1
|
Cho N, Kalia LV, Kalia SK. Re-examining the pathobiological basis of gait dysfunction in Parkinson's disease. Trends Neurosci 2025; 48:189-199. [PMID: 39884904 DOI: 10.1016/j.tins.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease (PD) is a significant source of morbidity, especially with an aging population. Gait problems, particularly freezing of gait (FOG), remain a persistent issue, causing falls and reduced quality of life without consistent responses to therapies. PD and related symptoms have classically been attributed to dopamine deficiency secondary to substantia nigra degeneration from Lewy body (LB) and Lewy neurite (LN) infiltration. However, Lewy-related pathology is present in other areas of the brainstem and spinal cord that control gait function, yet these other circuits have not been routinely considered in the design of current therapeutic options. In this review, we summarize changes in brainstem and spinal cord circuits in individuals affected by PD and the implications for understanding of gait dysfunction in PD.
Collapse
Affiliation(s)
- Newton Cho
- Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Lorraine V Kalia
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada; Department of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
2
|
Leung CHS, Simpson HD, Thyagarajan D. The Place of Local Field Potentials in Deep Brain Stimulation Programming for Parkinson's Disease: A Review. Brain Sci 2025; 15:116. [PMID: 40002449 PMCID: PMC11853521 DOI: 10.3390/brainsci15020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objections: The pharmacological management of Parkinson's Disease (PD) is often supplemented by deep brain stimulation (DBS) to tackle problems of advanced disease such as motor fluctuation, dyskinesias or medication-resistant tremor. DBS uses high-frequency stimulation with spatially distributed electrodes to produce electrical fields that influence neuronal networks. The programming of such stimulation is complex and time-consuming. Recent technological advancements have enabled DBS systems to record local field potentials (LFPs). In conjunction with biomarker discovery, such as beta oscillations, this shows promise in streamlining the DBS programming process. This review aims to synthesize the current literature investigating LFP characteristics in PD in order to understand the place of LFPs in assisting with DBS programming. METHODS A comprehensive literature search was conducted using databases including OVID MEDLINE, Scopus, and Cochrane Library, resulting in 738 identified articles; 122 studies remained after screening and 87 studies were selected for detailed analysis. RESULTS Analyzing LFPs clearly has the potential to assist or streamline DBS programming in clinical practice, but there are knowledge gaps and challenges to overcome, especially in the utilization of intraoperative LFPs. CONCLUSIONS More research is required to compare different algorithms that utilize LFPs in DBS programming to identify a simple, practical and time-saving algorithm incorporating reliable LFP biomarkers that will enhance the DBS programming experience for both patients and clinicians.
Collapse
Affiliation(s)
- Chun Him Shelton Leung
- Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; (C.H.S.L.); (H.D.S.)
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Hugh D. Simpson
- Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; (C.H.S.L.); (H.D.S.)
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Dominic Thyagarajan
- Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; (C.H.S.L.); (H.D.S.)
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
3
|
Wei K, Ping H, Tang X, Li D, Zhan S, Sun B, Kong X, Cao C. The effect of L-dopa and DBS on cortical oscillations in Parkinson's disease analyzed by hidden Markov model algorithm. Neuroimage 2025; 305:120992. [PMID: 39742983 DOI: 10.1016/j.neuroimage.2024.120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a movement disorder caused by dopaminergic neurodegeneration. Both Levodopa (L-dopa) and Subthalamic Deep Brain Stimulation (STN-DBS) effectively alleviate symptoms, yet their cerebral effects remain under-explored. Understanding these effects is essential for optimizing treatment strategies and assessing disease severity. Magnetoencephalogram (MEG) data provide a continuous time series signal that reflects the dynamic changes in brain activity. The hidden Markov model (HMM) can capture and model the temporal features and underlying states of the MEG signal to extract potential brain states and monitor dynamic changes. In this study, we employed HMM to investigate the cortical mechanism underlying the treatment of PD patients using MEG recordings. METHODS 21 PD patients treated with medication underwent MEG recording in both L-dopa medoff and medon conditions. Additionally, 11 PD patients receiving STN-DBS treatment underwent MEG recording in both dbsoff and dbson conditions. The MEG data were segmented into four states by Time-delay embedded Hidden Markov Model (TDE-HMM) algorithm. The state parameters including Fractional Occupancy (FO), Interval Times (IT), and Life Time (LT) for each state and power spectrum of β band were analyzed to study the effects of L-dopa and STN-DBS treatment respectively. RESULTS L-dopa significantly increased the motor state of HMM and power in the motor area of both high β (21-35 Hz) and low β (13-20 Hz); the motor state of high β in medoff were correlated with the Unified Parkinson's Disease Rating Scale III (UPDRS III). Conversely, DBS significantly diminishes the motor state of HMM and power in motor area of high β oscillations. The score changes of tremor and limb rigidity after DBS treatment were significantly correlated with the changes of motor state of high β. CONCLUSIONS This study demonstrates that L-dopa and STN-DBS exert differing effects on β oscillations in the motor cortex of PD patients, primarily in high β band. Understanding these distinct neurophysiological impacts can provide valuable insights for refining therapeutic approaches in motor control for PD patients.
Collapse
Affiliation(s)
- Kunzhou Wei
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China
| | - Hang Ping
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China
| | | | - Dianyou Li
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyan Kong
- School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; The Institute for Future Wireless Research (iFWR), Ningbo University, Ningbo 315211, China.
| | - Chunyan Cao
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Ruan H, Tong G, Jin M, Koch K, Wang Z. Mechanisms of nucleus accumbens deep brain stimulation in treating mental disorders. FUNDAMENTAL RESEARCH 2025; 5:48-54. [PMID: 40166085 PMCID: PMC11955059 DOI: 10.1016/j.fmre.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 04/02/2025] Open
Abstract
Growing evidence supports the effectiveness of deep brain stimulation (DBS) in treating various psychiatric disorders. DBS has the potential to selectively stimulate specific subcortical brain areas thus providing high-frequency electric stimulation of these regions. The nucleus accumbens (NAc), a frequent DBS target, has shown promise in treating psychiatric conditions like depression, obsessive-compulsive disorder, and addiction. In this review, we provide an overview across studies investigating the effects of NAc DBS in humans and animals and discuss potential mechanisms underlying its clinical efficacy. We address the anatomical properties of NAc and discuss, in particular, the frequently reported differential effects of NAc shell and NAc core DBS. Moreover, by outlining the various NAc cell types, transmitter systems (i.e., predominantly GABAergic and dopaminergic systems) and anatomical pathways that have been shown to be relevant for NAc DBS stimulation effects, we aim to further elucidate the neurobiological determinants of NAc DBS efficacy. Finally, since treatment effects of NAc DBS are most probably also related to alterations in NAc connected circuits or networks, we review studies focusing on the investigation of NAc DBS network effects. By examining these various components that are assumed to be of relevance in the context of NAc DBS, this review will hopefully contribute to increasing our knowledge about the mechanisms underlying NAc DBS and optimizing future selection of optimal DBS targets.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kathrin Koch
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
- Department of Neuroradiology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich 81675, Germany
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- School of Psychology, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| |
Collapse
|
5
|
Li WY, Qu WR, Li Y, Wang SY, Liu DM, Deng LX, Wang Y. DBS in the restoration of motor functional recovery following spinal cord injury. Front Neurol 2024; 15:1442281. [PMID: 39697443 PMCID: PMC11652279 DOI: 10.3389/fneur.2024.1442281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms. A literature review via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals a growing body of evidence for therapeutic DBS in SCI recovery. Advances in techniques like optogenetics and whole-brain tractogram have helped elucidate DBS mechanisms. Neuronal targets sites for SCI functional recovery include the mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray (PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional recovery treatment. Radiologically guided DBS optimization and combination therapy with classical rehabilitation have become an effective therapeutic method, though ongoing interventional trials are needed to enhance understanding and validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-clinical approaches are essential to enhance the quality of evidence on DBS safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds promise for neurological and functional recovery after SCI, akin to other electrical stimulation approaches.
