qian S, Duan X, Zhao R, Yang X, Chen Y, Wu S, Zhang X, Zhang Y, Cheng G, Chen G, Gao Q, Xu J, Hou L, Wei C, Zhong H. SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure. PLoS Pathog 2024; 20:e1012291. [PMID: 39102426 PMCID: PMC11326701 DOI: 10.1371/journal.ppat.1012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/15/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Huilong Li
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yilong Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Qihong Li
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingqing Han
- Beijing Institute of Biotechnology, Beijing, China
| | - Chang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lijuan Sun
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Xufeng Hou
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Haiyang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingyu Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Sichong Qian
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuhui Zhang
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | | | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengye Chen
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Gao
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
40
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
41
|
D'Souza BN, Yadav M, Chaudhary PP, Ratley G, Lu MY, Alves DA, Myles IA. Derivation of novel metabolic pathway score identifies alanine metabolism as a targetable influencer of TNF-alpha signaling. Heliyon 2024; 10:e33502. [PMID: 39035522 PMCID: PMC11259870 DOI: 10.1016/j.heliyon.2024.e33502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Background Better understanding of the interaction between metabolism and immune response will be key to understanding physiology and disease. Tumor Necrosis Factor-alpha (TNFα) has been studied widely. However, despite the extensive knowledge about TNFα, the cytokine appears to induce not only variable, but often contradictory, effects on inflammation and cell proliferation. Despite advancements in the metabolomics field, it is still difficult to analyze the types of multi-dose, multi-time point studies needed for elucidating the varied immunologic responses induced by TNFα. Results We studied the dose and time course effects of TNFα on murine fibroblast cultures and further elucidated these connections using selective blockade of the TNF receptors (TNFR1 and TNFR2). To streamline analysis, we developed a method to collate the metabolic pathway output from MetaboAnalyst into a single value for the Index of pathway significance (IPS). Using this metric, we tested dose-, time-, and receptor-dependent effects of TNFα signaling on cell metabolism. Guided by these results, we then demonstrate that alanine supplementation enriched TNFR1-related responses in both cell and mouse models. Conclusions Our results suggest that TNFα, particularly when signaling through TNFR1, may preferentially use alanine metabolism for energy. These results are limited in by cell type used and immune outputs measured. However, we anticipate that our novel method may assist other researchers in identifying metabolic targets that influence their disease or model of interest through simplifying the analysis of multi-condition experiments. Furthermore, our results endorse the consideration of follow up studies in immunometabolism to improve outcomes in TNF-mediated diseases.
Collapse
Affiliation(s)
- Brandon N. D'Souza
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manoj Yadav
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Prem Prashant Chaudhary
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace Ratley
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Max Yang Lu
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section (IDPS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian A. Myles
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Swanson KA, Nguyen KL, Gupta S, Ricard J, Bethea JR. TNFR1/p38αMAPK signaling in Nex + supraspinal neurons regulates estrogen-dependent chronic neuropathic pain. Brain Behav Immun 2024; 119:261-271. [PMID: 38570102 PMCID: PMC11162907 DOI: 10.1016/j.bbi.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024] Open
Abstract
Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor β (ER β) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER β interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.
