1
|
Gou YK, Zhou J, Liu P, Wang MY. Research progress on monocyte/macrophage in the development of gastric cancer. Future Oncol 2025:1-11. [PMID: 40351251 DOI: 10.1080/14796694.2025.2504334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Gastric cancer (GC) is diagnosed more than one million times each year and represents a major cause of cancer-related death worldwide. Although GC presents as a group of different types of disease, chronic inflammation has been strongly associated with tumorigenesis. Monocyte/macrophage play important roles in the development of inflammation and are vital components of the tumor microenvironment (TME). Monocyte/macrophage exert protumor and/or antitumor effects through the release of angiogenic and lymphangiogenic factors. Furthermore, tumor associated macrophages (TAMs) are emerging as key players in GC development. It is necessary to review and elucidate the roles of TAM subsets in GC and their molecular features. In this study, we focused on GC-related subsets of monocytes/macrophages and analyzed signaling related to TAMs in GC as well as the potential roles of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Yuan-Kun Gou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| | - Jie Zhou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| | - Ming-Yi Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| |
Collapse
|
2
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2025; 51:399-416. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Hatefi A, Siavoshi F, Khalili-Samani S. Yeast's vacuole a privileged niche that protects intracellular bacteria against antibiotics. Arch Microbiol 2025; 207:82. [PMID: 40063265 DOI: 10.1007/s00203-025-04281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Detection of Helicobacter pylori, Staphylococcus, Nocardia and Cyanobacteria inside the yeast Candida tropicalis raised the question whether treating yeast with antibiotics mix (ABM) eliminates intracellular bacteria. Live/Dead staining showed occurrence of viable bacteria inside the vacuole of C. tropicalis. Amplification of bacterial 16S rRNA genes from yeast DNA with the size of 521, 750, 606 and 450 bp were similar to those from control H. pylori, Staphylococcus, Nocardia and Cyanobacteria, respectively. To eliminate intracellular bacteria yeast cultures in yeast-glucose (YG) broth were treated with 32-1024 μg/mL of ABM (amoxicillin, ciprofloxacin, rifampin and metronidazole) for up to 24 h. Viability of treated yeast cells and their intracellular bacteria was assessed by colony count, Live/Dead staining and detection of bacterial 16S rRNA genes. Colony count of C. tropicalis exposed to 32-256 μg/mL of ABM (4.39-9.63) or 512-1024 μg/mL (9.67-9.77) were similar to their respected controls (p > 0.05). Amplification of similar bacterial genes from treated yeasts and controls confirmed persistent occurrence of intracellular bacteria. Micrographs of yeasts treated with 32-256 μg/mL of ABM showed intact yeasts and intracellular bacteria, however those treated with 512 and 1024 μg/mL showed occurrence of < 10% and > 10% yellow damaged yeasts, respectively that accumulated yellow rifampin. Fluorescence microscopy showed that both intact and damaged yeasts carried live bacteria inside their vacuole. Culture of treated yeasts on YG agar produced colonies with totally intact yeasts and intracellular bacteria. Yeast extruded antibiotics and reduced their effective concentration for killing intracellular bacteria. Establishment of bacteria inside the fungal vacuole cannot be disrupted with antibiotics.
Collapse
Affiliation(s)
- Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Saman Khalili-Samani
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Wei YF, Xie SA, Zhang ST. Current research on the interaction between Helicobacter pylori and macrophages. Mol Biol Rep 2024; 51:497. [PMID: 38598010 DOI: 10.1007/s11033-024-09395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacteria with a worldwide infection rate of 50%, known to induce gastritis, ulcers and gastric cancer. The interplay between H. pylori and immune cells within the gastric mucosa is pivotal in the pathogenesis of H. pylori-related disease. Following H. pylori infection, there is an observed increase in gastric mucosal macrophages, which are associated with the progression of gastritis. H. pylori elicits macrophage polarization, releases cytokines, reactive oxygen species (ROS) and nitric oxide (NO) to promote inflammatory response and eliminate H. pylori. Meanwhile, H. pylori has developed mechanisms to evade the host immune response in order to maintain the persistent infection, including interference with macrophage phagocytosis and antigen presentation, as well as induction of macrophage apoptosis. Consequently, the interaction between H. pylori and macrophages can significantly impact the progression, pathogenesis, and resolution of H. pylori infection. Moreover, macrophages are emerging as potential therapeutic targets for H. pylori-associated gastritis. Therefore, elucidating the involvement of macrophages in H. pylori infection may provide novel insights into the pathogenesis, progression, and management of H. pylori-related disease.
Collapse
Affiliation(s)
- Yan-Fei Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing, 100050, China.
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
5
|
Sit WY, Cheng ML, Chen TJ, Chen CJ, Chen BN, Huang DJ, Chen PL, Chen YC, Lo CJ, Wu DC, Hsieh WC, Chang CT, Chen RH, Wang WC. Helicobacter pylori PldA modulates TNFR1-mediated p38 signaling pathways to regulate macrophage responses for its survival. Gut Microbes 2024; 16:2409924. [PMID: 39369445 PMCID: PMC11457642 DOI: 10.1080/19490976.2024.2409924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Helicobacter pylori, a dominant member of the gastric microbiota was associated with various gastrointestinal diseases and presents a significant challenge due to increasing antibiotic resistance. This study identifies H. pylori's phospholipase A (PldA) as a critical factor in modulating host macrophage responses, facilitating H. pylori 's evasion of the immune system and persistence. PldA alters membrane lipids through reversible acylation and deacylation, affecting their structure and function. We found that PldA incorporates lysophosphatidylethanolamine into macrophage membranes, disrupting their bilayer structure and impairing TNFR1-mediated p38-MK2 signaling. This disruption results in reduced macrophage autophagy and elevated RIP1-dependent apoptosis, thereby enhancing H. pylori survival, a mechanism also observed in multidrug-resistant strains. Pharmacological inhibition of PldA significantly decreases H. pylori viability and increases macrophage survival. In vivo studies corroborate PldA's essential role in H. pylori persistence and immune cell recruitment. Our findings position PldA as a pivotal element in H. pylori pathogenesis through TNFR1-mediated membrane modulation, offering a promising therapeutic target to counteract bacterial resistance.
Collapse
Affiliation(s)
- Wei Yang Sit
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Tsan-Jan Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Jo Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bo-Nian Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ding-Jun Huang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pei-Lien Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yun-Ching Chen
- Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
| | - Chi-Jen Lo
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chung-Ting Chang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
6
|
Wang F, Wang Z, Tang J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathog 2023; 15:30. [PMID: 37370138 DOI: 10.1186/s13099-023-00559-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear. OBJECTIVE This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans. METHODS This review examined 11 common gut bacteria's interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp. RESULTS Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans. CONCLUSIONS Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Abstract
Macroautophagy/autophagy, a fundamental cell process for nutrient recycling and defense against pathogens (termed xenophagy), is crucial to human health. ATG16L2 (autophagy related 16 like 2) is an autophagic protein and a paralog of ATG16L1. Both proteins are implicated in similar diseases such as cancer and other chronic diseases; however, most autophagy studies to date have primarily focused on the function of ATG16L1, with ATG16L2 remaining uncharacterized and understudied. Overexpression of ATG16L2 has been reported in various cancers including colorectal, gastric, and prostate carcinomas, whereas altered methylation of ATG16L2 has been associated with lung cancer formation and poorer response to therapy in leukemia. In addition, ATG16L2 polymorphisms have been implicated in a range of other diseases including inflammatory bowel diseases and neurodegenerative disorders. Despite this likely role in human health, the function of this enigmatic protein in autophagy remains unknown. Here, we review current studies on ATG16L2 and collate evidence that suggests that this protein is a potential modulator of autophagy as well as the implications this has on pathogenesis.Abbreviations: ATG5: autophagy related 5; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG16L2: autophagy related 16 like 2; CD: Crohn disease; IBD: inflammatory bowel diseases; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PE: phosphatidylethanolamine; RB1CC1: RB1 inducible coiled-coil 1; SLE: systemic lupus erythematosus; WIPI2B: WD repeat domain, phosphoinositide interacting 2B.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,CONTACT Laurence Don Wai Luu School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,Natalia Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, Faculty of Science, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
miR-30c Increases the Intracellular Survival of Helicobacter pylori by Inhibiting Autophagy. Cell Microbiol 2022. [DOI: 10.1155/2022/4536450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Persistent Helicobacter pylori infection causes a variety of gastrointestinal diseases and even gastric cancer. H. pylori invades gastric epithelial cells to survive and proliferate, which is one of the key factors in persistent colonization. A Published study has confirmed that cells can eliminate intracellular H. pylori through xenophagy to maintain intracellular balance. However, a growing body of evidences indicate that H. pylori can inhibit xenophagy by miRNA through regulating the expression of key autophagy-related genes. Through western blot analysis, mRFP-GFP-LC3 transfection assay, and transmission electron microscopy, we found that H. pylori infection obstructed autophagy flux degradation stage in GES-1 cell lines. Gentamicin protection assay confirmed that inhibit xenophagy is benefit for intracellular H. pylori survive. miR-30c-1-3p and miR-30c-5p were upregulated in GES-1 cell lines after infecting with H. pylori, resulting in the negative regulation on xenophagy. Further studies through bioinformatics analysis and dual-luciferase reporter assays confirmed that ATG14 and ULK1 were the target genes of miR-30c-1-3p and that ATG12 was the target gene of miR-30c-5p. The overexpression of miR-30c-1-3p and miR-30c-5p reduces the expression of ATG14, ULK1, and ATG12 at mRNA level and also decreased intracellular H. pylori elimination in GES-1 cells. The above results suggested that the inhibition on xenophagy by miR-30c-1-3p and miR-30c-5p through ATG14, ULK1, and ATG12 targeting benefitted intracellular H. pylori in the evasion of xenophagy clearance.