Collapse
Affiliation(s)
- Wen-yuan Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Wen-rui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Shu-ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Dong-ming Liu
- Department of Neurology, Mudanjiang First People’s Hospital, Mudanjiang, China
| | - Ling-xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| |
Collapse
|
6
|
Kostiuk K. Stereotactic Staged Asymmetric Bilateral Radiofrequency Lesioning for Parkinson's Disease. Stereotact Funct Neurosurg 2023; 101:359-368. [PMID: 37844550 DOI: 10.1159/000534084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is one of the most common neurodegenerative progressive disorders. Despite the dominance of neurostimulation technology, stereotactic lesioning operations play a significant role in the treatment of PD. The aim of the study was to evaluate the effectiveness and safety of staged bilateral asymmetric radiofrequency (RF) stereotactic lesioning in a highly selected group of PD patients. MATERIAL AND METHODS A retrospective review of 418 consecutive patients undergoing stereotactic ablation for advanced PD at our institution revealed 28 patients who underwent staged asymmetric bilateral ablation. In this subset, after initial RF thalamotomy, contralateral pallidotomy was performed in 16 (57.1%) patients (group Vim-GPi), and contralateral lesion of the subthalamic nucleus (STN) was performed in 12 (32.9%) patients (group Vim-STN). The mean duration of disease before the first surgery was 9.9 ± 0.8 years. The mean interval between the two operations was 3.5 ± 0.4 years (range, 1-10 years); in the Vim-GPi group, it was 3.1 ± 0.4 years; and in the Vim-STN group, it was 4.3 ± 0.1 years. After the second operation, the long-term follow-up lasted from 1 to 8 years (mean 4.8 ± 0.5 years). All patients were evaluated 1 year after the second operation. RESULTS One year after staged bilateral lesioning, the mean tremor score improved from baseline, prior to the first operation, from 19.8 to 3.8 (improvement of 81%), the overall mean rigidity score improved from 11.0 to 3.7 (improvement of 66%), and hypokinesia improved from 14.8 to 8.9 (improvement of 40%). One year after staged bilateral lesioning, the total UPDRS score improved in the Vim-GPi group by 47% in the OFF and 45.9% in the ON states. In the Vim-STN group, the total UPDRS score improved from baseline, prior to the first operation, by 44.8% in the OFF and 51.6% in the ON states. Overall, levodopa dose was reduced by 43.4%. Neurological complications were observed in 4 (14.3%) cases; among them, 1 (3.6%) patient had permanent events related to local ischemia after pallidotomy. CONCLUSION Staged asymmetric bilateral stereotactic RF lesioning can be a safe and effective method in highly selected patients with advanced PD, particularly where deep brain stimulation is not available or desirable. Careful identification and selection of patients for ablative surgery allow achieving optimal results in the treatment of PD with bilateral symptoms.
Collapse
Affiliation(s)
- Kostiantyn Kostiuk
- Department of Functional Neurosurgery and Neuromodulation, SI "Romodanov Neurosurgery Institute NAMS of Ukraine", Kyiv, Ukraine
| |
Collapse
|
7
|
Chuang TC, Tan JQ, Chen SM. Comparison of intraoperative imaging guided versus microelectrode recording guided deep brain stimulation for Parkinson's disease: A meta-analysis. NEUROCIRUGIA (ENGLISH EDITION) 2023; 34:228-237. [PMID: 36931932 DOI: 10.1016/j.neucie.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 03/17/2023]
Abstract
BACKGROUND Traditionally, most centers would use microelectrode recording (MER) to refine targeting in deep brain stimulation (DBS) surgery. In recent years, intraoperative imaging (IMG) guided DBS has become an alternative way to verify lead placement. Currently, there is still controversy surrounding the necessity of MER or IMG for DBS. This meta-analysis aims to explore lead accuracy, clinical efficacy and safety between IMG and MER guided DBS for Parkinson's disease (PD). METHODS PubMed, Embase, Web of Science, Cochrane Library were searched up to Mar, 2021 for studies reporting comparisons between IMG and MER guided DBS for PD. Subgroup analysis was conducted to assess effects of different IMG technology and DBS targeting site. RESULTS Six studies, comprising of 478 patients were included in our analysis. The mean difference between the two implantation techniques in stereotactic accuracy, lead passes per trajectory, improvement% of Unified Parkinson's Disease Rating Scale part III and levodopa equivalent daily dose were -0.45 (95% confidence interval, CI=-1.11 to 0.20), -0.18 (95% CI=-0.41 to 0.06), 3.40 (95% CI=-5.36 to 12.16), and 5.00 (95% CI=-1.40 to 11.39), respectively. No significant differences were observed in each adverse event and operation/procedure time between the two implantation techniques. CONCLUSIONS Both IMG and MER guided DBS offered effective control of motor symptoms for PD. Besides, IMG guided is comparable to MER guided DBS, in terms of safety, accuracy and efficiency. It is recommended for each hospital to select DBS guidance technology based on available resources and equipment.
Collapse
Affiliation(s)
- Tsung-Che Chuang
- Department of Primary Medicine, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Jia-Qi Tan
- Department of Primary Medicine, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Shu-Mei Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
9
|
Jiang JL, Chen SY, Tsai ST, Ma YC, Wang JH. Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson's Disease. Healthcare (Basel) 2023; 11:healthcare11060920. [PMID: 36981577 PMCID: PMC10048478 DOI: 10.3390/healthcare11060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting both motor functions and quality of life (QoL). This study compared motor symptoms and QoL in patients with PD before and at 1 and 5 years after subthalamic nucleus deep brain stimulation (STN-DBS) surgery in Taiwan. This study included 53 patients with PD undergoing STN-DBS. The motor symptoms improved by 39.71 ± 26.52% and 18.83 ± 37.15% in the Unified Parkinson's Disease Rating Scale (UPDRS) part II and by 36.83 ± 22.51% and 22.75 ± 36.32% in the UPDRS part III at 1 and 5 years after STN-DBS in the off-medication/on-stimulation state, respectively. The Hoehn and Yahr stage significantly improved at the 1-year follow-up but declined progressively and returned to the baseline stage 5 years post-surgery. The Schwab and England Activities of Daily Living improved and sustained for 5 years following STN-DBS. Levodopa equivalent daily dose decreased by 35.32 ± 35.87% and 15.26 ± 65.76% at 1 and 5 years post-surgery, respectively. The QoL revealed significant improvement at 1 year post-surgery; however, patients regressed to near baseline levels 5 years post-surgery. The long-term effects of STN-DBS on motor symptoms were maintained over 5 years after STN-DBS surgery. At the same time, STN-DBS had no long-lasting effect on QoL. The study findings will enable clinicians to become more aware of visible and invisible manifestations of PD.
Collapse
Affiliation(s)
- Jiin-Ling Jiang
- Department of Nursing, Tzu Chi University, Hualien 97004, Taiwan
| | - Shin-Yuan Chen
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sheng-Tzung Tsai
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Yu-Chin Ma
- Department of Nursing, Tzu Chi University, Hualien 97004, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| |
Collapse
|
10
|
Comparison of intraoperative imaging guided versus microelectrode recording guided deep brain stimulation for Parkinson's disease: A meta-analysis. Neurocirugia (Astur) 2022. [DOI: 10.1016/j.neucir.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Salles PA, Liao J, Shuaib U, Mata IF, Fernandez HH. A Review on Response to Device-Aided Therapies Used in Monogenic Parkinsonism and GBA Variants Carriers: A Need for Guidelines and Comparative Studies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1703-1725. [PMID: 35662127 PMCID: PMC9535575 DOI: 10.3233/jpd-212986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is in some cases predisposed-or-caused by genetic variants, contributing to the expression of different phenotypes. Regardless of etiology, as the disease progresses, motor fluctuations and/or levodopa-induced dyskinesias limit the benefit of pharmacotherapy. Device-aided therapies are good alternatives in advanced disease, including deep brain stimulation (DBS), levodopa-carbidopa intestinal gel, and continuous subcutaneous infusion of apomorphine. Candidate selection and timing are critical for the success of such therapies. Genetic screening in DBS cohorts has shown a higher proportion of mutation carriers than in general cohorts, suggesting that genetic factors may influence candidacy for advanced therapies. The response of monogenic PD to device therapies is not well established, and the contribution of genetic information to decision-making is still a matter of debate. The limited evidence regarding gene-dependent response to device-aided therapies is reviewed here. An accurate understanding of the adequacy and responses of different mutation carriers to device-aided therapies requires the development of specific studies with long-term monitoring.
Collapse
Affiliation(s)
- Philippe A Salles
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA.,Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - James Liao
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Umar Shuaib
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
12
|
Nozaki T, Sugiyama K, Asakawa T, Namba H, Yokokura M, Terada T, Bunai T, Ouchi Y. Increased anteroventral striatal dopamine transporter and motor recovery after subthalamic deep brain stimulation in Parkinson's disease. J Neurosurg 2022; 137:468-478. [PMID: 34972089 DOI: 10.3171/2021.10.jns211364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease is effective; however, its mechanism is unclear. To investigate the degree of neuronal terminal survival after STN-DBS, the authors examined the striatal dopamine transporter levels before and after treatment in association with clinical improvement using PET with [11C]2β-carbomethoxy-3β-(4-fluorophenyl)tropane ([11C]CFT). METHODS Ten patients with Parkinson's disease who had undergone bilateral STN-DBS were scanned twice with [11C]CFT PET just before and 1 year after surgery. Correlation analysis was conducted between [11C]CFT binding and off-period Unified Parkinson's Disease Rating Scale (UPDRS) scores assessed preoperatively and postoperatively. RESULTS [11C]CFT uptake reduced significantly in the posterodorsal putamen contralateral to the parkinsonism-dominant side after 1 year; however, an increase was noted in the contralateral anteroventral putamen and ipsilateral ventral caudate postoperatively (p < 0.05). The percentage increase in [11C]CFT binding was inversely correlated with the preoperative binding level in the bilateral anteroventral putamen, ipsilateral ventral caudate, contralateral anterodorsal putamen, contralateral posteroventral putamen, and contralateral nucleus accumbens. The percentage reduction in UPDRS-II score was significantly correlated with the percentage increase in [11C]CFT binding in the ipsilateral anteroventral putamen (p < 0.05). The percentage reduction in UPDRS-III score was significantly correlated with the percentage increase in [11C]CFT binding in the ipsilateral anteroventral putamen, ventral caudate, and nucleus accumbens (p < 0.05). CONCLUSIONS STN-DBS increases dopamine transporter levels in the anteroventral striatum, which is correlated with the motor recovery and possibly suggests the neuromodulatory effect of STN-DBS on dopaminergic terminals in Parkinson's disease patients. A preoperative level of anterior striatal dopamine transporter may predict reserve capacity of STN-DBS on motor recovery.