Collapse
Affiliation(s)
- Kathryn A Swanson
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| | - Shruti Gupta
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA
| | - Jerome Ricard
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| |
Collapse
|
43
|
Li S, Liu W, Liu J, Yang Z, Zhang L, Nie F, Yang P, Guo H, Yang C. Low-dose TNF-α promotes angiogenesis of oral squamous cell carcinoma cells via TNFR2/Akt/mTOR axis. Oral Dis 2024; 30:3004-3017. [PMID: 37964399 DOI: 10.1111/odi.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES To assess the role of TNF-α/TNFR2 axis on promoting angiogenesis in oral squamous cell carcinoma (OSCC) cells and uncover the underlying mechanisms. MATERIALS AND METHODS The expression of TNFR2 and CD31 in OSCC tissues was examined; gene expression relationship between TNF-α/TNFR2 and angiogenic markers or signaling molecules was analyzed; the expression of angiogenic markers, signaling molecules, TNFR1, and TNFR2 in TNF-α-stimulated OSCC cells treated with or without TNFR2 neutralizing antibody (TNFR2 Nab) were assessed; the concentration of angiogenic markers in the supernatant of OSCC cells was detected; conditioned mediums of OSCC cells treated with TNF-α or TNF-α + TNFR2 Nab were applied to human umbilical vein endothelial cells (HUVECs), followed by tube formation and cell migration assays. RESULTS Significantly elevated expression of TNFR2 and CD31 in OSCC tissues was observed. A positive gene expression correlation was identified between TNF-α/TNFR2 and angiogenic markers or signaling molecules. TNFR2 Nab inhibited the effects of TNF-α on enhancing the expression of angiogenic factors and TNFR2, the phosphorylation of the Akt/mTOR signaling pathway, HUVECs migration, and tube formation. CONCLUSIONS TNFR2 Nab counteracts the effect of TNF-α on OSCC cells through the TNFR2/Akt/mTOR axis, indicating that blocking TNFR2 might be a promising strategy against cancer.
Collapse
Affiliation(s)
- Shutong Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Wenchuan Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Junze Liu
- School of Information and Computer Sciences, Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, USA
| | - Zongcheng Yang
- Division of Life Sciences and Medicine, Department of Stomatology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Liguo Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hongmei Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
44
|
Wang Y, Wang E, Anany M, Füllsack S, Huo YH, Dutta S, Ji B, Hoeppner LH, Kilari S, Misra S, Caulfield T, Vander Kooi CW, Wajant H, Mukhopadhyay D. The crosstalk between neuropilin-1 and tumor necrosis factor-α in endothelial cells. Front Cell Dev Biol 2024; 12:1210944. [PMID: 38994453 PMCID: PMC11236538 DOI: 10.3389/fcell.2024.1210944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFκB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFκB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Medicine, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Centre, Giza, Egypt
| | - Simone Füllsack
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Yu Henry Huo
- Department of Cardiovascular Medicine, Rochester, MN, United States
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Baoan Ji
- Department of Cancer Biology, Jacksonville, FL, United States
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
45
|
Mesquita F, Bernardino J, Henriques J, Raposo JF, Ribeiro RT, Paredes S. Machine learning techniques to predict the risk of developing diabetic nephropathy: a literature review. J Diabetes Metab Disord 2024; 23:825-839. [PMID: 38932857 PMCID: PMC11196462 DOI: 10.1007/s40200-023-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/20/2023] [Indexed: 06/28/2024]
Abstract
Purpose Diabetes is a major public health challenge with widespread prevalence, often leading to complications such as Diabetic Nephropathy (DN)-a chronic condition that progressively impairs kidney function. In this context, it is important to evaluate if Machine learning models can exploit the inherent temporal factor in clinical data to predict the risk of developing DN faster and more accurately than current clinical models. Methods Three different databases were used for this literature review: Scopus, Web of Science, and PubMed. Only articles written in English and published between January 2015 and December 2022 were included. Results We included 11 studies, from which we discuss a number of algorithms capable of extracting knowledge from clinical data, incorporating dynamic aspects in patient assessment, and exploring their evolution over time. We also present a comparison of the different approaches, their performance, advantages, disadvantages, interpretation, and the value that the time factor can bring to a more successful prediction of diabetic nephropathy. Conclusion Our analysis showed that some studies ignored the temporal factor, while others partially exploited it. Greater use of the temporal aspect inherent in Electronic Health Records (EHR) data, together with the integration of omics data, could lead to the development of more reliable and powerful predictive models.