Collapse
|
9
|
Herb M, Gluschko A, Farid A, Krönke M. When the Phagosome Gets Leaky: Pore-Forming Toxin-Induced Non-Canonical Autophagy (PINCA). Front Cell Infect Microbiol 2022; 12:834321. [PMID: 35372127 PMCID: PMC8968195 DOI: 10.3389/fcimb.2022.834321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages remove bacteria from the extracellular milieu via phagocytosis. While most of the engulfed bacteria are degraded in the antimicrobial environment of the phagolysosome, several bacterial pathogens have evolved virulence factors, which evade degradation or allow escape into the cytosol. To counter this situation, macrophages activate LC3-associated phagocytosis (LAP), a highly bactericidal non-canonical autophagy pathway, which destroys the bacterial pathogens in so called LAPosomes. Moreover, macrophages can also target intracellular bacteria by pore-forming toxin-induced non-canonical autophagy (PINCA), a recently described non-canonical autophagy pathway, which is activated by phagosomal damage induced by bacteria-derived pore-forming toxins. Similar to LAP, PINCA involves LC3 recruitment to the bacteria-containing phagosome independently of the ULK complex, but in contrast to LAP, this process does not require ROS production by Nox2. As last resort of autophagic targeting, macrophages activate xenophagy, a selective form of macroautophagy, to recapture bacteria, which evaded successful targeting by LAP or PINCA through rupture of the phagosome. However, xenophagy can also be hijacked by bacterial pathogens for their benefit or can be completely inhibited resulting in intracellular growth of the bacterial pathogen. In this perspective, we discuss the molecular differences and similarities between LAP, PINCA and xenophagy in macrophages during bacterial infections.
Collapse
Affiliation(s)
- Marc Herb
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexander Gluschko
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alina Farid
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Center for Infection Research, Bonn-Cologne, Germany
| |
Collapse
|
10
|
Mommersteeg M, Simovic I, Yu B, van Nieuwenburg S, Bruno IM, Doukas M, Kuipers E, Spaander M, Peppelenbosch M, Castaño-Rodríguez N, Fuhler G. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022; 14:2015238. [PMID: 34965181 PMCID: PMC8726742 DOI: 10.1080/19490976.2021.2015238] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H.pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H.pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H.pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H.pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H.pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.
Collapse
Affiliation(s)
- M.C. Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I. Simovic
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia
| | - B. Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S.A.V. van Nieuwenburg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I, M.J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - E.J. Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia,CONTACT N. Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - G.M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands,G.M. Fuhler PhD Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Muthusamy S, Jan HM, Hsieh MY, Mondal S, Liu WC, Ko YA, Yang WY, Mong KKT, Chen GC, Lin CH. Enhanced enzymatic production of cholesteryl 6'-acylglucoside impairs lysosomal degradation for the intracellular survival of Helicobacter pylori. J Biomed Sci 2021; 28:72. [PMID: 34706729 PMCID: PMC8549234 DOI: 10.1186/s12929-021-00768-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background During autophagy defense against invading microbes, certain lipid types are indispensable for generating specialized membrane-bound organelles. The lipid composition of autophagosomes remains obscure, as does the issue of how specific lipids and lipid-associated enzymes participate in autophagosome formation and maturation. Helicobacter pylori is auxotrophic for cholesterol and converts cholesterol to cholesteryl glucoside derivatives, including cholesteryl 6ʹ-O-acyl-α-d-glucoside (CAG). We investigated how CAG and its biosynthetic acyltransferase assist H. pylori to escape host-cell autophagy. Methods We applied a metabolite-tagging method to obtain fluorophore-containing cholesteryl glucosides that were utilized to understand their intracellular locations. H. pylori 26695 and a cholesteryl glucosyltransferase (CGT)-deletion mutant (ΔCGT) were used as the standard strain and the negative control that contains no cholesterol-derived metabolites, respectively. Bacterial internalization and several autophagy-related assays were conducted to unravel the possible mechanism that H. pylori develops to hijack the host-cell autophagy response. Subcellular fractions of H. pylori-infected AGS cells were obtained and measured for the acyltransferase activity. Results The imaging studies of fluorophore-labeled cholesteryl glucosides pinpointed their intracellular localization in AGS cells. The result indicated that CAG enhances the internalization of H. pylori in AGS cells. Particularly, CAG, instead of CG and CPG, is able to augment the autophagy response induced by H. pylori. How CAG participates in the autophagy process is multifaceted. CAG was found to intervene in the degradation of autophagosomes and reduce lysosomal biogenesis, supporting the idea that intracellular H. pylori is harbored by autophago-lysosomes in favor of the bacterial survival. Furthermore, we performed the enzyme activity assay of subcellular fractions of H. pylori-infected AGS cells. The analysis showed that the acyltransferase is mainly distributed in autophago-lysosomal compartments. Conclusions Our results support the idea that the acyltransferase is mainly distributed in the subcellular compartment consisting of autophagosomes, late endosomes, and lysosomes, in which the acidic environment is beneficial for the maximal acyltransferase activity. The resulting elevated level of CAG can facilitate bacterial internalization, interfere with the autophagy flux, and causes reduced lysosomal biogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00768-w.