Collapse
Affiliation(s)
- Takao Nozaki
- 1Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Sugiyama
- 2Department of Neurosurgery, Toyoda Eisei Hospital, Iwata, Japan
| | - Tetsuya Asakawa
- 3Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hiroki Namba
- 4Department of Neurosurgery, JA Shizuoka Kohseiren Enshu Hospital, Hamamatsu, Japan
| | - Masamichi Yokokura
- 5Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- 6Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Bunai
- 7Department of Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- 8Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; and
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Bucur M, Papagno C. Deep Brain Stimulation in Parkinson Disease: A Meta-analysis of the Long-term Neuropsychological Outcomes. Neuropsychol Rev 2022; 33:307-346. [PMID: 35318587 PMCID: PMC10148791 DOI: 10.1007/s11065-022-09540-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidum internus (GPi) improves motor functions in patients with Parkinson's disease (PD) but may cause a decline in specific cognitive domains. The aim of this systematic review and meta-analysis was to assess the long-term (1-3 years) effects of STN or GPi DBS on four cognitive functions: (i) memory (delayed recall, working memory, immediate recall), (ii) executive functions including inhibition control (Color-Word Stroop test) and flexibility (phonemic verbal fluency), (iii) language (semantic verbal fluency), and (iv) mood (anxiety and depression). Medline and Web of Science were searched, and studies published before July 2021 investigating long-term changes in PD patients following DBS were included. Random-effects model meta-analyses were performed using the R software to estimate the standardized mean difference (SMD) computed as Hedges' g with 95% CI. 2522 publications were identified, 48 of which satisfied the inclusion criteria. Fourteen meta-analyses were performed including 2039 adults with a clinical diagnosis of PD undergoing DBS surgery and 271 PD controls. Our findings add new information to the existing literature by demonstrating that, at a long follow-up interval (1-3 years), both positive effects, such as a mild improvement in anxiety and depression (STN, Hedges' g = 0,34, p = 0,02), and negative effects, such as a decrease of long-term memory (Hedges' g = -0,40, p = 0,02), verbal fluency such as phonemic fluency (Hedges' g = -0,56, p < 0,0001), and specific subdomains of executive functions such as Color-Word Stroop test (Hedges' g = -0,45, p = 0,003) were observed. The level of evidence as qualified with GRADE varied from low for the pre- verses post-analysis to medium when compared to a control group.
Collapse
Affiliation(s)
- Madalina Bucur
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.
| |
Collapse
|
14
|
Pozzi NG, Isaias IU. Adaptive deep brain stimulation: Retuning Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:273-284. [PMID: 35034741 DOI: 10.1016/b978-0-12-819410-2.00015-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A brain-machine interface represents a promising therapeutic avenue for the treatment of many neurologic conditions. Deep brain stimulation (DBS) is an invasive, neuro-modulatory tool that can improve different neurologic disorders by delivering electric stimulation to selected brain areas. DBS is particularly successful in advanced Parkinson's disease (PD), where it allows sustained improvement of motor symptoms. However, this approach is still poorly standardized, with variable clinical outcomes. To achieve an optimal therapeutic effect, novel adaptive DBS (aDBS) systems are being developed. These devices operate by adapting stimulation parameters in response to an input signal that can represent symptoms, motor activity, or other behavioral features. Emerging evidence suggests greater efficacy with fewer adverse effects during aDBS compared with conventional DBS. We address this topic by discussing the basics principles of aDBS, reviewing current evidence, and tackling the many challenges posed by aDBS for PD.
Collapse
Affiliation(s)
- Nicoló G Pozzi
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany.
| |
Collapse
|
15
|
Lachenmayer ML, Mürset M, Antih N, Debove I, Muellner J, Bompart M, Schlaeppi JA, Nowacki A, You H, Michelis JP, Dransart A, Pollo C, Deuschl G, Krack P. Subthalamic and pallidal deep brain stimulation for Parkinson's disease-meta-analysis of outcomes. NPJ PARKINSONS DISEASE 2021; 7:77. [PMID: 34489472 PMCID: PMC8421387 DOI: 10.1038/s41531-021-00223-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) and the subthalamic nucleus (STN) has become an established treatment for Parkinson’s disease (PD), a recent meta-analysis of outcomes is lacking. To address this gap, we performed a meta-analysis of bilateral STN- and GPi-DBS studies published from 1990-08/2019. Studies with ≥10 subjects reporting Unified Parkinson’s Disease Rating Scale (UPDRS) III motor scores at baseline and 6–12 months follow-up were included. Several outcome variables were analyzed and adverse events (AE) were summarized. 39 STN studies (2035 subjects) and 5 GPi studies (292 subjects) were eligible. UPDRS-II score after surgery in the stimulation-ON/medication-OFF state compared to preoperative medication-OFF state improved by 47% with STN-DBS and 18.5% with GPi-DBS. UPDRS-III score improved by 50.5% with STN-DBS and 29.8% with GPi-DBS. STN-DBS improved dyskinesia by 64%, daily OFF time by 69.1%, and quality of life measured by PDQ-39 by 22.2%, while Levodopa Equivalent Daily Dose (LEDD) was reduced by 50.0%. For GPi-DBS information regarding dyskinesia, OFF time, PDQ-39 and LEDD was insufficient for further analysis. Correlation analysis showed that preoperative L-dopa responsiveness was highly predictive of the STN-DBS motor outcome across all studies. Most common surgery-related AE were infection (5.1%) and intracranial hemorrhage (3.1%). Despite a series of technological advances, outcomes of modern surgery are still comparable with those of the early days of DBS. Recent changes in target selection with a preference of GPi in elderly patients with cognitive deficits and more psychiatric comorbidities require more published data for validation.
Collapse
Affiliation(s)
- M Lenard Lachenmayer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Melina Mürset
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julia Muellner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Janine-Ai Schlaeppi
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hana You
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joan P Michelis
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guenther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University, Kiel, Germany
| | - Paul Krack
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Kremer NI, Pauwels RWJ, Pozzi NG, Lange F, Roothans J, Volkmann J, Reich MM. Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions. J Clin Med 2021; 10:3468. [PMID: 34441763 PMCID: PMC8397098 DOI: 10.3390/jcm10163468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.
Collapse
Affiliation(s)
- Naomi I. Kremer
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (N.I.K.); (R.W.J.P.)
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Rik W. J. Pauwels
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (N.I.K.); (R.W.J.P.)
| | - Nicolò G. Pozzi
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Florian Lange
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Jonas Roothans
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Martin M. Reich
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| |
Collapse
|
17
|
Permezel F. Brain MRI-guided focused ultrasound conceptualised as a tool for brain network intervention. J Clin Neurosci 2021; 90:370-379. [PMID: 34275578 DOI: 10.1016/j.jocn.2021.05.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging guided high intensity focused ultrasound (HIFU) has emerged as a tool offering incisionless intervention on brain tissue. The low risk and rapid recovery from this procedure, in addition to the ability to assess for clinical benefit and adverse events intraprocedurally, makes it an ideal tool for intervention upon brain networks both for clinical and research applications. This review article proposes that conceptualising brain focused ultrasound as a tool for brain network intervention and adoption of methodology to complement this approach may result in better clinical outcomes, fewer adverse events and may unveil or allow treatment opportunities not otherwise possible. A brief introduction to network neuroscience is discussed before a description of pathological brain networks is provided for a number of conditions for which MRI-guided brain HIFU intervention has been implemented. Essential Tremor is discussed as the most advanced example of MRI-guided brain HIFU intervention adoption along with the issues that present with this treatment modality compared to alternatives. The brain network intervention paradigm is proposed to overcome these issues and a number of examples of implementation of this are discussed. The ability of low intensity MRI guided focussed ultrasound to neuromoduate brain tissue without lesioning is introduced. This tool is discussed with regards to its potential clinical application as well as its potential to further our understanding of network neuroscience via its ability to interrogate brain networks without damaging tissue. Finally, a number of current clinical trials utilising brain focused ultrasound are discussed, along with the additional applications available from the utilisation of low intensity focused ultrasound.