Collapse
Affiliation(s)
- F. Mesquita
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
| | - J. Bernardino
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
- Center for Informatics and Systems of University of Coimbra, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
| | - J. Henriques
- Center for Informatics and Systems of University of Coimbra, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
| | - JF. Raposo
- Education and Research Center, APDP Diabetes Portugal, Rua Do Salitre 118-120, 1250-203 Lisbon, Portugal
| | - RT. Ribeiro
- Education and Research Center, APDP Diabetes Portugal, Rua Do Salitre 118-120, 1250-203 Lisbon, Portugal
| | - S. Paredes
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
- Center for Informatics and Systems of University of Coimbra, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
| |
Collapse
|
46
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
47
|
Do KK, Wang F, Sun X, Zhang Y, Liang W, Liu JY, Jiang DY, Lu X, Wang W, Zhang L, Dean DC, Liu Y. Conditional deletion of Zeb1 in Csf1r + cells reduces inflammatory response of the cornea to alkali burn. iScience 2024; 27:109694. [PMID: 38660397 PMCID: PMC11039400 DOI: 10.1016/j.isci.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.
Collapse
Affiliation(s)
- Khoi K. Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Xiaolei Sun
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA
| | - Wei Liang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - John Y. Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel Y. Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Douglas C. Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
48
|
White AG, Elias E, Orozco A, Robinson SA, Manners MT. Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease. Int J Mol Sci 2024; 25:5085. [PMID: 38791125 PMCID: PMC11121038 DOI: 10.3390/ijms25105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The brain is the central organ of adaptation to stress because it perceives and determines threats that induce behavioral, physiological, and molecular responses. In humans, chronic stress manifests as an enduring consistent feeling of pressure and being overwhelmed for an extended duration. This can result in a persistent proinflammatory response in the peripheral and central nervous system (CNS), resulting in cellular, physiological, and behavioral effects. Compounding stressors may increase the risk of chronic-stress-induced inflammation, which can yield serious health consequences, including mental health disorders. This review summarizes the current knowledge surrounding the neuroinflammatory response in rodent models of chronic stress-a relationship that is continually being defined. Many studies investigating the effects of chronic stress on neuroinflammation in rodent models have identified significant changes in inflammatory modulators, including nuclear factor-κB (NF-κB) and toll-like receptors (TLRs), and cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6. This suggests that these are key inflammatory factors in the chronic stress response, which may contribute to the establishment of anxiety and depression-like symptoms. The behavioral and neurological effects of modulating inflammatory factors through gene knockdown (KD) and knockout (KO), and conventional and alternative medicine approaches, are discussed.
Collapse
Affiliation(s)
- Abigail G. White
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Andrea Orozco
- Department of Psychology, Williams College, Williamstown, MA 01267, USA
| | | | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
49
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
50
|
Smith EJ, Beaumont RE, Dudhia J, Guest DJ. Equine Embryonic Stem Cell-Derived Tenocytes are Insensitive to a Combination of Inflammatory Cytokines and Have Distinct Molecular Responses Compared to Primary Tenocytes. Stem Cell Rev Rep 2024; 20:1040-1059. [PMID: 38396222 PMCID: PMC11087315 DOI: 10.1007/s12015-024-10693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Tissue fibrosis following tendon injury is a major clinical problem due to the increased risk of re-injury and limited treatment options; however, its mechanism remains unclear. Evidence suggests that insufficient resolution of inflammation contributes to fibrotic healing by disrupting tenocyte activity, with the NF-κB pathway being identified as a potential mediator. Equine embryonic stem cell (ESC) derived tenocytes may offer a potential cell-based therapy to improve tendon regeneration, but how they respond to an inflammatory environment is largely unknown. Our findings reveal for the first time that, unlike adult tenocytes, ESC-tenocytes are unaffected by IFN-γ, TNFα, and IL-1β stimulation; producing minimal changes to tendon-associated gene expression and generating 3-D collagen gel constructs indistinguishable from unstimulated controls. Inflammatory pathway analysis found these inflammatory cytokines failed to activate NF-κB in the ESC-tenocytes. However, NF-κB could be activated to induce changes in gene expression following stimulation with NF-κB pharmaceutical activators. Transcriptomic analysis revealed differences between cytokine and NF-κB signalling components between adult and ESC-tenocytes, which may contribute to the mechanism by which ESC-tenocytes escape inflammatory stimuli. Further investigation of these molecular mechanisms will help guide novel therapies to reduce fibrosis and encourage superior tendon healing.
Collapse
Affiliation(s)
- Emily J Smith
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Ross E Beaumont
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Deborah J Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|