Collapse
Affiliation(s)
- Sasikala Muthusamy
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Soumik Mondal
- Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-An Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yuan Yang
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Kwok-Kong Tony Mong
- Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan. .,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Park JM, Han YM, Hahm KB. Rejuvenation of Helicobacter pylori-Associated Atrophic Gastritis Through Concerted Actions of Placenta-Derived Mesenchymal Stem Cells Prevented Gastric Cancer. Front Pharmacol 2021; 12:675443. [PMID: 34483897 PMCID: PMC8416416 DOI: 10.3389/fphar.2021.675443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic Helicobacter pylori infection causes gastric cancer via the progression of precancerous chronic atrophic gastritis (CAG). Therefore, repairing gastric atrophy could be a useful strategy in preventing H. pylori-associated gastric carcinogenesis. Although eradication of the bacterial pathogen offers one solution to this association, this study was designed to evaluate an alternative approach using mesenchymal stem cells to treat CAG and prevent carcinogenesis. Here, we used human placenta-derived mesenchymal stem cells (PD-MSCs) and their conditioned medium (CM) to treat H. pylori-associated CAG in a mice/cell model to explore their therapeutic effects and elucidate their molecular mechanisms. We compared the changes in the fecal microbiomes in response to PD-MSC treatments, and chronic H. pylori-infected mice were given ten treatments with PD-MSCs before being sacrificed for end point assays at around 36 weeks of age. These animals presented with significant reductions in the mean body weights of the control group, which were eradicated following PD-MSC treatment (p < 0.01). Significant changes in various pathological parameters including inflammation, gastric atrophy, erosions/ulcers, and dysplastic changes were noted in the control group (p < 0.01), but these were all significantly reduced in the PD-MSC/CM-treated groups. Lgr5+, Ki-67, H+/K+-ATPase, and Musashi-1 expressions were all significantly increased in the treated animals, while inflammatory mediators, MMP, and apoptotic executors were significantly decreased in the PD-MSC group compared to the control group (p < 0.001). Our model showed that H. pylori-initiated, high-salt diet-promoted gastric atrophic gastritis resulted in significant changes in the fecal microbiome at the phylum/genus level and that PD-MSC/CM interventions facilitated a return to more normal microbial communities. In conclusion, administration of PD-MSCs or their conditioned medium may present a novel rejuvenating agent in preventing the progression of H. pylori-associated premalignant lesions.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Young Min Han
- Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Seoul, Korea.,CHA Cancer Preventive Research Center, CHA Bio Complex, Seongnam, Korea
| |
Collapse
|
14
|
Thein W, Po WW, Choi WS, Sohn UD. Autophagy and Digestive Disorders: Advances in Understanding and Therapeutic Approaches. Biomol Ther (Seoul) 2021; 29:353-364. [PMID: 34127572 PMCID: PMC8255139 DOI: 10.4062/biomolther.2021.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.
Collapse
Affiliation(s)
- Wynn Thein
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Wah Wah Po
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
He H, Liu J, Li L, Qian G, Hao D, Li M, Zhang Y, Hong X, Xu J, Yan D. Helicobacter pylori CagA Interacts with SHP-1 to Suppress the Immune Response by Targeting TRAF6 for K63-Linked Ubiquitination. THE JOURNAL OF IMMUNOLOGY 2021; 206:1161-1170. [PMID: 33568397 DOI: 10.4049/jimmunol.2000234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023]
Abstract
Helicobacter pylori is the major etiological agent for most gastric cancer. CagA has been reported to be an important virulence factor of H. pylori, but its effect on the immune response is not yet clear. In this study, wild-type C57BL/6 mice and Ptpn6me-v/me-v mice were randomly assigned for infection with H. pylori We demonstrated that CagA suppressed H. pylori-stimulated expression of proinflammatory cytokines in vivo. Besides, we infected mouse peritoneal macrophages RAW264.7 and AGS with H. pylori Our results showed that CagA suppressed expression of proinflammatory cytokines through inhibiting the MAPKs and NF-κB pathways activation in vitro. Mechanistically, we found that CagA interacted with the host cellular tyrosine phosphatase SHP-1, which facilitated the recruitment of SHP-1 to TRAF6 and inhibited the K63-linked ubiquitination of TRAF6, which obstructed the transmission of signal downstream. Taken together, these findings reveal a previously unknown mechanism by which CagA negatively regulates the posttranslational modification of TRAF6 in innate antibacterial immune response and provide molecular basis for new therapeutics to treat microbial infection.
Collapse
Affiliation(s)
- Huan He
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Liu
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liuyan Li
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Gui Qian
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Doudou Hao
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Manman Li
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihua Zhang
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaowu Hong
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dapeng Yan
- Shanghai Public Health Clinical Center and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Intracellular Presence of Helicobacter pylori and Its Virulence-Associated Genotypes within the Vaginal Yeast of Term Pregnant Women. Microorganisms 2021; 9:microorganisms9010131. [PMID: 33430099 PMCID: PMC7827377 DOI: 10.3390/microorganisms9010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND
Helicobacter pylori transmission routes are not entirely elucidated. Since yeasts are postulated to transmit this pathogen, this study aimed to detect and genotype intracellular H. pylori harbored within vaginal yeast cells. METHODS A questionnaire was used to determine risk factors of H. pylori infection. Samples were seeded on Sabouraud Dextrose Agar and horse blood-supplemented Columbia agar. Isolated yeasts were identified using and observed by optical microscopy searching for intra-yeast H. pylori. Total yeast DNA, from one random sample, was extracted to search for H. pylori virulence genes by PCR and bacterial identification by sequencing. RESULTS 43% of samples contained yeasts, mainly Candida albicans (91%). Microscopy detected bacteria such as bodies and anti-H. pylori antibodies binding particles in 50% of the isolated yeasts. Total DNA extracted showed that 50% of the isolated yeasts were positive for H. pylori 16S rDNA and the sequence showed 99.8% similarity with H. pylori. In total, 32% of H. pylori DNA positive samples were cagA+ vacAs1a vacAm1 dupA-. No relationship was observed between possible H. pylori infection risk factors and vaginal yeasts harboring this bacterium. CONCLUSION
H. pylori having virulent genotypes were detected within vaginal yeasts constituting a risk for vertical transmission of this pathogen.
Collapse
|
17
|
Jarzab M, Posselt G, Meisner-Kober N, Wessler S. Helicobacter pylori-Derived Outer Membrane Vesicles (OMVs): Role in Bacterial Pathogenesis? Microorganisms 2020; 8:E1328. [PMID: 32878302 PMCID: PMC7564109 DOI: 10.3390/microorganisms8091328] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Persistent infections with the human pathogen Helicobacter pylori (H. pylori) have been closely associated with the induction and progression of a wide range of gastric disorders, including acute and chronic gastritis, ulceration in the stomach and duodenum, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma. The pathogenesis of H. pylori is determined by a complicated network of manifold mechanisms of pathogen-host interactions, which involves a coordinated interplay of H. pylori pathogenicity and virulence factors with host cells. While these molecular and cellular mechanisms have been intensively investigated to date, the knowledge about outer membrane vesicles (OMVs) derived from H. pylori and their implication in bacterial pathogenesis is not well developed. In this review, we summarize the current knowledge on H. pylori-derived OMVs.
Collapse
Affiliation(s)
- Miroslaw Jarzab
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.J.); (G.P.)
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.J.); (G.P.)
| | - Nicole Meisner-Kober
- Division of Chemical Biology and Biological Therapeutics, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria;
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.J.); (G.P.)
- Cancer Cluster Salzburg, Allergy-Cancer-BioNano Research Centre and, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
18
|
Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pylori co-culture system. Sci Rep 2020; 10:11506. [PMID: 32661418 PMCID: PMC7359330 DOI: 10.1038/s41598-020-68439-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes the human stomach by inducing immunoregulatory responses. We have used a novel platform that integrates a bone marrow-derived macrophage and live H. pylori co-culture with global time-course transcriptomics analysis to identify new regulatory genes based on expression patterns resembling those of genes with known regulatory function. We have used filtering criteria based on cellular location and novelty parameters to select 5 top lead candidate targets. Of these, Plexin domain containing 2 (Plxdc2) was selected as the top lead immunoregulatory target. Loss of function studies with in vivo models of H. pylori infection as well as a chemically-induced model of colitis, confirmed its predicted regulatory function and significant impact on modulation of the host immune response. Our integrated bioinformatics analyses and experimental validation platform has enabled the discovery of new immunoregulatory genes. This pipeline can be used for the identification of genes with therapeutic applications for treating infectious, inflammatory, and autoimmune diseases.