Collapse
Affiliation(s)
- Fiona Permezel
- Austin Hospital, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Austin Hospital, Victoria, Australia.
| |
Collapse
|
18
|
Costanza A, Radomska M, Bondolfi G, Zenga F, Amerio A, Aguglia A, Serafini G, Amore M, Berardelli I, Pompili M, Nguyen KD. Suicidality Associated With Deep Brain Stimulation in Extrapyramidal Diseases: A Critical Review and Hypotheses on Neuroanatomical and Neuroimmune Mechanisms. Front Integr Neurosci 2021; 15:632249. [PMID: 33897384 PMCID: PMC8060445 DOI: 10.3389/fnint.2021.632249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a very well-established and effective treatment for patients with extrapyramidal diseases. Despite its generally favorable clinical efficacy, some undesirable outcomes associated with DBS have been reported. Among such complications are incidences of suicidal ideation (SI) and behavior (SB) in patients undergoing this neurosurgical procedure. However, causal associations between DBS and increased suicide risk are not demonstrated and they constitute a debated issue. In light of these observations, the main objective of this work is to provide a comprehensive and unbiased overview of the literature on suicide risk in patients who received subthalamic nucleus (STN) and internal part of globus pallidum (GPi) DBS treatment. Additionally, putative mechanisms that might be involved in the development of SI and SB in these patients as well as caveats associated with these hypotheses are introduced. Finally, we briefly propose some clinical implications, including therapeutic strategies addressing these potential disease mechanisms. While a mechanistic connection between DBS and suicidality remains a controversial topic that requires further investigation, it is of critical importance to consider suicide risk as an integral component of candidate selection and post-operative care in DBS.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland.,Department of Psychiatry, ASO Santi Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Michalina Radomska
- Faculty of Psychology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Guido Bondolfi
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland.,Department of Psychiatry, Service of Liaison Psychiatry and Crisis Intervention (SPLIC), Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Francesco Zenga
- Department of Neurosurgery, University and City of Health and Science Hospital, Turin, Italy
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Mood Disorders Program, Tufts Medical Center, Boston, MA, United States
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Khoa D Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, United States.,Tranquis Therapeutics, Palo Alto, CA, United States.,Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
19
|
STN versus GPi deep brain stimulation for dyskinesia improvement in advanced Parkinson's disease: A meta-analysis of randomized controlled trials. Clin Neurol Neurosurg 2020; 201:106450. [PMID: 33421741 DOI: 10.1016/j.clineuro.2020.106450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/14/2020] [Accepted: 12/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the globus pallidus internus (GPi) are currently the most common and effective surgical targets for advanced Parkinson's disease (APD). Herein, we conducted a meta-analysis to evaluate the comprehensive efficacy of STN-DBS and GPi-DBS in patients with APD. METHODS We conducted a systematic search for relevant articles written in English in the Cochrane Library, PubMed, and EMBASE databases through January 2020. Studies comparing the efficacy and clinical outcomes of GPi-DBS and STN-DBS for APD were included and analyzed. RESULTS Ten eligible trials with a total of 857 patients were included in this meta-analysis. The results showed no significant difference between the STN-DBS and GPi-DBS groups in Unified Parkinson's Disease Rating Scale (UPDRS) III scores during the on and off-medication phases(SMD, 0.1; 95 % CI, -0.04 to 0.25; p = 0.17, on-med), (SMD,-0.12;95 % CI -0.37 to 0.13, p = 0.33,off-med). Dyskinesia scores and the activities of daily living (ADLs) scores during the on-medication phase showed significant differences in favor of GPi stimulation (SMD, 0.16; 95 % CI, 0.01-0.32; P < 0.05)/(SMD, 0.18; 95 % CI, 0.01-0.34; P < 0.05). The ADLs score during the off-medication phase showed no significant difference between the STN-DBS and GPi-DBS groups (SMD, -0.11; 95 % CI, -0.32-0.11; P = 0.33). The LED showed significant differences in favor of STN stimulation (SMD, -0.57; 95 % CI, -0.74-0.40; P < 0.00001). CONCLUSIONS Both STN and GPi-DBS were equally effective in improving motor dysfunction. STN-DBS was superior for medication reduction, whereas GPi-DBS perhaps led to less dyskinesia and improved the postoperative ADLs (on-medication) in APD patients. Hence, the goals of DBS can be important in the target selection. More studies comparing the adverse events and quality of life between the two targets are needed.
Collapse
|
20
|
Teton ZE, Blatt D, AlBakry A, Obayashi J, Ozturk G, Hamzaoglu V, Magown P, Selden NR, Burchiel KJ, Raslan AM. Natural history of neuromodulation devices and therapies: a patient-centered survival analysis. J Neurosurg 2020; 132:1385-1391. [PMID: 31003217 DOI: 10.3171/2019.2.jns182450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Despite rapid development and expansion of neuromodulation technologies, knowledge about device and/or therapy durability remains limited. The aim of this study was to evaluate the long-term rate of hardware and therapeutic failure of implanted devices for several neuromodulation therapies. METHODS The authors performed a retrospective analysis of patients' device and therapy survival data (Kaplan-Meier survival analysis) for deep brain stimulation (DBS), vagus nerve stimulation (VNS), and spinal cord stimulation (SCS) at a single institution (years 1994-2015). RESULTS During the study period, 450 patients underwent DBS, 383 VNS, and 128 SCS. For DBS, the 5- and 10-year initial device survival was 87% and 73%, respectively, and therapy survival was 96% and 91%, respectively. For VNS, the 5- and 10-year initial device survival was 90% and 70%, respectively, and therapy survival was 99% and 97%, respectively. For SCS, the 5- and 10-year initial device survival was 50% and 34%, respectively, and therapy survival was 74% and 56%, respectively. The average initial device survival for DBS, VNS, and SCS was 14 years, 14 years, and 8 years while mean therapy survival was 18 years, 18 years, and 12.5 years, respectively. CONCLUSIONS The authors report, for the first time, comparative device and therapy survival rates out to 15 years for large cohorts of DBS, VNS, and SCS patients. Their results demonstrate higher device and therapy survival rates for DBS and VNS than for SCS. Hardware failures were more common among SCS patients, which may have played a role in the discontinuation of therapy. Higher therapy survival than device survival across all modalities indicates continued therapeutic benefit beyond initial device failures, which is important to emphasize when counseling patients.
Collapse
|
21
|
Abstract
Deep brain stimulation (DBS) has become an established therapeutic tool for treating patients with Parkinson's disease (PD) who have troublesome motor fluctuations and dyskinesias refractory to best medical therapy. In addition to its proven efficacy in patients with late PD, the EARLYSTIM trial not only demonstrated the efficacy of DBS in patients with early motor complications but also showed that it did not lose its therapeutic efficacy as the years passed by. However, like all other therapies for PD, DBS is not offered to patients either as a cure for this disease nor is it expected to stop the progression of the neurodegenerative process underlying PD; these important issues need to be highlighted to patients who are considering this therapy. This article aims to provide an introduction to residents or trainees starting a career in movement disorders of the technical aspects of this therapy and the evidence base for its use. For the latter objective, PUBMED was searched from 1946 to 2017 combining the search terms "deep brain stimulation" and "Parkinson's disease" looking for studies demonstrating the efficacy of this therapy in PD. Inclusion criteria included studies that involved more than 20 patients with a physician confirmed diagnosis of PD and a follow-up of greater than or equal to at least 12 months. The findings from those studies on motor symptoms, medication requirements, quality of life, and independence in activities of daily living in PD patients are summarized and presented in tabulated form in this paper at the end.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurology, Ipswich Hospital NHS Trust, United Kingdom
| |
Collapse
|
22
|
|
23
|
Nagao KJ, Patel NJ. From medications to surgery: advances in the treatment of motor complications in Parkinson's disease. Drugs Context 2019; 8:212592. [PMID: 31516532 PMCID: PMC6727789 DOI: 10.7573/dic.212592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 11/21/2022] Open
Abstract
Motor complications are responsible for the large burden of disability and poor quality of life in Parkinson’s disease (PD). The pulsatile nature of stimulation with oral dopaminergic therapies due to relatively short pharmacokinetic profiles and dysfunctional gastrointestinal absorption have been attributed to the development of PD motor complications. In this review, we will provide an overview of the pharmacologic and surgical therapies currently available and under investigation for the treatment of motor fluctuations and dyskinesia.
Collapse
Affiliation(s)
- Kanae Jennifer Nagao
- Department of Neurology, Henry Ford Health System, West Bloomfield, Michigan, USA
| | - Neepa J Patel
- Department of Neurology, Henry Ford Health System, West Bloomfield, Michigan, USA
| |
Collapse
|
24
|
Hartmann CJ, Fliegen S, Groiss SJ, Wojtecki L, Schnitzler A. An update on best practice of deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord 2019; 12:1756286419838096. [PMID: 30944587 PMCID: PMC6440024 DOI: 10.1177/1756286419838096] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
During the last 30 years, deep brain stimulation (DBS) has evolved into the clinical standard of care as a highly effective treatment for advanced Parkinson’s disease. Careful patient selection, an individualized anatomical target localization and meticulous evaluation of stimulation parameters for chronic DBS are crucial requirements to achieve optimal results. Current hardware-related advances allow for a more focused, individualized stimulation and hence may help to achieve optimal clinical results. However, current advances also increase the degrees of freedom for DBS programming and therefore challenge the skills of healthcare providers. This review gives an overview of the clinical effects of DBS, the criteria for patient, target, and device selection, and finally, offers strategies for a structured programming approach.
Collapse
Affiliation(s)
- Christian J Hartmann
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sabine Fliegen
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan J Groiss
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Lee HJ, Sung JH, Hong JT, Kim IS, Yang SH, Cho CB. Change of Extracellular Glutamate Level in Striatum during Deep Brain Stimulation of the Entopeduncular Nucleus in Rats. J Korean Neurosurg Soc 2019; 62:166-174. [PMID: 30840971 PMCID: PMC6411569 DOI: 10.3340/jkns.2018.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
Objective Globus pallidus interna (GPi) is acknowledged as an essential treatment for advanced Parkinson’s disease (PD). Nonetheless, the neurotransmitter study about its results is undiscovered. The goal of this research was to examine influences of entopeduncular nucleus (EPN) stimulation, identical to human GPi, in no-lesioned (NL) rat and 6-hydroxydopamine (6-HD)-lesioned rat on glutamate change in the striatum.
Methods Extracellular glutamate level changes in striatum of NL category, NL with deep brain stimulation (DBS) category, 6-HD category, and 6-HD with DBS category were examined using microdialysis and high-pressure liquid chromatography. Tyrosine hydroxylase (TH) immunoreactivities in substantia nigra and striatum of the four categories were also analyzed.
Results Extracellular glutamate levels in the striatum of NL with DBS category and 6-HD with DBS category were significantly increased by EPN stimulation compared to those in the NL category and 6-HD category. EPN stimulation had no significant effect on the expression of TH in NL or 6-HD category.
Conclusion Clinical results of GPi DBS are not only limited to direct inhibitory outflow to thalamus. They also include extensive alteration within basal ganglia.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae Hoon Sung
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Taek Hong
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il Sup Kim
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Bum Cho
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Liu Y, Li F, Luo H, He Q, Chen L, Cheng Y, Zhang W, Xie Z. Improvement of Deep Brain Stimulation in Dyskinesia in Parkinson's Disease: A Meta-Analysis. Front Neurol 2019; 10:151. [PMID: 30858823 PMCID: PMC6397831 DOI: 10.3389/fneur.2019.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) have been proven to be equally effective in improving motor-symptoms for advanced Parkinson's disease (PD) patients. However, it is unclear that which target stimulation is more effective in reducing dyskinesia. We conducted the meta-analysis to evaluate the efficacy of STN and GPi-DBS in the dyskinesia. Methods: A systematic search was performed in PubMed, Embase, and the Cochrane Library databases. Controlled trials about the dyskinesia comparing the efficacy of GPi and STN DBS were included. Clinical data of dyskinesia and levodopa equivalent doses (LED) were collected for the meta-analysis. Results: Eight eligible trials containing a total of 822 patients were included in this meta-analysis. Our results showed that GPi DBS offered a greater reduction of dyskinesia than STN DBS at 12 months after surgery, with an overall pooled SMD of 0.32 (95% CI = 0.06 to 0.59, P = 0.02). Treatment of STN DBS was associated with a greater reduction of LED compared with GPi DBS, with a change score of −320.55 (95% CI = −401.36 to −239.73, P < 0.00001). Conclusion: GPi DBS is superior to reduce dyskinesia than STN DBS at 12 months after surgery for advanced PD patients. Further studies should focus on the different mechanism for dyskinesia reduction by GPi or STN DBS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Feng Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hansheng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Mao Z, Ling Z, Pan L, Xu X, Cui Z, Liang S, Yu X. Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson's Disease: A Network Meta-Analysis. Front Aging Neurosci 2019; 11:23. [PMID: 30853908 PMCID: PMC6395396 DOI: 10.3389/fnagi.2019.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is considered an effective treatment option for Parkinson's disease (PD). Several studies have demonstrated the efficacy of neurostimulation in patients with advanced PD. The subthalamic nucleus (STN), the internal globus pallidus (GPi), ventral intermediate nucleus (Vim), and pedunculopontine nucleus (PPN) are reportedly effective DBS targets for control of Parkinsonian tremors. However, there is no consensus on the ideal target for DBS in patients with Parkinson's disease. Only a few studies have directly compared the efficacy of DBS of the Vim, STN, and GPi. Therefore, we searched PubMed, Embase, Cochrane Library, and other databases for observational studies, extracted data on unified Parkinson's disease rating scale (UPDRS) scores and performed a comprehensive network meta-analysis of different strategies of DBS and compared the efficiency of DBS at different targets. Methods: Forest plot was used to examine the overall efficiency of DBS; cumulative probability value was used to rank the strategies under examination. A node-splitting model was employed to assess consistency of reported outcomes inconsistency. A total of 16 studies which focused on UPDRS improvement were included in the network meta-analysis. Results: By comparing the overall efficiency associated with each target, we confirmed the efficacy of DBS therapy in PD. Our findings revealed similar efficacy of DBS targeted at GPi and STN in the on-medication phase [GPi-3.9 (95% CI -7.0 to -0.96); STN-3.1 (-5.9 to -0.38)]; however, in the off-medication phase, Vim-targeted DBS was associated with better improvement in UPDRS scores and could be a choice as a DBS target for tremor-dominant Parkinsonism. Conclusions: Our findings will help improve clinical application of DBS.
Collapse
Affiliation(s)
- Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Shuli Liang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Fabbri M, Rosa MM, Ferreira JJ. Adjunctive Therapies in Parkinson's Disease: How to Choose the Best Treatment Strategy Approach. Drugs Aging 2019; 35:1041-1054. [PMID: 30318555 DOI: 10.1007/s40266-018-0599-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
End-of-dose motor fluctuations are regarded as one of the core troublesome symptoms by patients with Parkinson's disease (PD). Treatment of levodopa (L-dopa)-induced motor fluctuations is still an unmet medical need. L-dopa is the gold standard in the treatment of motor PD symptoms; notwithstanding, a wide range of adjunct therapies are currently available for the treatment of end-of-dose motor fluctuations. Additionally, device-aided therapies, such as deep brain stimulation, L-dopa-carbidopa intestinal gel infusion, and on-demand injection or continuous apomorphine infusion, may be considered when oral treatments are not sufficient to control motor fluctuations. In spite of the several evidence-based reviews and guidelines available, there is no agreement on which add-on therapy should be started first or its optimal timing. Equally challenging is the choice and timing between device-aided therapies. Herein, we propose a general overview of oral and device-aided treatments for PD patients with end-of-dose motor fluctuations, offering two possible algorithms that can guide clinicians during the therapeutic decision process.
Collapse
Affiliation(s)
- Margherita Fabbri
- Instituto de Medicina Molecular, Lisbon, Portugal
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Mario M Rosa
- Laboratorio de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Department of Neurosciences, Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Lisbon, Portugal.
- Laboratorio de Farmacologia Clínica e Terapêutica, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
- CNS, Campus Neurológico Sénior, Torres Vedras, Portugal.
| |
Collapse
|
29
|
Wong JK, Cauraugh JH, Ho KWD, Broderick M, Ramirez-Zamora A, Almeida L, Wagle Shukla A, Wilson CA, de Bie RMA, Weaver FM, Kang N, Okun MS. STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2019; 58:56-62. [DOI: 10.1016/j.parkreldis.2018.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 11/29/2022]
|
30
|
Pycroft L, Stein J, Aziz T. Deep brain stimulation: An overview of history, methods, and future developments. Brain Neurosci Adv 2018; 2:2398212818816017. [PMID: 32166163 PMCID: PMC7058209 DOI: 10.1177/2398212818816017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Deep brain stimulation has already revolutionised the clinical management of treatment-resistant movement disorders and offers novel treatment options for an increasing range of neurological and psychiatric illnesses. In this article, we briefly review the history of deep brain stimulation, particularly focusing on the last 50 years, which have seen rapid development in the safety and efficacy of deep brain stimulation. We then discuss the current state of the art in deep brain stimulation, focusing on emerging indications and recent technological advances that have improved the field. Finally, we consider the future developments in technology, technique, and research that will impact deep brain stimulation; particularly focusing on closed-loop stimulation techniques and emerging techniques such as optogenetics, cybersecurity risk, implantation timing, and impediments to undertaking high-quality research.
Collapse
Affiliation(s)
- Laurie Pycroft
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Stein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Müller EJ, Robinson PA. Suppression of Parkinsonian Beta Oscillations by Deep Brain Stimulation: Determination of Effective Protocols. Front Comput Neurosci 2018; 12:98. [PMID: 30618692 PMCID: PMC6297248 DOI: 10.3389/fncom.2018.00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/26/2018] [Indexed: 01/05/2023] Open
Abstract
A neural field model of the corticothalamic-basal ganglia system is developed that describes enhanced beta activity within subthalamic and pallidal circuits in Parkinson's disease (PD) via system resonances. A model of deep brain stimulation (DBS) of typical clinical targets, the subthalamic nucleus (STN) and globus pallidus internus (GPi), is added and studied for several distinct stimulation protocols that are used for treatment of the motor symptoms of PD and that reduce pathological beta band activity (13-30 Hz) in the corticothalamic-basal ganglia network. The resulting impact of DBS on enhanced beta activity in the STN and GPi, as well as cortico-subthalamic and cortico-pallidal coherence, are studied. Both STN-DBS and GPi-DBS are found to be effective for suppressing peak STN and GPi power in the beta band, with GPi-DBS being slightly more effective in both the STN and the GPi for all stimulus protocols tested. The largest decrease in cortico-STN coherence is observed during STN-DBS, whereas GPi-DBS is most effective for reducing cortico-GPi coherence. A reduction of the pathologically large STN connection strengths that define the parkinsonian state results in enhanced 6 Hz activity and could thus represent a compensatory mechanism that has the side effect of driving parkinsonian tremor-like oscillations. This model provides a method for systematically testing effective DBS protocols that agrees with experimental and clinical findings. Furthermore, the model suggests GPi-DBS and STN-DBS have distinct impacts on elevated synchronization between the basal ganglia and motor cortex in PD.