Collapse
|
19
|
Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Semin Cell Dev Biol 2020; 101:59-67. [PMID: 32033828 PMCID: PMC7102552 DOI: 10.1016/j.semcdb.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Xiong Q, Yang M, Li P, Wu C. Bacteria Exploit Autophagy For Their Own Benefit. Infect Drug Resist 2019; 12:3205-3215. [PMID: 31632106 PMCID: PMC6792943 DOI: 10.2147/idr.s220376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal degradation pathway to clear long-lived proteins, protein aggregates, and damaged organelles. Certain microorganisms can be eliminated by an autophagic degradation process termed xenophagy. However, many pathogens deploy highly evolved mechanisms to evade autophagic degradation. What is more, series of pathogens have developed different strategies to exploit autophagy to ensure their survival. These bacteria could induce autophagy and/or prevent autophagosomes fusion with lysosomes through secreted effector proteins or utilizing host components, thereby maintaining the localization of the bacteria within the autophagosomes where they replicate. Here, we review the current knowledge of the mechanisms developed by the bacteria to benefit from autophagy for their survival.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Min Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
21
|
Wang H, Zhou Y, Zhu Q, Zang H, Cai J, Wang J, Cui L, Meng X, Zhu G, Li J. Staphylococcus aureus induces autophagy in bovine mammary epithelial cells and the formation of autophagosomes facilitates intracellular replication of Staph. aureus. J Dairy Sci 2019; 102:8264-8272. [PMID: 31255277 DOI: 10.3168/jds.2019-16414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/01/2019] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is an important pathogen causing chronic and subclinical mastitis of cows. Autophagy is an important regulatory mechanism that participates in the elimination of invading pathogenic organisms. Here, we hypothesize that autophagy is involved in the process of Staph. aureus survival in bovine mammary epithelial cells (BMEC). In this study, we detected the expression of autophagy-related proteins during infection and assessed the effect of autophagosome formation and degradation on the proliferation of intracellular Staph. aureus. Infection with Staph. aureus increased the protein expression of microtubule-associated protein 1 light chain 3-II (MAP1LC3, also called LC3-II) and sequestosome-1 (SQSTM1, also called p62) in BMEC. After infection, the formation of the autophagosomes increased but the autophagosomes and lysosomes could not fuse normally to form autolysosomes. When the formation of the autophagosomes was enhanced or the degradation of the autolysosomes was inhibited, the number of Staph. aureus in the BMEC increased. However, the intracellular proliferation of Staph. aureus was slowed when formation of autophagosomes was inhibited. Therefore, autophagy was induced in BMEC challenged by Staph. aureus but the autophagic flux was obstructed. Inhibiting the formation of autophagosomes in BMEC facilitated the clearance of intracellular Staph. aureus, which may offer a new strategy for the treatment of mastitis in cows.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yuqi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Qicheng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Haozhe Zang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Juan Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jianqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
22
|
Immunohistochemical Expression of Xenophagy Proteins in Helicobacter pylori and None Helicobacter pylori Gastritis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Lian DW, Xu YF, Ren WK, Fu LJ, Chen FJ, Tang LY, Zhuang HL, Cao HY, Huang P. Unraveling the Novel Protective Effect of Patchouli Alcohol Against Helicobacter pylori-Induced Gastritis: Insights Into the Molecular Mechanism in vitro and in vivo. Front Pharmacol 2018; 9:1347. [PMID: 30524287 PMCID: PMC6262355 DOI: 10.3389/fphar.2018.01347] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Patchouli alcohol (PA), a natural tricyclic sesquiterpene extracted from Pogostemon cablin (Blanco) Benth. (Labiatae), has been found to exhibit anti-Helicobacter pylori and anti-inflammatory properties. In this study, we investigated the protective effect of PA against H. pylori-induced gastritis in vitro and in vivo, and determined the underlying mechanism. In the in vivo experiment, a C57BL/6 mouse model of gastritis was established using H. pylori SS1, and treatments with standard triple therapy or 5, 10, and 20 mg/kg PA were performed for 2 weeks. Results indicated that PA effectively attenuated oxidative stress by decreasing contents of intracellular reactive oxygen species (ROS) and malonyldialdehyde (MDA), and increasing levels of non-protein sulfhydryl (NP-SH), catalase and glutathione (GSH)/glutathione disulphide (GSSG). Additionally, treatment with PA significantly attenuated the secretions of interleukin 1 beta (IL-1β), keratinocyte chemoattractant and interleukin 6 (IL-6). PA (20 mg/kg) significantly protected the gastric mucosa from H. pylori-induced damage. In the in vitro experiment, GES-1 cells were cocultured with H. pylori NCTC11637 at MOI = 100:1 and treated with different doses of PA (5, 10, and 20 μg/ml). Results indicated that PA not only significantly increased the cell viability and decreased cellular lactate dehydrogenase (LDH) leakage, but also markedly elevated the mitochondrial membrane potential and remarkably attenuated GES-1 cellular apoptosis, thereby protecting gastric epithelial cells against injuries caused by H. pylori. PA also inhibited the secretions of pro-inflammatory factors, such as monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, after PA treatment, the combination of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and cysteine-aspartic proteases 1 (CASPASE-1), the expression levels of NLRP3 inflammasome-related proteins, such as thioredoxin-interacting protein (TXNIP), pro-CASPASE-1, cle-CASPASE-1, and NLRP3 and genes (NLRP3 and CASPASE1) were significantly decreased as compared to the model group. In conclusion, treatment with PA for 2 weeks exhibited highly efficient protective effect against H. pylori-induced gastritis and related damages. The underlying mechanism might involve antioxidant activity, inhibition of pro-inflammatory factor and regulation of NLRP3 inflammasome function. PA exerted anti-H. pylori and anti-gastritis effects and thus had the potential to be a promising candidate for treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Da-Wei Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fei Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Kang Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Jun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Yao Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ling Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Lai CH, Huang JC, Cheng HH, Wu MC, Huang MZ, Hsu HY, Chen YA, Hsu CY, Pan YJ, Chu YT, Chen TJ, Wu YF, Sit WY, Liu JS, Chiu YF, Wang HJ, Wang WC. Helicobacter pylori cholesterol glucosylation modulates autophagy for increasing intracellular survival in macrophages. Cell Microbiol 2018; 20:e12947. [PMID: 30151951 DOI: 10.1111/cmi.12947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Cholesterol-α-glucosyltransferase (CGT) encoded by the type 1 capsular polysaccharide biosynthesis protein J (capJ) gene of Helicobacter pylori converts cellular cholesterol into cholesteryl glucosides. H. pylori infection induces autophagy that may increase bacterial survival in epithelial cells. However, the role of H. pylori CGT that exploits lipid rafts in interfering with autophagy for bacterial survival in macrophages has not been investigated. Here, we show that wild-type H. pylori carrying CGT modulates cholesterol to trigger autophagy and restrain autophagosome fusion with lysosomes, permitting a significantly higher bacterial burden in macrophages than that in a capJ-knockout (∆CapJ) mutant. Knockdown of autophagy-related protein 12 impairs autophagosome maturation and decreases the survival of internalised H. pylori in macrophages. These results demonstrate that CGT plays a crucial role in the manipulation of the autophagy process to impair macrophage clearance of H. pylori.
Collapse
Affiliation(s)
- Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.,Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Ju-Chun Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Hsin-Hung Cheng
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Chen Wu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ying Hsu
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-An Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chung-Yao Hsu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Graduate Institute of Biomedical Sciences, School of Medicine, Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Yen-Ting Chu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsan-Jan Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Fang Wu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jai-Shin Liu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Zhang L, Hu W, Cho CH, Chan FK, Yu J, Fitzgerald JR, Cheung CK, Xiao ZG, Shen J, Li LF, Li MX, Wu JC, Ling TK, Chan JY, Ko H, Tse G, Ng SC, Yu S, Wang MH, Gin T, Ashktorab H, Smoot DT, Wong SH, Chan MT, Wu WK. Reduced lysosomal clearance of autophagosomes promotes survival and colonization of Helicobacter pylori. J Pathol 2018; 244:432-444. [PMID: 29327342 DOI: 10.1002/path.5033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/20/2017] [Accepted: 01/04/2018] [Indexed: 01/25/2023]
Abstract
Evasion of autophagy is key for intracellular survival of bacteria in host cells, but its involvement in persistent infection by Helicobacter pylori, a bacterium identified to invade gastric epithelial cells, remains obscure. The aim of this study was to functionally characterize the role of autophagy in H. pylori infection. Autophagy was assayed in H. pylori-infected human gastric epithelium and the functional role of autophagy was determined via genetic or pharmacological ablation of autophagy in mouse and cell line models of H. pylori infection. Here, we showed that H. pylori inhibited lysosomal function and thereby promoted the accumulation of autophagosomes in gastric epithelial cells. Importantly, inhibiting autophagosome formation by pharmacological inhibitors or genetic ablation of BECN1 or ATG5 reduced H. pylori intracellular survival, whereas inhibition of lysosomal functions exerted an opposite effect. Further experiments demonstrated that H. pylori inhibited lysosomal acidification and the retrograde trafficking of mannose-6-phosphate receptors, both of which are known to positively regulate lysosomal function. We conclude that H. pylori subverts autophagy into a pro-survival mechanism through inhibition of lysosomal clearance of autophagosomes. Disruption of autophagosome formation offers a novel strategy to reduce H. pylori colonization in human stomachs. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Francis Kl Chan
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | - Cynthia Ky Cheung
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhan G Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Long F Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Ming X Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Justin Cy Wu
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Thomas Kw Ling
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jason Yk Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ho Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Gary Tse
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Siew C Ng
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Maggie Ht Wang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC, USA.,Cancer Center, Howard University, Washington, DC, USA.,Howard University Hospital, Howard University, Washington, DC, USA
| | - Duane T Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sunny H Wong
- Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Matthew Tv Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - William Kk Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Diseases, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
26
|
Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R. For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol 2018; 103:35-51. [PMID: 29345056 DOI: 10.1002/jlb.4ri0917-358r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are linchpins of innate immunity, responding to invading microorganisms by initiating coordinated inflammatory and antimicrobial programs. Immediate antimicrobial responses, such as NADPH-dependent reactive oxygen species (ROS), are triggered upon phagocytic receptor engagement. Macrophages also detect and respond to microbial products through pattern recognition receptors (PRRs), such as TLRs. TLR signaling influences multiple biological processes including antigen presentation, cell survival, inflammation, and direct antimicrobial responses. The latter enables macrophages to combat infectious agents that persist within the intracellular environment. In this review, we summarize our current understanding of TLR-inducible direct antimicrobial responses that macrophages employ against bacterial pathogens, with a focus on emerging evidence linking TLR signaling to reprogramming of mitochondrial functions to enable the production of direct antimicrobial agents such as ROS and itaconic acid. In addition, we describe other TLR-inducible antimicrobial pathways, including autophagy/mitophagy, modulation of nutrient availability, metal ion toxicity, reactive nitrogen species, immune GTPases (immunity-related GTPases and guanylate-binding proteins), and antimicrobial peptides. We also describe examples of mechanisms of evasion of such pathways by professional intramacrophage pathogens, with a focus on Salmonella, Mycobacteria, and Listeria. An understanding of how TLR-inducible direct antimicrobial responses are regulated, as well as how bacterial pathogens subvert such pathways, may provide new opportunities for manipulating host defence to combat infectious diseases.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Thomas SA, Nandan D, Kass J, Reiner NE. Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania. J Biol Chem 2017; 293:2617-2630. [PMID: 29269416 DOI: 10.1074/jbc.m117.808675] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
Autophagy is essential for cell survival under stress and has also been implicated in host defense. Here, we investigated the interactions between Leishmania donovani, the main etiological agent of visceral leishmaniasis, and the autophagic machinery of human macrophages. Our results revealed that during early infection-and via activation of the Akt pathway-Leishmania actively inhibits the induction of autophagy. However, by 24 h, Leishmania switched from being an inhibitor to an overall inducer of autophagy. These findings of a dynamic, biphasic response were based on the accumulation of lipidated light chain 3 (LC3), an autophagosome marker, by Western blotting and confocal fluorescence microscopy. We also present evidence that Leishmania induces delayed host cell autophagy via a mechanism independent of reduced activity of the mechanistic target of rapamycin (mTOR). Notably, Leishmania actively inhibited mTOR-regulated autophagy even at later stages of infection, whereas there was a clear induction of autophagy via some other mechanism. In this context, we examined host inositol monophosphatase (IMPase), reduced levels of which have been implicated in mTOR-independent autophagy, and we found that IMPase activity is significantly decreased in infected cells. These findings indicate that Leishmania uses an alternative pathway to mTOR to induce autophagy in host macrophages. Finally, RNAi-mediated down-regulation of host autophagy protein 5 (ATG5) or autophagy protein 9A (ATG9A) decreased parasite loads, demonstrating that autophagy is essential for Leishmania survival. We conclude that Leishmania uses an alternative pathway to induce host autophagy while simultaneously inhibiting mTOR-regulated autophagy to fine-tune the timing and magnitude of this process and to optimize parasite survival.
Collapse
Affiliation(s)
- Sneha A Thomas
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and
| | - Devki Nandan
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and
| | - Jennifer Kass
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and
| | - Neil E Reiner
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and .,the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
28
|
Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell Death Dis 2017; 8:3207. [PMID: 29238039 PMCID: PMC5870595 DOI: 10.1038/s41419-017-0011-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) can promote progressive vacuolation and gastric injury and may be associated with human gastric cancer. Increasing evidence indicates that autophagy is involved in the cell death induced by VacA, but the specific mechanisms need to be further elucidated. We show here that VacA could induce autophagy and increase cell death in human gastric cancer cell lines. Further investigations revealed that inhibition of autophagy could decrease the VacA-induced cell death in AGS cells. Furthermore, numerous dilated endoplasmic reticula (ER) were observed, and the phosphorylation of a subunit of eukaryotic translation initiation factor 2 subunit 1 also increased in the VacA-treated AGS cells, while repression of ER stress could reduce autophagy and cell death through knockdown of activating transcription factor 4 and DNA-damage-inducible transcript 3. In addition, the expression of pseudokinase tribbles homolog 3 (TRIB3) upon ER stress was triggered by VacA, and knockdown of TRIB3 could also decrease VacA-induced cell death. Finally, inhibition of autophagy could decrease VacAs1m1-induced cell death and apoptosis, and apoptosis inhibitor Z-VAD had no significant effect on autophagy induced by VacAs1m1. Thus, these results suggested that VacA causes autophagic cell death via ER stress in gastric epithelial cells.
Collapse
|
29
|
Zarei M, Mosayebi G, Khansarinejad B, Abtahi H. Antigenic and immunogenic evaluation of Helicobacter pylori FlaA epitopes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:920-926. [PMID: 29085584 PMCID: PMC5651478 DOI: 10.22038/ijbms.2017.9115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective(s): Helicobacter pylori are among most common human pathogens affecting at least half of the world’s population. Mobility is one of the important primary factors in bacterial colonization and invasion. The purpose of this research is cloning, expression, and purification of FlaA protein specific epitopes in order to evaluate their antigenicity and immunogenicity. Materials and Methods: The antigenic region of the flaA gene was bioinformatically predicted using Epitope mapping software’s and the predicted epitopes were expressed in a prokaryotic expression vector. The antigen was injected into the animal model (mice BALB/c) and some indicators including IgG1, IgG2a, IgA, IFN-γ, and IL 5 were measured. Results: The immunogenicity studies in animal models by measuring serum antibodies (IgG1, IgG2a, and IgA) and cytokines (IFN-γ and IL5) revealed that the rFlaA induces a proper immune response in animal models. Conclusion: The recombinant FlaA protein is antigenic and immunogenic. Therefore, it might be used in order to design of specific diagnostic kits and recombinant vaccines against H. pylori.