Collapse
Affiliation(s)
- Eli J Müller
- School of Physics, The University of Sydney, Sydney, NSW, Australia.,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, Australia.,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Brandão P, Grippe TC, Modesto LC, Ferreira AGF, Silva FMD, Pereira FF, Lobo ME, Allam N, Freitas TDS, Munhoz RP. Decisions about deep brain stimulation therapy in Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:411-420. [PMID: 29972424 DOI: 10.1590/0004-282x20180048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022]
Abstract
Parkinson's disease can be treated surgically in patients who present with motor complications such as fluctuations and dyskinesias, or medically-refractory disabling tremor. In this review, a group of specialists formulated suggestions for a preoperative evaluation protocol after reviewing the literature published up to October 2017. In this protocol, eligibility and ineligibility criteria for surgical treatment were suggested, as well as procedures that should be carried out before the multidisciplinary therapeutic decisions. The review emphasizes the need to establish "DBS teams", with professionals dedicated specifically to this area. Finally, surgical target selection (subthalamic nucleus or globus pallidus internus) is discussed briefly, weighing the pros and cons of each target.
Collapse
Affiliation(s)
- Pedro Brandão
- Universidade de Brasília, Laboratório de Neurociência e Comportamento, Brasilia DF, Brasil.,Câmara dos Deputados, Departamento Médico, Serviço de Neurologia, Brasilia DF, Brasil
| | - Talyta Cortez Grippe
- Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasilia DF, Brasil
| | - Luiz Cláudio Modesto
- Hospital de Base do Distrito Federal, Unidade de Neurocirurgia, Brasilia DF, Brasil
| | | | | | - Flávio Faria Pereira
- Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasilia DF, Brasil
| | | | - Nasser Allam
- Universidade de Brasília, Laboratório de Neurociência e Comportamento, Brasilia DF, Brasil.,Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasilia DF, Brasil
| | | | - Renato P Munhoz
- University of Toronto, Toronto Western Hospital, Movement Disorders Centre, University Health Network, Toronto, Canada
| |
Collapse
|
33
|
Yin Z, Cao Y, Zheng S, Duan J, Zhou D, Xu R, Hong T, Lu G. Persistent adverse effects following different targets and periods after bilateral deep brain stimulation in patients with Parkinson's disease. J Neurol Sci 2018; 393:116-127. [DOI: 10.1016/j.jns.2018.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 02/04/2023]
|
34
|
Peng L, Fu J, Ming Y, Zeng S, He H, Chen L. The long-term efficacy of STN vs GPi deep brain stimulation for Parkinson disease: A meta-analysis. Medicine (Baltimore) 2018; 97:e12153. [PMID: 30170458 PMCID: PMC6393030 DOI: 10.1097/md.0000000000012153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This meta-analysis assessed the long-term efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus interna (GPi) for Parkinson disease (PD). METHODS PubMed, Cochrane Library, and Clinical Trials databases were searched. Outcomes were unified Parkinson disease rating scale section (UPDRS) III off-medication score, Parkinson's disease questionnaire: 39 activities of daily living (PDQ-39 ADL) score, and levodopa-equivalent dosage after DBS. RESULTS During the off-medication state, pooled weighted mean difference (WMD) of UPDRS III score was .69 (95% confidence interval [CI] = -1.77 to 3.16, P = .58). In subgroup analysis, WMD of UPDRS III off-medication scores from baseline to 2 years and 3 years post-DBS were -.61 (95% CI = -2.97 to 1.75, P = .61) and 2.59 (95% CI = -2.30 to 7.47, P = .30). Pooled WMD of changes in tremor, rigidity, and gait scores were 1.12 (95% CI = -0.05 to 2.28, P = .06), 1.22 (95% CI = -0.51 to 2.94, P = .17) and .37 (95% CI = -0.13 to 0.87, P = .15), respectively. After DBS, pooled WMD of PDQ-39 ADL and LED were -3.36 (95% CI = -6.36 to -0.36, P = .03) and 194.89 (95% CI = 113.16 to 276.63, P < .001). CONCLUSIONS STN-DBS and GPi-DBS improve motor function and activities of daily living for PD. Differences in the long-term efficacy for PD on motor symptoms were not observed.
Collapse
Affiliation(s)
| | - Jie Fu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | | | | | | |
Collapse
|
35
|
Diestro JDB, Vesagas TS, Teleg RA, Aguilar JA, Anlacan JP, Jamora RDG. Deep Brain Stimulation for Parkinson Disease in the Philippines: Outcomes of the Philippine Movement Disorder Surgery Center. World Neurosurg 2018; 115:e650-e658. [DOI: 10.1016/j.wneu.2018.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
36
|
Ho AL, Ali R, Connolly ID, Henderson JM, Dhall R, Stein SC, Halpern CH. Awake versus asleep deep brain stimulation for Parkinson's disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89:687-691. [PMID: 28250028 DOI: 10.1136/jnnp-2016-314500] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/27/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE No definitive comparative studies of the efficacy of 'awake' deep brain stimulation (DBS) for Parkinson's disease (PD) under local or general anaesthesia exist, and there remains significant debate within the field regarding differences in outcomes between these two techniques. METHODS We conducted a literature review and meta-analysis of all published DBS for PD studies (n=2563) on PubMed from January 2004 to November 2015. Inclusion criteria included patient number >15, report of precision and/or clinical outcomes data, and at least 6 months of follow-up. There were 145 studies, 16 of which were under general anaesthesia. Data were pooled using an inverse-variance weighted, random effects meta-analytic model for observational data. RESULTS There was no significant difference in mean target error between local and general anaesthesia, but there was a significantly less mean number of DBS lead passes with general anaesthesia (p=0.006). There were also significant decreases in DBS complications, with fewer intracerebral haemorrhages and infections with general anaesthesia (p<0.001). There were no significant differences in Unified Parkinson's Disease Rating Scale (UPDRS) Section II scores off medication, UPDRS III scores off and on medication or levodopa equivalent doses between the two techniques. Awake DBS cohorts had a significantly greater decrease in treatment-related side effects as measured by the UPDRS IV off medication score (78.4% awake vs 59.7% asleep, p=0.022). CONCLUSIONS Our meta-analysis demonstrates that while DBS under general anaesthesia may lead to lower complication rates overall, awake DBS may lead to less treatment-induced side effects. Nevertheless, there were no significant differences in clinical motor outcomes between the two techniques. Thus, DBS under general anaesthesia can be considered at experienced centres in patients who are not candidates for traditional awake DBS or prefer the asleep alternative.
Collapse
Affiliation(s)
- Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Rohaid Ali
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Ian D Connolly
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Rohit Dhall
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Sherman C Stein
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
37
|
Tröster AI. Some Clinically Useful Information that Neuropsychology Provides Patients, Carepartners, Neurologists, and Neurosurgeons About Deep Brain Stimulation for Parkinson's Disease. Arch Clin Neuropsychol 2018; 32:810-828. [PMID: 29077802 PMCID: PMC5860398 DOI: 10.1093/arclin/acx090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective (but non-curative) treatment for some of the motor symptoms and treatment complications associated with dopaminergic agents in Parkinson's disease (PD). DBS can be done relatively safely and is associated with quality of life gains. In most DBS centers, neuropsychological evaluations are performed routinely before surgery, and sometimes after surgery. The purpose of such evaluation is not to decide solely on its results whether or not to offer DBS to a given candidate, but to provide the patient and treatment team with the best available information to make reasonable risk-benefit assessments. This review provides information relevant to the questions often asked by patients and their carepartners, neurologists, and neurosurgeons about neuropsychological outcomes of DBS, including neuropsychological adverse event rates, magnitude of cognitive changes, outcomes after unilateral versus bilateral surgery directed at various targets, impact of mild cognitive impairment (MCI) on outcome, factors implicated in neurobehavioral outcomes, and safety of newer interventions or techniques such as asleep surgery and current steering.