Collapse
Affiliation(s)
- Mansoor Zarei
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
30
|
Zhang D, Qiu W, Wang P, Zhang P, Zhang F, Wang P, Sun Y. Autophagy can alleviate severe burn-induced damage to the intestinal tract in mice. Surgery 2017. [PMID: 28624177 DOI: 10.1016/j.surg.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The present study was designed to examine the effect of autophagy and apoptosis on intestinal injury in mice after severe burns. METHODS Kunming mice were subjected to third degree burns over 30% of the total body surface area. Damage to the intestine was assessed by examining changes in intestinal mucosal morphology, enzyme-linked immunosorbent assay of serum d-lactate, diamine oxidase, lipopolysaccharide, interleukin-6, and tumor necrosis factor α (marker of intestinal damage), hematoxylin and eosin staining, and Western blotting under 4 experimental conditions: control group, burn only (burn group), burn and administration of rapamycin to stimulate intestinal autophagy (rapamycin group), or burn and administration of 3-methyladenine to inhibit intestinal autophagy (3-methyladenine group). RESULTS At day 1 postburn, the expression levels of light chain 3 II, beclin-1, and cleaved caspase-3 were significantly greater in all 3 groups of mice subjected to the burn injury than in the control group 1 day postburn; while the levels of light chain 3 II and beclin-1 were significantly greater and those of cleaved caspase-3 were significantly less in the rapamycin group than in the burn group. In contrast, light chain 3 II and beclin-1 levels were significantly less and those of cleaved caspase-3 significantly greater in the 3-methyladenine group. All 3 groups subjected to burn injury showed significantly increased levels of d-lactate, diamine oxidase, lipopolysaccharide, interleukin-6, and tumor necrosis factor α. Of the 3 groups, the rapamycin group exhibited the least observed levels, the 3-methyladenine group the greatest, and the burn group intermediate. Pathologic sections of the intestinal tissue showed that all 3 burn groups exhibited severe intestinal mucosal damage at 1 day postburn. The condition of the 3-methyladenine treatment group was worse than that of the rapamycin treatment group, but better than that of the burn group. CONCLUSION Intestinal autophagy is activated in response to intestinal apoptosis after severe burns and may alleviate burn-induced intestinal injury.
Collapse
Affiliation(s)
- Duanyang Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China.
| | - Wei Qiu
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Peng Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Pan Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Fang Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - PeiP Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Yong Sun
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| |
Collapse
|
31
|
Qian HR, Yang Y. Functional role of autophagy in gastric cancer. Oncotarget 2017; 7:17641-51. [PMID: 26910278 PMCID: PMC4951239 DOI: 10.18632/oncotarget.7508] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a highly regulated catabolic pathway responsible for the degradation of long-lived proteins and damaged intracellular organelles. Perturbations in autophagy are found in gastric cancer. In host gastric cells, autophagy can be induced by Helicobacter pylori (or H. pylori) infection, which is associated with the oncogenesis of gastric cancer. In gastric cancer cells, autophagy has both pro-survival and pro-death functions in determining cell fate. Besides, autophagy modulates gastric cancer metastasis by affecting a wide range of pathological events, including extracellular matrix (ECM) degradation, epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, and tumor microenvironment. In addition, some of the autophagy-related proteins, such as Beclin 1, microtubule-associated protein 1 light chain 3 (MAP1-LC3), and p62/sequestosome 1 (SQSTM1) have certain prognostic values for gastric cancer. In this article, we review the recent studies regarding the functional role of autophagy in gastric cancer.
Collapse
Affiliation(s)
- Hao-ran Qian
- Department of General Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
32
|
Liao WC, Huang MZ, Wang ML, Lin CJ, Lu TL, Lo HR, Pan YJ, Sun YC, Kao MC, Lim HJ, Lai CH. Statin Decreases Helicobacter pylori Burden in Macrophages by Promoting Autophagy. Front Cell Infect Microbiol 2017; 6:203. [PMID: 28144585 PMCID: PMC5239775 DOI: 10.3389/fcimb.2016.00203] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been found to provide protective effects against several bacterial infectious diseases. Although the use of statins has been shown to enhance antimicrobial treated Helicobacter pylori eradication and reduce H. pylori-mediated inflammation, the mechanisms underlying these effects remain unclear. In this study, in vitro and ex vivo macrophage models were established to investigate the molecular pathways involved in statin-mediated inhibition of H. pylori-induced inflammation. Our study showed that statin treatment resulted in a dose-dependent decrease in intracellular H. pylori burden in both RAW264.7 macrophage cells and murine peritoneal exudate macrophages (PEMs). Furthermore, statin yielded enhanced early endosome maturation and subsequent activation of the autophagy pathway, which promotes lysosomal fusion resulting in degradation of sequestered bacteria, and in turn attenuates interleukin (IL)-1β production. These results indicate that statin not only reduces cellular cholesterol but also decreases the H. pylori burden in macrophages by promoting autophagy, consequently alleviating H. pylori-induced inflammation.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Graduate Institute of Clinical Medical Science, China Medical UniversityTaichung, Taiwan; Department of Pulmonary and Critical Care Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mei-Zi Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical UniversityTaichung, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Michelle Lily Wang
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University Taichung, Taiwan
| | - Chun-Jung Lin
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical UniversityTaichung, Taiwan; Department of Urology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University Taichung, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University Kaohsiung, Taiwan
| | - Yi-Jiun Pan
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University Taichung, Taiwan
| | - Yu-Chen Sun
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Taoyuan, Taiwan
| | - Min-Chuan Kao
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Hui-Jing Lim
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Graduate Institute of Basic Medical Science, School of Medicine, China Medical UniversityTaichung, Taiwan; Department of Nursing, Asia UniversityTaichung, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial HospitalTaoyuan, Taiwan
| |
Collapse
|
33
|
Kimmey JM, Stallings CL. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends Mol Med 2016; 22:1060-1076. [PMID: 27866924 DOI: 10.1016/j.molmed.2016.10.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens.
Collapse
Affiliation(s)
- Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Chiu KH, Wang LH, Tsai TT, Lei HY, Liao PC. Secretomic Analysis of Host-Pathogen Interactions Reveals That Elongation Factor-Tu Is a Potential Adherence Factor of Helicobacter pylori during Pathogenesis. J Proteome Res 2016; 16:264-273. [PMID: 27764940 DOI: 10.1021/acs.jproteome.6b00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The secreted proteins of bacteria are usually accompanied by virulence factors, which can cause inflammation and damage host cells. Identifying the secretomes arising from the interactions of bacteria and host cells could therefore increase understanding of the mechanisms during initial pathogenesis. The present study used a host-pathogen coculture system of Helicobacter pylori and monocytes (THP-1 cells) to investigate the secreted proteins associated with initial H. pylori pathogenesis. The secreted proteins from the conditioned media from H. pylori, THP-1 cells, and the coculture were collected and analyzed using SDS-PAGE and LC-MS/MS. Results indicated the presence of 15 overexpressed bands in the coculture. Thirty-one proteins were identified-11 were derived from THP-1 cells and 20 were derived from H. pylori. A potential adherence factor from H. pylori, elongation factor-Tu (EF-Tu), was selected for investigation of its biological function. Results from confocal microscopic and flow cytometric analyses indicated the contribution of EF-Tu to the binding ability of H. pylori in THP-1. The data demonstrated that fluorescence of EF-Tu on THP-1 cells increased after the addition of the H. pylori-conditioned medium. This study reports a novel secretory adherence factor in H. pylori, EF-Tu, and further elucidates mechanisms of H. pylori adaptation for host-pathogen interaction during pathogenesis.
Collapse
Affiliation(s)
- Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University , Kaohsiung 81157, Taiwan
| | - Ling-Hui Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University , Tainan 70428, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan 70101, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan 70101, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University , Tainan 70428, Taiwan
| |
Collapse
|
35
|
Microfilariae of Brugia malayi Inhibit the mTOR Pathway and Induce Autophagy in Human Dendritic Cells. Infect Immun 2016; 84:2463-72. [PMID: 27297394 DOI: 10.1128/iai.00174-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023] Open
Abstract
Immune modulation is a hallmark of patent filarial infection, including suppression of antigen-presenting cell function and downmodulation of filarial antigen-specific T cell responses. The mammalian target of rapamycin (mTOR) signaling pathway has been implicated in immune regulation, not only by suppressing T cell responses but also by regulating autophagy (through mTOR sensing amino acid availability). Global proteomic analysis (liquid chromatography-tandem mass spectrometry) of microfilaria (mf)-exposed monocyte-derived dendritic cells (DC) indicated that multiple components of the mTOR signaling pathway, including mTOR, eIF4A, and eIF4E, are downregulated by mf, suggesting that mf target this pathway for immune modulation in DC. Utilizing Western blot analysis, we demonstrate that similar to rapamycin (a known mTOR inhibitor), mf downregulate the phosphorylation of mTOR and its regulatory proteins, p70S6K1 and 4E-BP1, a process essential for DC protein synthesis. As active mTOR signaling regulates autophagy, we examined whether mf exposure alters autophagy-associated processes. mf-induced autophagy was reflected in marked upregulation of phosphorylated Beclin 1, known to play an important role in both autophagosome formation and autolysosome fusion, in induction of LC3II, a marker of autophagosome formation, and in induced degradation of p62, a ubiquitin-binding protein that aggregates protein in autophagosomes and is degraded upon autophagy that was reduced significantly by mf exposure and by rapamycin. Together, these results suggest that Brugia malayi mf employ mechanisms of metabolic modulation in DC to influence the regulation of the host immune response by downregulating mTOR signaling, resulting in increased autophagy. Whether this is a result of the parasite-secreted rapamycin homolog is currently under study.