Collapse
Affiliation(s)
- Alexander I Tröster
- Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
38
|
Senft V, Stewart TC, Bekolay T, Eliasmith C, Kröger BJ. Inhibiting Basal Ganglia Regions Reduces Syllable Sequencing Errors in Parkinson's Disease: A Computer Simulation Study. Front Comput Neurosci 2018; 12:41. [PMID: 29928197 PMCID: PMC5997929 DOI: 10.3389/fncom.2018.00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/18/2018] [Indexed: 01/24/2023] Open
Abstract
Background: Parkinson's disease affects many motor processes including speech. Besides drug treatment, deep brain stimulation (DBS) in the subthalamic nucleus (STN) and globus pallidus internus (GPi) has developed as an effective therapy. Goal: We present a neural model that simulates a syllable repetition task and evaluate its performance when varying the level of dopamine in the striatum, and the level of activity reduction in the STN or GPi. Method: The Neural Engineering Framework (NEF) is used to build a model of syllable sequencing through a cortico-basal ganglia-thalamus-cortex circuit. The model is able to simulate a failing substantia nigra pars compacta (SNc), as occurs in Parkinson's patients. We simulate syllable sequencing parameterized by (i) the tonic dopamine level in the striatum and (ii) average neural activity in STN or GPi. Results: With decreased dopamine levels, the model produces syllable sequencing errors in the form of skipping and swapping syllables, repeating the same syllable, breaking and restarting in the middle of a sequence, and cessation (“freezing”) of sequences. We also find that reducing (inhibiting) activity in either STN or GPi reduces the occurrence of syllable sequencing errors. Conclusion: The model predicts that inhibiting activity in STN or GPi can reduce syllable sequencing errors in Parkinson's patients. Since DBS also reduces syllable sequencing errors in Parkinson's patients, we therefore suggest that STN or GPi inhibition is one mechanism through which DBS reduces syllable sequencing errors in Parkinson's patients.
Collapse
Affiliation(s)
| | - Terrence C Stewart
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada
| | | | - Chris Eliasmith
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada
| | - Bernd J Kröger
- Department for Phoniatrics, Pedaudiology, and Communication Disorders, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Mansouri A, Taslimi S, Badhiwala JH, Witiw CD, Nassiri F, Odekerken VJJ, De Bie RMA, Kalia SK, Hodaie M, Munhoz RP, Fasano A, Lozano AM. Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg 2018; 128:1199-1213. [DOI: 10.3171/2016.11.jns16715] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEDeep brain stimulation (DBS) is effective in the management of patients with advanced Parkinson’s disease (PD). While both the globus pallidus pars interna (GPi) and the subthalamic nucleus (STN) are accepted targets, their relative efficacy in randomized controlled trials (RCTs) has not been established beyond 12 months. The objective of this study was to conduct a meta-analysis of RCTs to compare outcomes among adults with PD undergoing DBS of GPi or STN at various time points, including 36 months of follow-up.METHODSThe MEDLINE, Embase, CENTRAL, Web of Science, and CINAHL databases were searched. Registries for clinical trials, selected conference proceedings, and the table of contents for selected journals were also searched. Screens were conducted independently and in duplicate. Among the 623 studies initially identified (615 through database search, 7 through manual review of bibliographies, and 1 through a repeat screen of literature prior to submission), 19 underwent full-text review; 13 of these were included in the quantitative meta-analysis. Data were extracted independently and in duplicate. The Cochrane Collaboration tool was used to assess the risk of bias. The GRADE evidence profile tool was used to assess the quality of the evidence. Motor scores, medication dosage reduction, activities of daily living, depression, dyskinesias, and adverse events were compared. The influence of disease duration (a priori) and the proportion of male patients within a study (post hoc) were explored as potential subgroups.RESULTSThirteen studies (6 original cohorts) were identified. No difference in motor scores or activities of daily living was identified at 36 months. Medications were significantly reduced with STN stimulation (5 studies, weighted mean difference [WMD] −365.46, 95% CI −599.48 to −131.44, p = 0.002). Beck Depression Inventory scores were significantly better with GPi stimulation (3 studies; WMD 2.53, 95% CI 0.99–4.06 p = 0.001). The motor benefits of GPi and STN DBS for PD are similar.CONCLUSIONSThe motor benefits achieved with GPi and STN DBS for PD are similar. DBS of STN allows for a greater reduction of medication, but not as significant an advantage as DBS of GPi with respect to mood. This difference is sustained at 36 months. Further long-term studies are necessary.
Collapse
Affiliation(s)
- Alireza Mansouri
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
- 2Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada; and
| | - Shervin Taslimi
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| | - Jetan H. Badhiwala
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| | - Christopher D. Witiw
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| | - Farshad Nassiri
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| | | | - Rob M. A. De Bie
- 3Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - Suneil K. Kalia
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| | - Mojgan Hodaie
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| | - Renato P. Munhoz
- 4Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Division of Neurology, Toronto Western Hospital, UHN, University of Toronto
| | - Alfonso Fasano
- 4Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Division of Neurology, Toronto Western Hospital, UHN, University of Toronto
| | - Andres M. Lozano
- 1Division of Neurosurgery, Toronto Western Hospital, Department of Surgery, University of Toronto
| |
Collapse
|
40
|
Valmarska A, Miljkovic D, Lavrač N, Robnik-Šikonja M. Analysis of medications change in Parkinson’s disease progression data. J Intell Inf Syst 2018. [DOI: 10.1007/s10844-018-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Negida A, Elminawy M, El Ashal G, Essam A, Eysa A, Abd Elalem Aziz M. Subthalamic and Pallidal Deep Brain Stimulation for Parkinson's Disease. Cureus 2018; 10:e2232. [PMID: 29713577 PMCID: PMC5919761 DOI: 10.7759/cureus.2232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/26/2018] [Indexed: 01/21/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical treatment in which stimulation electrodes are permanently implanted in basal ganglia to treat motor fluctuations and symptoms of Parkinson's disease (PD). Subthalamic nucleus (STN) and globus pallidus internus (GPi) are the commonly used targets for DBS in PD. Many studies have compared motor and non-motor outcomes of DBS in both targets. However, the selection of PD patients for DBS targets is still poorly studied. Therefore, we performed this narrative review to summarize published studies comparing STN DBS and GPi DBS. GPi DBS is better for patients with problems in speech, mood, or cognition while STN DBS is better from an economic point of view as it allows much reduction in antiparkinson medications and less battery consumption.
Collapse
Affiliation(s)
- Ahmed Negida
- Faculty of Medicine, Zagazig University, Egypt, Zagazig University, Egypt
| | - Mohamed Elminawy
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Athar Eysa
- Faculty of Medicine, Menoufia University
| | | |
Collapse
|
42
|
Nakajima A, Shimo Y, Sekimoto S, Kamagata K, Jo T, Oyama G, Umemura A, Hattori N. Dopamine transporter imaging predicts motor responsiveness to levodopa challenge in patients with Parkinson's disease: A pilot study of DATSCAN for subthalamic deep brain stimulation. J Neurol Sci 2018; 385:134-139. [PMID: 29406893 DOI: 10.1016/j.jns.2017.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 01/06/2023]
Abstract
Imaging studies are necessary prior to subthalamic deep brain stimulation (STN-DBS). Dopamine transporter (DAT) imaging is a powerful tool for visualizing dopamine terminals in the striatum, but its usefulness in STN-DBS is unclear. Here, we retrospectively investigated the relationship between motor symptoms and the specific binding ratio (SBR) on DAT imaging in patients with Parkinson's disease (PD). We included 23 consecutive patients (9 female; 14 male) who were evaluated for DBS eligibility between October 2013 and October 2014 and subsequently received bilateral STN-DBS. Correlation and simple regression analyses were performed on SBR values and clinical parameters before and after surgery. SBR value was negatively correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor score in the "ON" state before surgery (rs=-0.637, p=0.001) and positively correlated with the reduction of the levodopa equivalent daily dose by surgery (r=0.422, p=0.045). A simple regression analysis revealed that SBR value was positively correlated with UPDRS motor score improvement after levodopa challenge before surgery (p=0.001, R2=0.423). DAT imaging may be useful in STN-DBS candidate selection and the identification of the therapeutic mechanism of STN-DBS in patients with advanced PD and motor symptom fluctuations.
Collapse
Affiliation(s)
- Asuka Nakajima
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan; Department of Research and Therapeutics for Movement Disorders, School of Medicine, Juntendo University, Tokyo, Japan.
| | - Satoko Sekimoto
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takayuki Jo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Umemura
- Department of Research and Therapeutics for Movement Disorders, School of Medicine, Juntendo University, Tokyo, Japan; Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
43
|
Prinz P, Stengel A. Deep Brain Stimulation-Possible Treatment Strategy for Pathologically Altered Body Weight? Brain Sci 2018; 8:brainsci8010019. [PMID: 29361753 PMCID: PMC5789350 DOI: 10.3390/brainsci8010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
The treatment of obesity and eating disorders such as binge-eating disorder or anorexia nervosa is challenging. Besides lifestyle changes and pharmacological options, bariatric surgery represents a well-established and effective-albeit invasive-treatment of obesity, whereas for binge-eating disorder and anorexia nervosa mostly psychotherapy options exist. Deep brain stimulation (DBS), a method that influences the neuronal network, is by now known for its safe and effective applicability in patients with Parkinson’s disease. However, the use does not seem to be restricted to these patients. Recent preclinical and first clinical evidence points towards the use of DBS in patients with obesity and eating disorders as well. Depending on the targeted area in the brain, DBS can either inhibit food intake and body weight or stimulate energy intake and subsequently body weight. The current review focuses on preclinical and clinical evidence of DBS to modulate food intake and body weight and highlight the different brain areas targeted, stimulation protocols applied and downstream signaling modulated. Lastly, this review will also critically discuss potential safety issues and gaps in knowledge to promote further studies.
Collapse
Affiliation(s)
- Philip Prinz
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12200 Berlin, Germany.
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12200 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
44
|
Niemann M, Schneider GH, Kühn A, Vajkoczy P, Faust K. Longevity of Implantable Pulse Generators in Bilateral Deep Brain Stimulation for Movement Disorders. Neuromodulation 2017; 21:597-603. [DOI: 10.1111/ner.12743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Marcel Niemann
- Department of Neurosurgery; Charité University Medicine Berlin; Berlin Germany
| | | | - Andrea Kühn
- Department of Neurosurgery; Charité University Medicine Berlin; Berlin Germany
| | - Peter Vajkoczy
- Department of Neurosurgery; Charité University Medicine Berlin; Berlin Germany
| | - Katharina Faust
- Department of Neurosurgery; Charité University Medicine Berlin; Berlin Germany
| |
Collapse
|
45
|
Martel-Sauvageau V, Tjaden K. Vocalic transitions as markers of speech acoustic changes with STN-DBS in Parkinson's Disease. JOURNAL OF COMMUNICATION DISORDERS 2017; 70:1-11. [PMID: 29032347 PMCID: PMC6048951 DOI: 10.1016/j.jcomdis.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Deep Brain Stimulation of the subthalamic nucleus (STN-DBS) effectively treats cardinal symptoms of idiopathic Parkinson's disease (PD) that cannot be satisfactorily managed with medication. Research is equivocal regarding speech changes associated with STN-DBS. This study investigated the impact of STN-DBS on vocalic transitions and the relationship to intelligibility. METHODS Eight Quebec-French speakers with PD and eight healthy controls participated. The slope of the second formant frequency (F2 slope) for glides was obtained. Locus equations (LEs) were calculated to capture vocalic transitions in consonant-vowel sequences. A visual analog scale was used to obtain judgments of intelligibility. Measures for the PD group were obtained both On and Off stimulation. RESULTS F2 slopes and LEs differed among groups, but there were no systematic differences for On versus Off STN-DBS. On an individual level, participants with PD exhibited heterogeneous changes with DBS stimulation. Intelligibility was significantly correlated with F2 slope. CONCLUSION F2 slope appears to be sensitive to articulatory impairment in PD and could be used in clinical settings to distinguish these speakers from healthy controls. However, acoustic metrics failed to identify systematic change with STN-DBS. The heterogeneity of results, as well as the clinical relevance of acoustic metrics are discussed.
Collapse
Affiliation(s)
- Vincent Martel-Sauvageau
- Centre interdisciplinaire de recherche en réadaptation et en intégration sociale (CIRRIS), Canada.
| | - Kris Tjaden
- Dept. of Communicative Disorders & Sciences, University at Buffalo, Canada
| |
Collapse
|
46
|
Thompson JA, Yin D, Ojemann SG, Abosch A. Use of the Putamen as a Surrogate Anatomical Marker for the Internal Segment of the Globus Pallidus in Deep Brain Stimulation Surgery. Stereotact Funct Neurosurg 2017; 95:229-235. [DOI: 10.1159/000478105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/08/2017] [Indexed: 12/25/2022]
|
47
|
Adams WK, Vonder Haar C, Tremblay M, Cocker PJ, Silveira MM, Kaur S, Baunez C, Winstanley CA. Deep-Brain Stimulation of the Subthalamic Nucleus Selectively Decreases Risky Choice in Risk-Preferring Rats. eNeuro 2017; 4:ENEURO.0094-17.2017. [PMID: 28791332 PMCID: PMC5547195 DOI: 10.1523/eneuro.0094-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) can improve the motor symptoms of Parkinson's disease (PD) and negate the problematic side effects of dopamine replacement therapy. Although there is concern that STN-DBS may enhance the development of gambling disorder and other impulse control disorders in this patient group, recent data suggest that STN-DBS may actually reduce iatrogenic impulse control disorders, and alleviate obsessive-compulsive disorder (OCD). Here, we sought to determine whether STN-DBS was beneficial or detrimental to performance of the rat gambling task (rGT), a rodent analogue of the Iowa Gambling Task (IGT) used to assess risky decision making clinically. Rats chose between four options associated with different amounts and probabilities of sugar pellet rewards versus timeout punishments. As in the IGT, the optimal approach was to favor options associated with smaller per-trial gains but lower timeout penalties. Once a stable behavioral baseline was established, electrodes were implanted bilaterally into the STN, and the effects of STN-DBS assessed on-task over 10 consecutive sessions using an A-B-A design. STN-DBS did not affect choice in optimal decision makers that correctly favored options associated with smaller per-trial gains but also lower penalties. However, a minority (∼25%) preferred the maladaptive "high-risk, high-reward" options at baseline. STN-DBS significantly and progressively improved choice in these risk-preferring rats. These data support the hypothesis that STN-DBS may be beneficial in ameliorating maladaptive decision making associated with compulsive and addiction disorders.
Collapse
Affiliation(s)
- Wendy K. Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Cole Vonder Haar
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Melanie Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Paul J. Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Mason M. Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, 13005, Marseille, France
| | - Catharine A. Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
48
|
Comparison of Globus Pallidus Interna and Subthalamic Nucleus in Deep Brain Stimulation for Parkinson Disease: An Institutional Experience and Review. PARKINSONS DISEASE 2017; 2017:3410820. [PMID: 28706748 PMCID: PMC5494569 DOI: 10.1155/2017/3410820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/07/2017] [Indexed: 01/17/2023]
Abstract
Deep Brain Stimulation (DBS) has revolutionized the lives of patients of Parkinson disease, offering therapeutic options to those not benefiting entirely from medications alone. With its proven track record of outperforming the best medical management, the goal is to unlock the full potential of this therapy. Currently, the Globus Pallidus Interna (GPi) and Subthalamic Nucleus (STN) are both viable targets for DBS, and the choice of site should focus on the constellation of symptoms, both motor and nonmotor, which are key determinants to quality of life. Our article sheds light on the specific advantages and drawbacks of the two sites, highlighting the need for matching the inherent properties of a target with specific desired effects in patients. UT Southwestern Medical Center has a robust and constantly evolving DBS program and the narrative from our center provides invaluable insight into the practical realities of DBS. The ultimate decision in selecting a DBS target is complex, ideally made by a multidisciplinary team, tailored towards each patient's profile and their expectations, by drawing upon scientific evidence coupled with experience. Ongoing research is expanding our knowledge base, which should be dynamically incorporated into an institute's DBS paradigm to ensure that patients receive the optimal therapy.
Collapse
|
49
|
Almeida L, Deeb W, Spears C, Opri E, Molina R, Martinez-Ramirez D, Gunduz A, Hess CW, Okun MS. Current Practice and the Future of Deep Brain Stimulation Therapy in Parkinson's Disease. Semin Neurol 2017; 37:205-214. [PMID: 28511261 PMCID: PMC6195220 DOI: 10.1055/s-0037-1601893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease patients experiencing motor fluctuations, medication-resistant tremor, and/or dyskinesia. Currently, the subthalamic nucleus and the globus pallidus internus are the two most widely used targets, with individual advantages and disadvantages influencing patient selection. Potential DBS patients are selected using the few existing guidelines and the available DBS literature, and many centers employ an interdisciplinary team review of the individual's risk-benefit profile. Programmed settings vary based on institution- or physician-specific protocols designed to maximize benefits and limit adverse effects. Expectations should be realistic and clearly defined during the evaluation process, and each bothersome symptom should be addressed in the context of building the risk-benefit profile. Current DBS research is focused on improved symptom control, the development of newer technologies, and the improved efficiency of stimulation delivery. Techniques deliver stimulation in a more personalized way, and methods of adaptive DBS such as closed-loop approaches are already on the horizon.
Collapse
Affiliation(s)
- Leonardo Almeida
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Wissam Deeb
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Chauncey Spears
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Enrico Opri
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rene Molina
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Daniel Martinez-Ramirez
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Aysegul Gunduz
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christopher W. Hess
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Michael S. Okun
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| |
Collapse
|
50
|
Meta-Analysis of the Relationship between Deep Brain Stimulation in Patients with Parkinson's Disease and Performance in Evaluation Tests for Executive Brain Functions. PARKINSONS DISEASE 2017; 2017:9641392. [PMID: 28280646 PMCID: PMC5320384 DOI: 10.1155/2017/9641392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition, which compromises the motor functions and causes the alteration of some executive brain functions. The presence of changes in cognitive symptoms in PD could be due to the procedure of deep brain stimulation (DBS). We searched in several databases for studies that compared performance in executive function tests before and after the DBS procedure in PE and then performed a meta-analysis. After the initial search, there were 15 articles that specifically evaluated the functions of verbal fluency, working memory, cognitive flexibility, abstract thinking, and inhibition. It was found that there were differences in the evaluation of the cognitive functions in terms of the protocols, which generated heterogeneity in the results of the meta-analysis. Likewise, a tendency to diminish functions like verbal fluency and inhibition was found, being this consistent with similar studies. In the other functions evaluated, no difference was found between pre- and postsurgery scores. Monitoring of this type of function is recommended after the procedure.
Collapse
|