Collapse
|
36
|
Singh A, Blaskovic D, Joo J, Yang Z, Jackson SH, Coleman WG, Yan M. Investigating the Role of Helicobacter pylori PriA Protein. Helicobacter 2016; 21:295-304. [PMID: 26817518 PMCID: PMC8483055 DOI: 10.1111/hel.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA binding property allows it to recognize and stabilize stalled forks and the structures derived from them. PriA plays a very critical role in replication fork stabilization and DNA repair in E. coli and N. gonorrhoeae. In our in vivo expression technology screen, priA gene was induced in vivo when Helicobacter pylori infects mouse stomach. MATERIALS AND METHODS We decided to elucidate the role of H. pylori PriA protein in survival in mouse stomach, survival in gastric epithelial cells and macrophage cells, DNA repair, acid stress, and oxidative stress. RESULTS The priA null mutant strain was unable to colonize mice stomach mucosa after long-term infections. Mouse colonization was observed after 1 week of infection, but the levels were much lower than the wild-type HpSS1 strain. PriA protein was found to be important for intracellular survival of epithelial cell-/macrophage cell-ingested H. pylori. Also, a priA null mutant was more sensitive to DNA-damaging agents and was much more sensitive to acid and oxidative stress as compared to the wild-type strain. CONCLUSIONS These data suggest that the PriA protein is needed for survival and persistence of H. pylori in mice stomach mucosa.
Collapse
Affiliation(s)
- Aparna Singh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dusan Blaskovic
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jungsoo Joo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Zhen Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sharon H. Jackson
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - William G. Coleman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - Ming Yan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Ricci V. Relationship between VacA Toxin and Host Cell Autophagy in Helicobacter pylori Infection of the Human Stomach: A Few Answers, Many Questions. Toxins (Basel) 2016; 8:toxins8070203. [PMID: 27376331 PMCID: PMC4963836 DOI: 10.3390/toxins8070203] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about half the global population and represents the greatest risk factor for gastric malignancy. The relevance of H. pylori for gastric cancer development is equivalent to that of tobacco smoking for lung cancer. VacA toxin seems to play a pivotal role in the overall strategy of H. pylori towards achieving persistent gastric colonization. This strategy appears to involve the modulation of host cell autophagy. After an overview of autophagy and its role in infection and carcinogenesis, I critically review current knowledge about the action of VacA on host cell autophagy during H. pylori infection of the human stomach. Although VacA is a key player in modulation of H. pylori-induced autophagy, a few discrepancies in the data are also evident and many questions remain to be answered. We are thus still far from a definitive understanding of the molecular mechanisms through which VacA affects autophagy and the consequences of this toxin action on the overall pathogenic activity of H. pylori.
Collapse
Affiliation(s)
- Vittorio Ricci
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia Medical School, Via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
38
|
Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, Gao P. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol 2016; 22:3978-3991. [PMID: 27099441 PMCID: PMC4823248 DOI: 10.3748/wjg.v22.i15.3978] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival. METHODS The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay. RESULTS Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P < 0.05, vs no H. pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3' untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P < 0.05, vs control cells without mir-30d mimic treatment). Mir-30d mimic transfection and direct inhibition of autophagy increased the intracellular survival of H. pylori in AGS cells. CONCLUSION Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway.
Collapse
|
39
|
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016; 39:14-23. [PMID: 27105595 PMCID: PMC6138426 DOI: 10.1016/j.bj.2015.06.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
40
|
Yap TWC, Gan HM, Lee YP, Leow AHR, Azmi AN, Francois F, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J. Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS One 2016; 11:e0151893. [PMID: 26991500 PMCID: PMC4798770 DOI: 10.1371/journal.pone.0151893] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome. Methods As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18–30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline. Results We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000–170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders. Conclusions Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.
Collapse
Affiliation(s)
- Theresa Wan-Chen Yap
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Han-Ming Gan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yin-Peng Lee
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Alex Hwong-Ruey Leow
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Najib Azmi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 55100, Kuala Lumpur, Malaysia
| | - Fritz Francois
- New York University Cancer Institute, New York, NY, 10016, United States of America
- Department of Medicine, New York University School of Medicine, New York, NY 10016, United States of America
| | - Guillermo I. Perez-Perez
- Department of Medicine, New York University School of Medicine, New York, NY 10016, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, United States of America
| | - Mun-Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
41
|
Deen NS, Gong L, Naderer T, Devenish RJ, Kwok T. Analysis of the Relative Contribution of Phagocytosis, LC3-Associated Phagocytosis, and Canonical Autophagy During Helicobacter pylori Infection of Macrophages. Helicobacter 2015; 20:449-59. [PMID: 25864465 DOI: 10.1111/hel.12223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Previous findings have suggested that Helicobacter pylori induces autophagic processes and subsequently takes refuge in autophagosomes, thereby contributing to persistent infection. Recently, a noncanonical form of autophagy, LC3 (microtubule-associated protein 1 light chain 3)-associated phagocytosis (LAP), has been shown to be required for efficient clearance of some intracellular bacteria. Whether H. pylori infection induces LAP had not been examined previously. In this study, we determined the extent to which H. pylori infection induces canonical autophagy or LAP in macrophages, and the involvement of the H. pylori cag pathogenicity island (cagPAI) with these processes. METHODS Immunofluorescence confocal microscopy was used to analyze the formation of GFP-LC3 puncta and their colocalization with H. pylori. Transmission electron microscopy was used to detect the ultrastructure of H. pylori-containing compartments. RESULTS The majority of intracellular bacteria (85-95%) were found in phagosomes that were LC3-negative, with a small proportion (4-14%) appearing "free" in the cytosol. Only a very small percentage (0.5-6%) of intracellular H. pylori was sequestered in autophagosomes. Furthermore, no statistically significant difference in the relative distribution of H. pylori in the various compartments was observed between wild-type and cagPAI-mutant bacteria. CONCLUSIONS In macrophages, H. pylori infection does not induce LAP, but can induce canonical autophagy, which entraps a very small fraction of intracellular bacteria. We propose that this subpopulation of intracellular H. pylori might have escaped from phagosomes into the cytosol before being sequestered by autophagosomes. The cagPAI of H. pylori has only minor influence, if any, on the extent of these processes.
Collapse
Affiliation(s)
- Nadia S Deen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
42
|
Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol 2015; 6:111-132. [PMID: 26468448 PMCID: PMC4600186 DOI: 10.5306/wjco.v6.i5.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis.
Collapse
|
43
|
Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Helicobacter 2015; 20:353-69. [PMID: 25664588 DOI: 10.1111/hel.12211] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Autophagy, a degradation pathway in which cytoplasmic content is engulfed and degraded by lysosomal hydrolases, plays a pivotal role in infection and inflammation. Given that defects in autophagy lead to increased susceptibility to infection, we investigated the role of autophagy in Helicobacter pylori-related gastric cancer (GC). MATERIALS AND METHODS Gene expression of 84 molecules was examined through quantitative real-time PCR in gastric epithelial cells (AGS) and macrophages (THP-1) upon exposure to H. pylori GC026 (GC) and 26695 (gastritis). Further, ATG16L1 rs2241880, IRGM rs13361189, and IRGM rs4958847, polymorphisms that have been investigated in relation to H. pylori infection or GC in Caucasians, were detected by MALDI-TOF mass spectrometry in 304 ethnic Chinese (86 noncardia GC cases/218 functional dyspepsia controls). RESULTS Gene expression analyses showed twenty-eight molecules involved in vesicle nucleation, elongation, and maturation to be significantly down-regulated in H. pylori GC026-challenged AGS cells. Further, core autophagy proteins and autophagy regulators were differentially expressed in H. pylori-challenged THP-1-derived macrophages. Analyses of the selected polymorphisms showed that ATG16L1 rs2241880 increased the risk of GC (OR: 2.38, 95% CI: 1.34-4.24) and H. pylori infection (OR: 1.49, 95% CI: 1.02-2.16) while IRGM rs4958847 decreased GC risk (OR: 0.26, 95% CI: 0.09-0.74) in ethnic Chinese, these effect sizes being especially strong in H. pylori-infected individuals (ATG16L1 rs2241880 and IRGM rs13361189). CONCLUSIONS Our findings indicate that highly virulent H. pylori strains markedly modulate autophagy in the host cell. Further, for the first time, autophagy polymorphisms were associated with GC in Chinese, a high GC-risk population.
Collapse
Affiliation(s)
- Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwong Ming Fock
- Division of Gastroenterology, Department of Medicine, Changi General Hospital, Singapore City, Singapore
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
44
|
Philipson CW, Bassaganya-Riera J, Viladomiu M, Kronsteiner B, Abedi V, Hoops S, Michalak P, Kang L, Girardin SE, Hontecillas R. Modeling the Regulatory Mechanisms by Which NLRX1 Modulates Innate Immune Responses to Helicobacter pylori Infection. PLoS One 2015; 10:e0137839. [PMID: 26367386 PMCID: PMC4569576 DOI: 10.1371/journal.pone.0137839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/22/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori colonizes half of the world’s population as the dominant member of the gastric microbiota resulting in a lifelong chronic infection. Host responses toward the bacterium can result in asymptomatic, pathogenic or even favorable health outcomes; however, mechanisms underlying the dual role of H. pylori as a commensal versus pathogenic organism are not well characterized. Recent evidence suggests mononuclear phagocytes are largely involved in shaping dominant immunity during infection mediating the balance between host tolerance and succumbing to overt disease. We combined computational modeling, bioinformatics and experimental validation in order to investigate interactions between macrophages and intracellular H. pylori. Global transcriptomic analysis on bone marrow-derived macrophages (BMDM) in a gentamycin protection assay at six time points unveiled the presence of three sequential host response waves: an early transient regulatory gene module followed by sustained and late effector responses. Kinetic behaviors of pattern recognition receptors (PRRs) are linked to differential expression of spatiotemporal response waves and function to induce effector immunity through extracellular and intracellular detection of H. pylori. We report that bacterial interaction with the host intracellular environment caused significant suppression of regulatory NLRC3 and NLRX1 in a pattern inverse to early regulatory responses. To further delineate complex immune responses and pathway crosstalk between effector and regulatory PRRs, we built a computational model calibrated using time-series RNAseq data. Our validated computational hypotheses are that: 1) NLRX1 expression regulates bacterial burden in macrophages; and 2) early host response cytokines down-regulate NLRX1 expression through a negative feedback circuit. This paper applies modeling approaches to characterize the regulatory role of NLRX1 in mechanisms of host tolerance employed by macrophages to respond to and/or to co-exist with intracellular H. pylori.
Collapse
Affiliation(s)
- Casandra W. Philipson
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Josep Bassaganya-Riera
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Monica Viladomiu
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Barbara Kronsteiner
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Vida Abedi
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Stefan Hoops
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Pawel Michalak
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Lin Kang
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen E. Girardin
- Laboratory of Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raquel Hontecillas
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Walduck A, Andersen LP, Raghavan S. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection. Helicobacter 2015; 20 Suppl 1:17-25. [PMID: 26372820 DOI: 10.1111/hel.12252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last year, a variety of studies have been published that increases our understanding of the basic mechanisms of immunity and inflammation in Helicobacter pylori infection and progression to gastric cancer. Innate immune regulation and epithelial cell response were covered by several studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection.
Collapse
Affiliation(s)
- Anna Walduck
- Health Innovations Research Institute, School of Applied Sciences RMIT University, Bundoora, Melbourne, Vic., Australia
| | - Leif P Andersen
- Department of Infection Control, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
47
|
Alipour N, Gaeini N, Taner A, Yıldız F, Masseret S, Malfertheiner P. Retracted: Vacuoles ofAcanthamoeba castellaniiBehave as a Specialized Shelter (host) forHelicobacter pylori. Helicobacter 2015. [DOI: 10.1111/hel.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Affiliation(s)
- Nader Alipour
- Department of Biotechnology; METU; Ankara Turkey
- Department of Medical Microbiology; Faculty of Medicine; Giresun university; Giresun Turkey
| | - Nasrin Gaeini
- Department of Radiology; Trakya University; Edirne Turkey
| | - Abbas Taner
- Department of Medical Microbiology; Yuksek ihtisas university; Ankara Turkey
| | - Fatih Yıldız
- Department of Biotechnology; METU; Ankara Turkey
| | - Sadegh Masseret
- Digestive Disease Research Center of Tehran Medical Science university; Shariati hospital; Tehran IRAN
| | - Peter Malfertheiner
- Digestive Disease Department; Otto von Guarig Clinical University; Magdeburg Germany
| |
Collapse
|
48
|
Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep 2015; 5:11046. [PMID: 26078204 PMCID: PMC4468580 DOI: 10.1038/srep11046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
Collapse
|
49
|
Genome Sequence and Annotation of Helicobacter pylori Strain Hp238, Isolated from a Taiwanese Patient with Mucosa-Associated Lymphoid Tissue Lymphoma. GENOME ANNOUNCEMENTS 2015; 3:3/1/e00006-15. [PMID: 25700392 PMCID: PMC4335317 DOI: 10.1128/genomea.00006-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present the complete genome sequence of Helicobacter pylori strain Hp238, isolated from a Taiwanese patient with gastric mucosa-associated lymphoid tissue lymphoma. Importantly, H. pylori strain Hp238 can multiply in THP-1 cells after internalization through the induction of autophagosome formation. These genome data will help to identify genes associated with H. pylori intracellular multiplication and pathogenesis.
Collapse
|
50
|
Saniee P, Siavoshi F. Endocytotic uptake of FITC-labeled anti-H. pylori egg yolk immunoglobulin Y in Candida yeast for detection of intracellular H. pylori. Front Microbiol 2015; 6:113. [PMID: 25852651 PMCID: PMC4362214 DOI: 10.3389/fmicb.2015.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 01/24/2023] Open
Abstract
Intracellular life of Helicobacter pylori inside Candida yeast vacuole describes the establishment of H. pylori in yeast as a pre-adaptation to life in human epithelial cells. IgY-Hp conjugated with fluorescein isothiocyanate (FITC) has been previously used for identification and localization of H. pylori inside the yeast vacuole. Here we examined whether FITC-IgY-Hp internalization into yeast follows the endocytosis pathway in yeast. Fluorescent microscopy was used to examine the entry of FITC-IgY-Hp into Candida yeast cells at different time intervals. The effect of low temperature, H2O2 or acetic acid on the internalization of labeled antibody was also examined. FITC-IgY-Hp internalization initiated within 0-5 min in 5-10% of yeast cells, increased to 20-40% after 30 min-1 h and reached >70% before 2 h. FITC-IgY-Hp traversed the pores of Candida yeast cell wall and reached the vacuole where it bound with H. pylori antigens. Internalization of FITC-IgY-Hp was inhibited by low temperature, H2O2 or acetic acid. It was concluded that internalization of FITC-IgY-Hp into yeast cell is a vital phenomenon and follows the endocytosis pathway. Furthermore, it was proposed that FITC-IgY-Hp internalization could be recruited for localization and identification of H. pylori inside the vacuole of Candida yeast.
Collapse
Affiliation(s)
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|